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Abstract. Pseudo-differential operators associated with symbol θ(z, ξ), z = x + iy and
ξ = u + it on WΩ

M (Cn)-space is defined and using the theory of Fourier transformation its
various properties are studied. Lp(Rn)- boundedness is investigated for 1 < p ≤ ∞. Sobolev
space associated with distributional space [WΩ

M (Cn)]′ is defined and its properties are obtained.

1 Introduction

The spaces WM (Rn), WΩ(Cn) and WΩ
M (Cn) were introduced and analyzed by Gurevich [4],

Gel’fand and Shilov [3] and Friedman [2]. They applied these W -type spaces for investigating
uniqueness and corrected class of Cauchy problem and other problems of partial differential
equations by using Fourier transformation tool. Recently, continuous Wavelet transformation on
W -spaces are studied by [6, 9] and many interesting properties are obtained.

The theory of pseudo-differential operators is developed by Wong [10], Rodino [1], Pathak
[5] and others. They exploited this theory on Schwartz space S(Rn), Gel’fand and Shilov space
of type S and Gevery space by using the technique of Fourier transformation.

They also studied psuedo-differential operators on their respective Sobolev space and got
many important results. Sobolev spaces are used to study the minimal-maximal properties,
global regularities and spectral properties of pseudo-differential operators on Schwartz space
S(Rn). The Pseudo differential operators on WM (Rn) and WΩ(Cn) are studied by author and
others and obtained many important results, see [7, 8].

Our main aim in this paper is to introduce more general symbol and precise study of pseudo-
differential operators on WΩ

M (Cn)-space and to study many properties because its dual space
[WΩ

M (Cn)]′ is more general than [WM (Rn)]′ and Schwartz distributional space S′(Rn).
The present article is divided into three sections. Section 2 gives the various definitions

of pseudo-differential operators, symbol, W -type spaces, Fourier transformation and Sobolev
space. Section 3 contains a study of properties of pseudo-differential operators on WΩ

M (Cn)
space and Lp(Rn)-boundedness result of pseudo differential operators. In the last section, using
Lp(Rn)-boundedness result, the Sobolev space Gs,p(Cn), s ∈ R and 1 ≤ p ≤ ∞ on [WΩ

M (Cn)]′
space is defined and it is proved that the pseudo-differential operatorAθ : Gs,p(Cn)→ Go,p(Cn)
and Aθ : Gs,p(Cn)→ Gs−m,p(Cn) are bounded linear operator for s,m ∈ R.

2 Preliminary

Now in this section we recall the definitions of WM (Rn), WΩ(Cn) and WΩ
M (Cn) from [2] and

[3].

Let Mj and Ωj be the convex functions such that

Mj(xj) =

∫ xj

0
µj(ξj) dξj (xj ≥ 0) (2.1)

and

Ωj(yj) =

∫ yj

0
wj(ηj) dηj (yj ≥ 0) (2.2)

for j = 1, 2, 3, · · ·n.
We set
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µ(ξ) = (µ1(ξ1), · · · , µn(ξn))
w(n) = (w1(η1), · · · , wn(ηn))

and

Mj(−xj) =Mj(xj), Mj(xj) +Mj(x
′
j) ≤Mj(xj + x′j) (2.3)

Ωj(−yj) = Ωj(yj), Ωj(yj) + Ωj(y
′
j) ≤ Ωj(yj + y′j). (2.4)

The space WM (Rn) consists of all C∞-functions which satisfy the inequalities

|D(k)
x φ(x)| ≤ Ck exp[−M(ax)], (2.5)

where D(k)
x = D

(k1)
x1 D

(k2)
x2 · · ·D

(kn)
xn ,

exp[−M(ax)] = exp[−M1(a1x1) · · · −Mn(anxn)] (2.6)

and constants Ck, a > 0 depending on the function φ. A function φ(z) ∈WΩ(Cn) if and only if
for b > 0 there exists a constant Ck > 0 such that

|zkφ(z)| ≤ Ck exp[Ω(by)], z = x+ iy (2.7)

where
zk = zk1

1 z
k2
2 z

k3
3 · · · z

kn
n

and
exp[Ω(by)] = exp[Ω1(b1y1) + · · ·+ Ωj(bjyj) + · · ·+ Ωn(bnyn)], (2.8)

the constants Ck and b > 0 depend on the function φ.
The space WΩ

M (Cn) consists of all entire analytic functions φ(z) which satisfy

|φ(z)| ≤ C exp[−M [(ax)] + Ω[(by)]], (2.9)

where z = x + iy and exp[−M(ax)] and exp[Ω(by)] have similar meaning like (2.5) and (2.7)
and constants C, a and b depend on the function φ.

