PSEUDO-DIFFERENTIAL OPERATORS ON $W_{M}^{\Omega}\left(\mathbb{C}^{n}\right)$-SPACE

S. K. Upadhyay
Communicated by P. K. BANERJI

AMS Classification: 46F12, 35S05.
Keywords and phrases: Convex function, Sobolev space, Fourier transformation, $L^{p}\left(\mathbb{R}^{n}\right)$-boundedness, Pseudo-differential operator.

The author is thankful to CIMS(DST) for providing the financial assistance of this work.The author is also thankful to Referee for giving valuable comments about this paper.

Abstract

Pseudo-differential operators associated with symbol $\theta(z, \xi), z=x+i y$ and $\xi=u+i t$ on $W_{M}^{\Omega}\left(\mathbb{C}^{n}\right)$-space is defined and using the theory of Fourier transformation its various properties are studied. $L^{p}\left(\mathbb{R}^{n}\right)$ - boundedness is investigated for $1<p \leq \infty$. Sobolev space associated with distributional space $\left[W_{M}^{\Omega}\left(\mathbb{C}^{n}\right)\right]^{\prime}$ is defined and its properties are obtained.

1 Introduction

The spaces $W_{M}\left(\mathbb{R}^{n}\right), W^{\Omega}\left(\mathbb{C}^{n}\right)$ and $W_{M}^{\Omega}\left(\mathbb{C}^{n}\right)$ were introduced and analyzed by Gurevich [4], Gel'fand and Shilov [3] and Friedman [2]. They applied these W-type spaces for investigating uniqueness and corrected class of Cauchy problem and other problems of partial differential equations by using Fourier transformation tool. Recently, continuous Wavelet transformation on W-spaces are studied by $[6,9]$ and many interesting properties are obtained.

The theory of pseudo-differential operators is developed by Wong [10], Rodino [1], Pathak [5] and others. They exploited this theory on Schwartz space $S\left(\mathbb{R}^{n}\right)$, Gel'fand and Shilov space of type S and Gevery space by using the technique of Fourier transformation.

They also studied psuedo-differential operators on their respective Sobolev space and got many important results. Sobolev spaces are used to study the minimal-maximal properties, global regularities and spectral properties of pseudo-differential operators on Schwartz space $S\left(\mathbb{R}^{n}\right)$. The Pseudo differential operators on $W_{M}\left(R^{n}\right)$ and $W^{\Omega}\left(C^{n}\right)$ are studied by author and others and obtained many important results, see [7, 8].

Our main aim in this paper is to introduce more general symbol and precise study of pseudodifferential operators on $W_{M}^{\Omega}\left(\mathbb{C}^{n}\right)$-space and to study many properties because its dual space $\left[W_{M}^{\Omega}\left(\mathbb{C}^{n}\right)\right]^{\prime}$ is more general than $\left[W_{M}\left(\mathbb{R}^{n}\right)\right]^{\prime}$ and Schwartz distributional space $S^{\prime}\left(\mathbb{R}^{n}\right)$.

The present article is divided into three sections. Section 2 gives the various definitions of pseudo-differential operators, symbol, W-type spaces, Fourier transformation and Sobolev space. Section 3 contains a study of properties of pseudo-differential operators on $W_{M}^{\Omega}\left(\mathbb{C}^{n}\right)$ space and $L^{p}\left(\mathbb{R}^{n}\right)$-boundedness result of pseudo differential operators. In the last section, using $L^{p}\left(\mathbb{R}^{n}\right)$-boundedness result, the Sobolev space $G^{s, p}\left(\mathbb{C}^{n}\right), s \in \mathbb{R}$ and $1 \leq p \leq \infty$ on $\left[W_{M}^{\Omega}\left(\mathbb{C}^{n}\right)\right]^{\prime}$ space is defined and it is proved that the pseudo-differential operator $A_{\theta}: G^{s, p}\left(\mathbb{C}^{n}\right) \rightarrow G^{o, p}\left(\mathbb{C}^{n}\right)$ and $A_{\theta}: G^{s, p}\left(\mathbb{C}^{n}\right) \rightarrow G^{s-m, p}\left(\mathbb{C}^{n}\right)$ are bounded linear operator for $s, m \in \mathbb{R}$.