Now, we define the duality of functions M(x) and Ω(y) in the following way:
Let Mj(xj) and Ωj(yj) be defined by (2.1) and (2.2) respectively and let µj(ξ) and wj(ηj)

be mutually inverse, that is µj(wj(ηj)) = ηj , ηj(µj(ξ)) = ξj , then the corresponding functions
Mj(xj) and Ωj(yj) are called dual in sense of Young. In this case the Young inequality is

xjyj ≤Mj(xj) + Ωj(yj). (2.10)

This inequality holds for any xj ≥ 0, yj ≥ 0 and equality holds if and only if yj = µj(xj), where
xj varies in the interval x0

j < xj < ∞ and yj varies in the interval y0
j < yj < ∞. That equality

will be

xjyj = M0
j (xj) + Ωj(yj) (2.11)

xjyj = Mj(xj) + Ω
0
j(yj) (2.12)

for Mj(xj) < M0
j (xj) and Ω0(yj) > Ωj(yj).

From [2, pp.132-133,Theorem 12] and [2, p.134,Theorem 13 and Theorem 15] the Fourier
transformation of a function φ ∈WΩ

M (Cn) is defined by

φ̂(ξ) = (2π)−
n
2

∫
Rn

ei〈z,ξ〉φ(z) dx (2.13)

for z = x+ iy and ξ = u+ it.

From [1] and [2] the Fourier duality relation is given by

F [WΩ(Cn)] =WM (Rn), F [WM (Rn)] =WΩ(Cn) and

F [WΩ
M (Cn)] =WΩ

0

M0(Cn).
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Now, we recall the definitions of translation T and modulation M of function f on Rn from
[10, p. 14]:

Let f be a measurable function defined on Rn. For any fixed y ∈ Rn, we define Tyf and
Myf by

(Tyf)(x) = f(x+ y) (2.14)

and
(Myf)(x) = eixyf(x). (2.15)

Next, we define a symbol associated with pseudo-differential operator by the following way:
The function θ(z, ξ) ∈ C∞(Cn × Cn) which is the set of all entire analytic functions of

z = x+ iy and ξ = u+ it is said to be class V m iff for any two multiindices α and β, there is a
positive constant Cα,β depending on α and β only such that

|(D(α)
z D

(β)
ξ θ)(z, ξ)| ≤ Cα,β(1 + |ξ|)m−|β|, (2.16)

where m ∈ R and z, ξ ∈ Cn. If we take y = 0, t = 0 then the symbol will to the well known
class of Sm.

Theorem 2.1. Let φ ∈WΩ
M (Cn) and let σ(z, ξ) be an entire function in (z, ξ) and satisfy

|σ(z, ξ)| ≤ C(1 + |ξ|)m,

then φ(ξ)σ(z, ξ) ∈WΩ
M (Cn).

Proof. Let φ ∈WΩ
M (Cn) and |σ(z, ξ)| ≤ C(1 + |ξ|)m. Then

|σ(z, ξ)φ(ξ)| = |σ(z, ξ)||φ(ξ)|
≤ C(1 + |ξ|)mexp[−M(au) + Ω(bt)].

Since (1 + |ξ|)m ≤ exp[−M(a0u) + Ω(b0t)], m ∈ R then using the definition of WΩ
M (Cn)

space we find that

|σ(z, ξ)φ(ξ)| ≤ C exp[−M(a0u) + Ω(b0t)] exp[M(au) + Ω(bt)].

By the definition of convex function (2.1) and (2.2), we get

|σ(z, ξ)φ(ξ)| ≤ C exp [[−M [(a− a0)u] + Ω[(b+ b0t)]] .

This implies that

φ(ξ)σ(z, ξ) ∈WΩ
M (Cn).

Using this argument and argument of Fourier transform in WΩ
M (Cn), we can define the partial

differential operator (2.17) and pseudo differential operator (2.18).

A linear partial differential operator P (z,D) as z = x+ iy on Cn is given by

P (z, D) =
∑
|α|≤m

aα(z) D
(α).

If we replace D(α) by a monomial ξα ∈ Rn then we get a symbol

P (z, ξ) =
∑
|α|≤m

aα(z) ξ
α.

We take φ ∈WΩ
M (Cn) then we get

(P (z, D) φ) (z) =
∑
|α|≤m

aα(z)(D
(α)φ) (z)

By the property of Fourier transformation and using the technique of [3] we get

(P (z, D) φ) (z) =
∑
|α|≤m

aα(z)(D
(α)φ̂)̌ (z)

=
∑
|α|≤m

aα(z)(ξ
αφ̂)̌ (z)



PSEUDO-DIFFERENTIAL OPERATORS ON WΩ

M (Cn)-SPACE 259

(P (z, D) φ) (z) =
∑
|α|≤m

aα(z) (2 π)−n/2
∫
Rn

ξαei〈z,ξ〉φ̂(ξ) du

=

∫
Rn

ei〈z,ξ〉

 ∑
|α|≤m

aα(z)ξ
α

 φ̂(ξ) du

= (2π)−n/2
∫
Rn

ei〈z,ξ〉 P (z, ξ)φ̂(ξ) du.

Hence,

(P (z, D) φ) (z) = (2π)−n/2
∫
Rn

ei〈z,ξ〉 P (z, ξ)φ̂(ξ) du. (2.17)

In (2.17) if we replace P (z, ξ) by more general symbol θ(z, ξ) which are no longer polynomial
in ξ. The operator is so called pseudo differential operator.
The pseudo-differential operators associated with symbol θ(z, ξ) ∈ V m is defined by

(Aθφ)(z) = (2π)−n/2
∫
Rn

ei〈z,ξ〉θ(z, ξ)φ̂(ξ) du (2.18)

as ξ = u+ it ∈ Cn and z ∈ Cn and φ ∈WΩ
M (Cn).

For s ∈ R, the pseudo-differential operators Vs associated with symbol θ(ξ) = (1+ |ξ|2)−s/2

as ξ = u+ it is defined by

(Vsf)(z) = F−1((1 + |ξ|2)−s/2f̂)(z), for f ∈WΩ
M (Cn). (2.19)

Now, the Sobolev spaceGs,p(Cn) ofLp(Rn)-type is defined to be the set of all f ∈ [WΩ
M (Cn)]′

such that
‖f‖s,p = ‖(Vsf)(z)‖p for 1 ≤ p <∞. (2.20)

The notations and terminologies of this paper are taken from Wong [10, pp 1-4] and Friedman
[2].

3 Properties of Psueudo-differential Operators

In this section we study the various properties of pseudo-differential operators Aθ associated
with symbol θ(z, ξ) on WΩ

M (Cn)-space.

Theorem 3.1. Let θ(z, ξ) be the symbol belong to V m. Then Aθ maps WΩ
M (Cn) into itself.

Proof. Let φ ∈WΩ
M (Cn). Then, for any multi-indices α and β, we have to show that

sup
z∈Cn

| exp[M [(ax)]−Ω[(by)]](Aθφ)(z)| <∞

Now from (2.18) the pseudo-differential operator can be written as

zβ(Aθφ)(z) = (2π)−n/2
∫
Rn

D
(β)
ξ ei〈z,ξ〉θ(z, ξ)φ̂(ξ) du, z, ξ ∈ Cn.

Using integration by parts we have

zβ(Aθφ)(z) = (2π)−n/2(−1)|β|
∫
Rn

ei〈z,ξ〉D
(β)
ξ [θ(z, ξ)φ̂(ξ)]du

= (2π)−n/2(−1)|β|
∫
Rn

∑
γ≤β

(
β

γ

)
(D

(β−γ)
ξ θ)(z, ξ)D

(γ)
ξ φ̂(ξ) du

= (2π)−n/2(−1)|β|
∑
γ≤β

(
β

γ

)∫
Rn

ei〈z,ξ〉(D
(β−γ)
ξ θ)(z, ξ)D

(γ)
ξ φ̂(ξ) du

= (2π)−n/2(−1)|β|
∑
γ≤β

(
β

γ

)∫
Rn

D(α)
z

(
ei〈z,ξ+1〉e−i〈z,1〉

) n∏
j=1

[(1 + ξj)]
−αj

(D
(β−γ)
ξ θ)(z, ξ)D(γ)

γ φ̂(ξ) du.
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Again using integration by parts we have

zβ(Aθφ)(z) = (2π)−n/2(−1)|α|+|β|
∑
|γ|≤β

(
β

γ

)∫
Rn

ei〈z,ξ+1〉D(α)
z (e−i〈z,1〉D

(β−γ)
ξ θ(z, ξ))

(
n∏
j=1

(1 + ξj)
−αj )D

(γ)
ξ φ̂(ξ) du

= (2π)−n/2(−1)|α|+|β|
∑
|γ|≤β

∑
|δ|≤α

(
β

γ

)(
α

δ

)∫
Rn

ei〈z,ξ+1〉(D(α−δ)
z D

(β−γ)
ξ θ)(z, ξ)

(
n∏
j=1

(1 + ξj)
−αj )Dδ

ze
−i〈z,1〉D

(γ)
ξ φ̂(ξ) du

= (2π)−n/2(−1)|α|+|β|
∑
|γ|≤β

∑
|δ|≤α

(
β

γ

)(
α

δ

)∫
Rn

ei〈z,ξ+1〉(D(α−δ)
z D

(β−γ)
ξ θ)

(z, ξ)(
n∏
j=1

(1 + ξj)
−αj )(−1)|δ|e−i〈z,1〉D(γ)

ξ φ̂(ξ) du

zβ(Aθφ)(z) = (2π)−n/2(−1)|α|+|β|
∑
|γ|≤β

∑
|δ|≤α

(
β

γ

)(
α

δ

)
(−1)|δ|

∫
Rn

ei〈z,ξ〉(i)−|δ|

(D(α−δ)
z D

(β−γ)
ξ θ)(z, ξ)

 n∏
j=1

(1 + ξj)
−αj

D
(γ)
ξ φ̂(ξ) du.