2 Preliminary

Now in this section we recall the definitions of $W_{M}\left(\mathbb{R}^{n}\right), W^{\Omega}\left(\mathbb{C}^{n}\right)$ and $W_{M}^{\Omega}\left(\mathbb{C}^{n}\right)$ from [2] and [3].

Let M_{j} and Ω_{j} be the convex functions such that

$$
\begin{equation*}
M_{j}\left(x_{j}\right)=\int_{0}^{x_{j}} \mu_{j}\left(\xi_{j}\right) d \xi_{j} \quad\left(x_{j} \geq 0\right) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Omega_{j}\left(y_{j}\right)=\int_{0}^{y_{j}} w_{j}\left(\eta_{j}\right) d \eta_{j} \quad\left(y_{j} \geq 0\right) \tag{2.2}
\end{equation*}
$$

for $j=1,2,3, \cdots n$.
We set

$$
\begin{aligned}
\mu(\xi) & =\left(\mu_{1}\left(\xi_{1}\right), \cdots, \mu_{n}\left(\xi_{n}\right)\right) \\
w(n) & =\left(w_{1}\left(\eta_{1}\right), \cdots, w_{n}\left(\eta_{n}\right)\right)
\end{aligned}
$$

and

$$
\begin{align*}
M_{j}\left(-x_{j}\right) & =M_{j}\left(x_{j}\right), & M_{j}\left(x_{j}\right)+M_{j}\left(x_{j}^{\prime}\right) & \leq M_{j}\left(x_{j}+x_{j}^{\prime}\right) \tag{2.3}\\
\Omega_{j}\left(-y_{j}\right) & =\Omega_{j}\left(y_{j}\right), & \Omega_{j}\left(y_{j}\right)+\Omega_{j}\left(y_{j}^{\prime}\right) & \leq \Omega_{j}\left(y_{j}+y_{j}^{\prime}\right) \tag{2.4}
\end{align*}
$$

The space $W_{M}\left(\mathbb{R}^{n}\right)$ consists of all \mathbb{C}^{∞}-functions which satisfy the inequalities

$$
\begin{equation*}
\left|D_{x}^{(k)} \phi(x)\right| \leq C_{k} \exp [-M(a x)], \tag{2.5}
\end{equation*}
$$

where $D_{x}^{(k)}=D_{x_{1}}^{\left(k_{1}\right)} D_{x_{2}}^{\left(k_{2}\right)} \cdots D_{x_{n}}^{\left(k_{n}\right)}$,

$$
\begin{equation*}
\exp [-M(a x)]=\exp \left[-M_{1}\left(a_{1} x_{1}\right) \cdots-M_{n}\left(a_{n} x_{n}\right)\right] \tag{2.6}
\end{equation*}
$$

and constants $C_{k}, a>0$ depending on the function ϕ. A function $\phi(z) \in W^{\Omega}\left(\mathbb{C}^{n}\right)$ if and only if for $b>0$ there exists a constant $C_{k}>0$ such that

$$
\begin{equation*}
\left|z^{k} \phi(z)\right| \leq C_{k} \exp [\Omega(b y)], \quad z=x+i y \tag{2.7}
\end{equation*}
$$

where

$$
z^{k}=z_{1}^{k_{1}} z_{2}^{k_{2}} z_{3}^{k_{3}} \cdots z_{n}^{k_{n}}
$$

and

$$
\begin{equation*}
\exp [\Omega(b y)]=\exp \left[\Omega_{1}\left(b_{1} y_{1}\right)+\cdots+\Omega_{j}\left(b_{j} y_{j}\right)+\cdots+\Omega_{n}\left(b_{n} y_{n}\right)\right] \tag{2.8}
\end{equation*}
$$

the constants C_{k} and $b>0$ depend on the function ϕ.
The space $W_{M}^{\Omega}\left(C^{n}\right)$ consists of all entire analytic functions $\phi(z)$ which satisfy

$$
\begin{equation*}
|\phi(z)| \leq C \exp [-M[(a x)]+\Omega[(b y)]] \tag{2.9}
\end{equation*}
$$

where $z=x+i y$ and $\exp [-M(a x)]$ and $\exp [\Omega(b y)]$ have similar meaning like (2.5) and (2.7) and constants C, a and b depend on the function ϕ.