Then

|zβ(Aθφ)(z)| ≤ (2π)−n/2
∑
|γ|≤β

∑
|δ|≤α

(
β

γ

)(
α

δ

)∫
Rn

|ei〈z,ξ〉(D(α−δ)
z D

(β−γ)
ξ θ)(z, ξ)|

(1 + |ξ|)−|α| |D(γ)
ξ φ̂(ξ)| du

≤ (2π)−n/2
∑
|γ|≤β

∑
|δ|≤α

(
β

γ

)(
α

δ

)∫
Rn

|ei〈(x+iy),(u+it)〉|

|D(α−δ)
z D(β−γ)

z θ(z, ξ)| (1 + |ξ|)−|α| |D(γ)
ξ φ̂(ξ)| du

≤ (2π)−n/2
∑
|γ|≤β

∑
|δ|≤α

(
β

γ

)(
α

δ

)∫
Rn

| exp(−〈y, u〉 − 〈x, t〉)|

|(D(α−δ)
z D

(β−γ)
ξ θ)(z, ξ)| (1 + |ξ|)−|α| |D(γ)

ξ φ̂(ξ)| du.

Now,

|zβ(Aθφ)(z)| ≤ (2π)−n/2
∑
|γ|≤β

∑
|δ|≤α

(
β

γ

)(
α

δ

)∫
Rn

| exp[〈y, u〉 − 〈x, t〉]|

|(D(α−δ)
z D

(β−γ)
ξ θ)(z, ξ)| (1 + |ξ|)−|α| |D(γ)

ξ φ̂(ξ)| du

≤ (2π)−n/2
∑
|γ|≤β

∑
|δ|≤α

(
β

γ

)(
α

δ

)∫
Rn

| exp[〈y, u〉 − 〈x, t〉]|

Cα−δ,β−γ(1 + |ξ|)m−|β|+|γ|−|α| |D(γ)
ξ φ̂(ξ)| du

Using inequality (1 + |ξ|)m−|β|+|γ|−|α| ≤ exp[M0(a1u) + Ω0(b1t)] for m− |β|+ |γ| − |α| > 0
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and (2.9) we have

|zβ(Aθφ)(z)| ≤ (2π)−n/2
∑
|γ|≤β

∑
|δ|≤α

(
β

γ

)(
α

δ

)
Cα−δ,β−γ

∫
Rn

| exp[〈y, u〉 − 〈x, t〉]| exp[M0(a1u) + Ω
0(b1t)]

exp[−M0(a′′.u) + Ω
0(b′′t)] du.

Using (2.3) and (2.4) we have

|zβ(Aθφ)(z)| ≤ (2π)−n/2
∑
|γ|≤β

∑
|δ|≤α

(
β

γ

)(
α

δ

)
C Cα−δ,β−γ

∫
Rn

exp[|〈y, u〉| −M0[(a′′ − a1)u]] exp[−〈x, t〉+ Ω
0(b1 + b′′)t] du

≤ (2π)−n/2
∑
|γ|≤β

∑
|δ|≤α

(
β

γ

)(
α

δ

)
C · Cα−δ,β−γ

exp[−〈x, t〉+ Ω
0(b1 + b′′)t]

∫
Rn

exp[|〈y, u〉| −M0[(a′′ − a1)u]] du

≤ (2π)−n/2
∑
|γ|≤β

∑
|δ|≤α

(
β

γ

)(
α

δ

)
C ′α−δ,γ−β

exp[−〈x, t〉+ Ω
0[(b′′ + b1)t]]

∫
Rn

exp[|〈y, u〉| −M0[(a′′ − a1)u]] du.

Using (2.11) and (2.12) and the arguements of [2, p.134]

|zβ(Aθφ)(z)| ≤ (2π)−n/2
∑
|γ|≤β

∑
|δ|≤α

(
β

γ

)(
α

δ

)
C ′α−δ,β−δ

exp[−M [(b′′ + b1)
−1x] + Ω[(a′′ − 2a1)

−1y]]∫
Rn

exp[−M0(a1u)] du

≤ C ′α,β exp[−M [(b1 + b′′)−1x] + Ω[(a′′ − 2a1)
−1y].

Hence

| exp[M [(b1 + b′′)−1x]−Ω[(a′′ − 2a1)
−1y]](Aθφ)(z)| ≤ C ′α,β(1 + |z|β)−1.

Thus

sup
z∈Cn

| exp[M(b1 + b′′)−1x]−Ω[(a′′ − 2a1)
−1y](Aθφ)(z)| ≤ C ′α,β

< ∞.

This implies that
(Aθφ)(z) ∈WΩ

M (Cn).

Theorem 3.2. Aθ is continuous linear mapping WΩ
M (Cn) into itself.

Proof. If the functions φ(z) converge uniformly to zero as ν → ∞ in any bounded domain
of the z-plane and in addition satisfy the inequalities.

|φν(z)| ≤ C exp[−M [(ax)] + Ω[(by)]],

then the sequence φν(z) ∈ WΩ
M (Cn) is said to converge to zero as ν → ∞, where the constants

C, a and b do not depend on the index ν.
Since from Theorem 3.1 Aθφ is a mapping from WΩ

M (Cn) into itself. Using above results,
Aθφν ∈ WΩ

M (Cn) converge to zero uniformly in any bounded domain of the z-plane as ν → ∞
and satisfies the above inequality. Therefore, the sequence Aθφ ∈WΩ

M (Cn) is converges to zero
as ν →∞. This shows that Aθ maps continuously into itself.

Now, we define the pseudo-differential operator Aθ on [WΩ
M (Cn)]′-space by

〈Aθf, φ〉 = 〈f,A∗φφ〉, φ ∈WΩ
M (Cn). (3.1)
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Theorem 3.3. Aθ is a linear mapping from [WΩ
M (Cn)]′ into itself.

Proof. Let f ∈ [WΩ
M (Cn)]′. Then, for any sequence {φν} of functions in WΩ

M (Cn) converg-
ing to zero in WΩ

M (Cn), as ν →∞. From (2.20) we have

〈Aθf, φν〉 = 〈f,A∗φφν〉, ν = 1, 2, 3, · · · (3.2)

By the arguements of Theorem 3.2, we conclude that 〈Aθf, φν〉 → 0 as ν → ∞. Hence
Aθf ∈ [WΩ

M (Cn)]′.

Definition 3.4. A sequence of distributions {fν} in [WΩ
M (Cn)]′ is said to converge to zero in

[WΩ
M (Cn)]′ if 〈fν , φ〉 → 0 as ν →∞ for all φ ∈WΩ

M (Cn).

Theorem 3.5. Aθ maps continuously [WΩ
M (Cn)]′ into itself.

Proof. Let φ ∈ [WΩ
M (Cn)]. Then, using (3.2) and the fact that fν → 0 in [WΩ

M (Cn)]′ as
ν →∞,

〈Aθfν , φ〉 = 〈fν , A∗θφ〉 → 0

as ν →∞. Hence Aθfν → 0 in [WΩ
M (Cn)]′ as ν →∞, and the proof is complete.

Theorem 3.6. Let θ ∈ Ck(Cn), k ≥ n/2, be such that there exists a positive constant B such
that

|(D(α)
ξ θ)(ξ)| ≤ Cα,n(1 + |ξ|)−|α|, ξ 6= 0 (3.3)

for multi-indices α with |α| ≤ k. Then, for 1 ≤ p < ∞, there exists a positive constant B,
depending on α and N , such that

‖(Aφ)(z)‖p ≤M ′α,n‖φ‖p, φ ∈WΩ
M (Cn), (3.4)

where
(Aφ)(z) = (2π)−n/2

∫
Rn

ei〈z,ξ〉θ(ξ)φ̂(ξ) du, (3.5)

ξ = u+ it, and φ̂ denotes the Fourier transformation of φ.

Proof. (3.5) can be written as

(Aφ)(z) = (2π)−n/2F−1[θ(ξ)φ̂(ξ)](z) (3.6)

where F−1 denotes the inverse Fourier transformation of a function z as z = x+ iy.
Now, we assume that

F−1[θ(ξ)φ̂(ξ)](z) = (f ∗ g)(z). (3.7)

Then by convolution property of Fourier transformation, we have

θ(ξ)φ̂(ξ) = F [(f ∗ g)](ξ)
= f̂(ξ) · ĝ(ξ).

This implies that
f(z) = F−1[θ(ξ)](z), g(z) = φ(z).

Thus, the expression (3.7) yields

(Aφ)(z) = (2π)−n/2(F−1[θ(ξ)] ∗ φ)(z).

Using convolution property ‖f ∗ φ‖p ≤ ‖f‖1 ‖φ‖p for f ∈ L1(Rn) and φ ∈ Lp(Rn) we have

‖(Aφ)(z)‖p = (2π)−n/2‖(F−1[θ(ξ)] ∗ φ)(x)‖p
≤ (2π)−n/2‖F−1[θ(ξ)]‖1 ‖φ‖p. (3.8)

Next, we have to prove that
F−1[θ(ξ)] ∈ L1(Rn).

Thus, from [3, p. 24] we have

F−1[θ(ξ)](z) = (2π)−n/2
∫
Rn

ei〈z,ξ〉θ(ξ) du.
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By property of Fourier transformation the above expression gives

(z)αF−1[θ(ξ)](z) = (2π)−n/2
∫
Rn

D
(α)
ξ (e−i〈z,ξ〉)θ(ξ) du.