Now, we define the duality of functions $M(x)$ and $\Omega(y)$ in the following way:
Let $M_{j}\left(x_{j}\right)$ and $\Omega_{j}\left(y_{j}\right)$ be defined by (2.1) and (2.2) respectively and let $\mu_{j}(\xi)$ and $w_{j}\left(\eta_{j}\right)$ be mutually inverse, that is $\mu_{j}\left(w_{j}\left(\eta_{j}\right)\right)=\eta_{j}, \eta_{j}\left(\mu_{j}(\xi)\right)=\xi_{j}$, then the corresponding functions $M_{j}\left(x_{j}\right)$ and $\Omega_{j}\left(y_{j}\right)$ are called dual in sense of Young. In this case the Young inequality is

$$
\begin{equation*}
x_{j} y_{j} \leq M_{j}\left(x_{j}\right)+\Omega_{j}\left(y_{j}\right) \tag{2.10}
\end{equation*}
$$

This inequality holds for any $x_{j} \geq 0, y_{j} \geq 0$ and equality holds if and only if $y_{j}=\mu_{j}\left(x_{j}\right)$, where x_{j} varies in the interval $x_{j}^{0}<x_{j}<\infty$ and y_{j} varies in the interval $y_{j}^{0}<y_{j}<\infty$. That equality will be

$$
\begin{align*}
x_{j} y_{j} & =M_{j}^{0}\left(x_{j}\right)+\Omega_{j}\left(y_{j}\right) \tag{2.11}\\
x_{j} y_{j} & =M_{j}\left(x_{j}\right)+\Omega_{j}^{0}\left(y_{j}\right) \tag{2.12}
\end{align*}
$$

for $M_{j}\left(x_{j}\right)<M_{j}^{0}\left(x_{j}\right)$ and $\Omega^{0}\left(y_{j}\right)>\Omega_{j}\left(y_{j}\right)$.
From [2, pp.132-133,Theorem 12] and [2, p.134,Theorem 13 and Theorem 15] the Fourier transformation of a function $\phi \in W_{M}^{\Omega}\left(\mathbb{C}^{n}\right)$ is defined by

$$
\begin{equation*}
\hat{\phi}(\xi)=(2 \pi)^{-\frac{n}{2}} \int_{\mathbb{R}^{n}} e^{i\langle z, \xi\rangle} \phi(z) d x \tag{2.13}
\end{equation*}
$$

for $z=x+i y$ and $\xi=u+i t$.
From [1] and [2] the Fourier duality relation is given by

$$
\begin{array}{ll}
F\left[W^{\Omega}\left(\mathbb{C}^{n}\right)\right]=W_{M}\left(\mathbb{R}^{n}\right), & F\left[W_{M}\left(\mathbb{R}^{n}\right)\right]=W^{\Omega}\left(\mathbb{C}^{n}\right) \text { and } \\
F\left[W_{M}^{\Omega}\left(\mathbb{C}^{n}\right)\right]=W_{M^{0}}^{\Omega^{0}}\left(\mathbb{C}^{n}\right) . &
\end{array}
$$

Now, we recall the definitions of translation T and modulation M of function f on \mathbb{R}^{n} from [10, p. 14]:

Let f be a measurable function defined on \mathbb{R}^{n}. For any fixed $y \in \mathbb{R}^{n}$, we define $T_{y} f$ and $M_{y} f$ by

$$
\begin{equation*}
\left(T_{y} f\right)(x)=f(x+y) \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(M_{y} f\right)(x)=e^{i x y} f(x) \tag{2.15}
\end{equation*}
$$

Next, we define a symbol associated with pseudo-differential operator by the following way:
The function $\theta(z, \xi) \in \mathbb{C}^{\infty}\left(\mathbb{C}^{n} \times \mathbb{C}^{n}\right)$ which is the set of all entire analytic functions of $z=x+i y$ and $\xi=u+i t$ is said to be class V^{m} iff for any two multiindices α and β, there is a positive constant $C_{\alpha, \beta}$ depending on α and β only such that

$$
\begin{equation*}
\left|\left(D_{z}^{(\alpha)} D_{\xi}^{(\beta)} \theta\right)(z, \xi)\right| \leq C_{\alpha, \beta}(1+|\xi|)^{m-|\beta|} \tag{2.16}
\end{equation*}
$$

where $m \in \mathbb{R}$ and $z, \xi \in \mathbb{C}^{n}$. If we take $y=0, t=0$ then the symbol will to the well known class of S^{m}.