Integration by parts, above expression can be obtained

(z)αF−1[a(ξ)](z) = (2π)−n/2(−1)|α|
∫
Rn

e−i〈z,ξ〉(D
(α)
ξ θ)(ξ) du

= (2π)−n/2(−1)|α|
∫
Rn

exp[−〈x, u〉 − 〈y, t〉](D(α)
ξ θ)(ξ) du.

Therefore,

|(z)αF−1[a(ξ)](z)| ≤ B Cn| exp[−〈y, t〉]|
∫
Rn

| exp[−〈x, u〉]| (1 + |ξ|)−|α| du

≤ Bn | exp[−〈y, t〉]| sup
u
| exp[−〈x, u〉]|

∫
Rn

(1 + |ξ|)−|α| du

≤ Bα,n| exp[−〈y, t〉]|
≤ Bα,n.

This implies that
|F−1[θ(ξ)]| ≤ Bα,n‖(1 + |z|n)−1‖1. (3.9)

From (3.8) - (3.9), we find the required result (3.4)

Theorem 3.7. Let φ ∈ WΩ
M (Cn) and symbol θm(z, ξ) has compact support in z. Then, pseudo-

differential operators Aθmφ can be expressed as

(Aθmφ)(z) = (2π)−n
(∫

Rn

e−i〈λ,z〉
(∫

Rn

ei〈z,ξ〉θ̂m(λ, ξ)φ̂(ξ)du)

)
dv

)
where

(Aλφ)(z) = (2π)−n/2
∫
Rn

e−i〈z,λ〉θ̂m(λ, ξ)φ̂(ξ) du (3.10)

as z = x+ iy, λ = v + iv′ and

θ̂m(λ, ξ) = (2π)−n/2
∫
Rn

e−i〈λ,z〉θm(z, ξ) dx, λ, ξ ∈ Cn.

Proof. Since
(Aθφ)(z) = (2π)−n/2

∫
Rn

ei〈z,ξ〉θm(z, ξ)φ̂(ξ) du,

then, by using the property of Fourier transformation we have

(Aθmφ)(z) = (2π)−n/2
(∫

Rn

e−i〈λ,z〉
(
(2π)−n/2

∫
Rn

ei〈,z,ξ〉θ̂m(λ, ξ) dv

)
φ̂(ξ) du

)
as λ = v + iv′. By Fubini’s theorem and (3.10) we get

(Aθmφ)(z) = (2π)−n
(∫

Rn

e−i〈λ,z〉
(∫

Rn

ei〈z,ξ〉θ̂m(λ, ξ)φ̂(ξ) du

)
dv

)
. (3.11)

Lemma 3.8. For all multi-indices α and β and positive integers N , there is a positive constant
Cα,N , depending on α and N such that

|(D(α)
ξ θ̂m)(λ, ξ)| ≤ Cα,N (1 + |λ||β|)−1(1 + |ξ|)−|α|

for ξ = u+ it and λ = v + iv′.

Proof. The Fourier transformation of θm with respect to λ = v + iv′ is given by

θ̂m(λ, ξ) = (2π)−n/2
∫
Rn

e−i〈z,λ〉θm(z, ξ) dx.
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Then
(iλ)βD

(α)
ξ θ̂m(λ, ξ) = (2π)−n/2

∫
Rn

∂(β)z [e−i〈z,λ〉]D
(α)
ξ θm(z, ξ) dx.

Integration by parts we have

(iλ)βD
(α)
ξ θ̂m(λ, ξ) = (2π)−n/2(−1)|β|

∫
Rn

ei〈z,λ〉∂(β)z D
(α)
ξ θm(z, ξ) dx

as z = x+ iy.
Hence,

(iλ)βD
(α)
ξ θ̂m(λ, ξ) = (2π)−n/2(−1)β

∫
Rn

ei〈z,λ〉∂(β)z D
(α)
ξ [η(z −m)θ(z, ξ)] dx

= (2π)−n/2(−1)β
∫
Rn

ei〈z,λ〉
∑
|γ|≤β

(
β

γ

)
D(γ)
z η(z −m)

∂(β−γ)z D
(α)
ξ θ(z, ξ) dx.

Now

|λβD(α)
ξ θ̂m(λ, ξ)|

≤ (2π)−n/2
∑
|γ|≤β

(
β

γ

)∫
Rn

| exp−〈x, v〉 − 〈y, v′〉)| |D(γ)
ξ η(z −m)| |D(β−γ)

z Dα
ξ θ(z, ξ)| dx

≤ (2π)−n/2
∑
|γ|≤β

(
β

γ

)∫
Rn

| exp[−〈x, v〉 − 〈y, v′〉]| |∂(γ)z η(z −m)|Cβ−γ,α(1 + |ξ|)−|α| dx

≤ (2π)−n/2
∑
|γ|≤β

(
β

γ

)
Cβ−γ,α

∫
Rn

| exp[−〈x, v〉 − 〈y, v′〉)]| |∂(γ)z η(z −m)| (1 + |ξ|)−|α| dx

≤ (2π)−n/2
∑
|γ|≤β

(
β

γ

)
Cβ−γ,α(1 + |ξ|)−|α|

∫
Rn

| exp[−〈x, v〉]∂(γ)z η(z −m)| dx.

Then

|λβDα
ξ θ̂m(λ, ξ)|

≤ (2π)−n/2
∑
|γ|≤β

(
β

γ

)
Cβ−γ,α(1 + |ξ|)−|α|

∫
Rn

|∂(γ)z η(z −m)| dx

≤ (2π)−n/2(1 + |ξ|)−|α|
∑
|γ|≤β

(
β

γ

)
CγCβ−γ,α

≤ (2π)−n/2(1 + |ξ|)−|α|Cβ
≤ Cβ,n(1 + |ξ|)−|α|.

Hence, for large arbitrary positive integers N , we have∣∣∣(D(α)
ξ θ̂m

)
(λ, ξ)

∣∣∣ ≤ Cn,β(1 + |λ|N )−1(1 + |ξ|)−|α|.

as ξ = u+ it.

Theorem 3.9. Let θ ∈ V 0. Then we get the following relation∫
Qm

|(Aθφ)(z)|p dx ≤ CpN‖φ‖
p
p ∀φ ∈WΩ

M (Cn).

Proof. From Wong [10, p. 80], we can write(∫
Qm

|(Aθφ)(z)|p dx
)
≤
(∫

Rn

|(Aθmφ)(z)|p dx
)
. (3.12)
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Using Lemma 3.8 and Theorem 3.6, we find that

‖Aλφ‖p ≤ CN (1 + |λ|)−N‖φ‖p ∀φ ∈WΩ
M (Cn). (3.13)

Using (3.11), (3.13) and Minkowski’s inequality in the integral form we obtain

‖Aθmφ‖p = (2π)−n/2
(∫

Rn

|
∫
Rn

ei〈z,λ〉(Aλφ)(z) dv|p dx
)1/p

= (2π)−n/2
(∫

Rn

|
∫
Rn

exp [−〈x, v′〉 − 〈y, v〉](Aλφ)(z) dv|p dx
)1/p

≤ (2π)−n/2
∫
Rn

(∫
Rn

|exp[−〈x, v′〉] (Aλφ)(z)|p dx
)1/p

dv

≤ (2π)−n/2
∫
Rn

(∫
Rn

|(Aλφ)(z)|p dx
)1/p

dv

≤ (2π)−n/2
∫
Rn

‖(Aλφ)(z)‖p dv.

Using (3.13) we get

‖Aθmφ‖p ≤ (2π)−n/2 CN

(∫
Rn

(1 + |λ|)−Ndv
)
‖φ‖p

≤ (2π)−n/2CN ‖φ‖p φ ∈WΩ
M (Cn).

Hence from (3.12) and (3.13) we have∫
Qm

|(Aθφ)(z)|p dx ≤ CpN,n‖φ‖
p
p, φ ∈WΩ

M (Cn). (3.14)

Now, we represent Aθ as a singular integral operator.

Lemma 3.10. Let K(z, w) =
∫
Rn e

i〈z,w〉θ(z, w) ds, z = x+ iy ∈ Cn w = s+ iv ∈ Cn in the
distributional sense. Then

(i) for each z ∈ Cn, K(z, w) is a function defined on Rn,

(ii) for each sufficiently large positive integer N , there is a positive constant CN such that

|K(z − w,w)| ≤ CN (1 + |z − w|N )−1, (3.15)

(iii) for each fixed z = x+ iy and φ ∈WΩ
M (Cn) vanishing in the neighbourhood of Cn, we find

that
(Aθφ)(z) =

∫
Rn

K(z − w,w)φ(w)ds. (3.16)

Proof. (i) can be defined by using the arguments of [10, p. 26] and [1, pp. 23-24].

To prove (ii), let α be a multi-index with length greater than w. Then by the property of
Fourier transformation (D(α)u)̂ = ξ|α|ũ we have

(iw)αK(z, w) = (−1)|α|
∫
Rn

ei〈ξ,w〉D
(α)
ξ θ(z, ξ) du.

Therefore, using (2.16)and tools of theorem (3.6) we have

|K(z, w)| ≤ C ′α(1 + |w|α)−1.

For large positive integer N we can obtain

|K(z, z − w)| ≤ C ′α(1 + |z − w|N )−1.
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To prove (iii), we define the distribution Lz on WΩ
M (Cn) by

〈Lz, ψ〉 =
∫
Rn

θ(z, ξ)ψ(ξ) du,

where z = x+ iy, ξ = u+ iτ and w = s+ iv. By the definition of pseudo-differential operator
(2.18)

(Aθφ)(z) =

∫
Rn

ei〈z,ξ〉θ(z, ξ)φ̂(ξ) du

= Lz(Mzφ̂) (3.17)

Using Gelfand and Shilov [3] technique of integration we get

(Aθφ)(z) = Lz(Tzφ)̂

= L̂z(Tzφ) (3.18)

From (i) we have

L̂z(ψ) =

∫
Rn

θ(z,−w)ψ(w) ds.

Hence

(Aθφ)(z) =

∫
Rn

θ(z,−w)(Tzφ)(w)ds

=

∫
Rn

θ(z,−w)φ(z + w) ds

=

∫
Rn

θ(z, z − w)φ(w) ds.

This completes the proof of the theorem.

Theorem 3.11. Let θ(z, ξ) be a symbol in V 0. Then Aθ : Lp(Rn)→ Lp(Rn) is a bounded linear
operator for 1 < p <∞.

Proof. From Theorem 3.6, Theorem 3.7, Theorem 3.9 and Lemma 3.10 we can show that
the pseudo-differential operator Aθ is a bounded linear operator from Lp(Rn) into Lp(Rn) for
1 < p <∞.

2

4 The Sobolev Space

In this section, we study the pseudo-differential operators on Sobolev type spaceGs,p(Cn) which
is defined in Section 2.

For s ∈ R, the pseudo-differential operator associated with symbol θ(ξ) = (1 + |ξ|2)−s/2 as
ξ = u+ it is defined by

(Vθu)(z) = F−1(θ(ξ)û(ξ))(z) for u ∈
[
WΩ
M (Cn)

]′
. (4.1)

Now, we define the Sobolev space Gs,p(Cn) of Lp-type to be the set of all distribution u ∈[
WΩ
M (Cn)

]′ such that
‖u‖s,p = ‖V−su‖p for 1 ≤ p <∞. (4.2)

Theorem 4.1. Let u ∈ [WΩ
M (Cn)]′. Then

(i) VsVt u = Vs+tu,

(ii) V0u = u.

Proof. The proof of the above theorem is obvious from [10, p. 90].

Theorem 4.2. Gs,p(Cn) is a Banach space with respect to ‖u‖s,p.

Proof. The proof of the above theorem is usual from [10, p. 81].
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Theorem 4.3. Vt is an isometry from V s,p onto V s+t,p.

Proof. Let u ∈ V s,p. Then from Theorem 4.1 we get J−tv ∈ Gs,p(Cn) and vtv−tv = v. This
implies Gs,p(Cn) is onto.

Theorem 4.4. Let 1 < p <∞ and s ≤ t. Then Gt,p(Cn) ⊆ Gs,p(Cn).

Proof. See [10, p. 91]. This is called Sobolev embedding theorem.

Theorem 4.5. Let s ≥ 0 and 1 ≤ p <∞. Then

‖Vsφ‖p ≤ ‖φ‖p, φ ∈ Lp(Rn).

Proof. We have
(Jsφ)(̂ξ) = (1 + |ξ|2)−s/2φ̂(ξ), ξ ∈ Cn.

Hence, for Ĝs(ξ) = (1 + |ξ|2)−s/2 we have

(Gs ∗ φ)(̂ξ) = (1 + |ξ|2)−s/2φ̂(ξ). (4.3)

Hence, for all φ ∈WΩ
M (Rn),

Jsφ = (Gs ∗ φ),

and using convolution property

‖Jsφ‖p = ‖Gs ∗ φ‖p
≤ ‖Gs‖1 ‖φ‖p
≤ ‖φ‖p.

Theorem 4.6. For symbol θ in Um, Aθ : Gm,p(Cn) → G0,p(Cn) is a bounded linear operator
for 1 < p <∞.

Proof. Counsider the bounded linear operators

V−s : Gs,p(Cn)→ G0,p(Cn)

AθVm : G0,p(Cn)→ G0,p(Cn)

and

Vs−m : G0,p(Cn)→ Gs−m,p(Cn).

The first and the third operators are bounded by isometry of pseudo-differential operator of
Theorem 4.3 and the second operator is bounded by Lp(Rn)-boundedness property of pseudo-
differential operator. Hence the product Vs−mAθVm−s is a bounded linear operator from Gs,p

into Gs−m,p. By Theorem 4.3 operators Vm−s and Vs−m are isometric and onto. Hence, A0 :
Gm,p → G0,p must be bounded linear operator.

Theorem 4.7. Let θ(z, ξ) be any symbol in V m, then Aθ : Gs,p(Cn) → Gs−m,p(Cn) is a
bounded linear operator for 1 ≤ p <∞.

Proof. Since Vm−sAθ is a pseudo-differential operator with symbol in V s. Hence, from Theorem
4.6 we can easily prove that

‖Aθu‖s−m,p = ‖Jm−sAθu‖p ≤ C‖u‖s,p ∀ u ∈ Gs,p.
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