Theorem 2.1. Let $\phi \in W_{M}^{\Omega}\left(\mathbb{C}^{n}\right)$ and let $\sigma(z, \xi)$ be an entire function in (z, ξ) and satisfy

$$
|\sigma(z, \xi)| \leq C(1+|\xi|)^{m}
$$

then $\quad \phi(\xi) \sigma(z, \xi) \in W_{M}^{\Omega}\left(\mathbb{C}^{n}\right)$.
Proof. Let $\phi \in W_{M}^{\Omega}\left(\mathbb{C}^{n}\right)$ and $|\sigma(z, \xi)| \leq C(1+|\xi|)^{m}$. Then

$$
\begin{aligned}
|\sigma(z, \xi) \phi(\xi)| & =|\sigma(z, \xi)||\phi(\xi)| \\
& \leq C(1+|\xi|)^{m} \exp [-M(a u)+\Omega(b t)]
\end{aligned}
$$

Since $(1+|\xi|)^{m} \leq \exp \left[-M\left(a_{0} u\right)+\Omega\left(b_{0} t\right)\right], m \in \mathbb{R}$ then using the definition of $W_{M}^{\Omega}\left(\mathbb{C}^{n}\right)$ space we find that

$$
|\sigma(z, \xi) \phi(\xi)| \leq C \exp \left[-M\left(a_{0} u\right)+\Omega\left(b_{0} t\right)\right] \exp [M(a u)+\Omega(b t)]
$$

By the definition of convex function (2.1) and (2.2), we get

$$
|\sigma(z, \xi) \phi(\xi)| \leq C \exp \left[\left[-M\left[\left(a-a_{0}\right) u\right]+\Omega\left[\left(b+b_{0} t\right)\right]\right]\right.
$$

This implies that

$$
\phi(\xi) \sigma(z, \xi) \in W_{M}^{\Omega}\left(\mathbb{C}^{n}\right)
$$

Using this argument and argument of Fourier transform in $W_{M}^{\Omega}\left(\mathbb{C}^{n}\right)$, we can define the partial differential operator (2.17) and pseudo differential operator (2.18).

A linear partial differential operator $P(z, D)$ as $z=x+i y$ on \mathbb{C}^{n} is given by

$$
P(z, D)=\sum_{|\alpha| \leq m} a_{\alpha}(z) D^{(\alpha)}
$$

If we replace $D^{(\alpha)}$ by a monomial $\xi^{\alpha} \in \mathbb{R}^{n}$ then we get a symbol

$$
P(z, \xi)=\sum_{|\alpha| \leq m} a_{\alpha}(z) \xi^{\alpha}
$$

We take $\phi \in W_{M}^{\Omega}\left(\mathbb{C}^{n}\right)$ then we get

$$
(P(z, D) \phi)(z)=\sum_{|\alpha| \leq m} a_{\alpha}(z)\left(D^{(\alpha)} \phi\right)(z)
$$

By the property of Fourier transformation and using the technique of [3] we get

$$
\begin{aligned}
(P(z, D) \phi)(z) & =\sum_{|\alpha| \leq m} a_{\alpha}(z)\left(D^{(\alpha)} \hat{\phi}\right)^{v}(z) \\
& =\sum_{|\alpha| \leq m} a_{\alpha}(z)\left(\xi^{\alpha} \hat{\phi}\right)^{v}(z)
\end{aligned}
$$

$$
\begin{aligned}
(P(z, D) \phi)(z) & =\sum_{|\alpha| \leq m} a_{\alpha}(z)(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} \xi^{\alpha} e^{i\langle z, \xi\rangle} \hat{\phi}(\xi) d u \\
& =\int_{\mathbb{R}^{n}} e^{i\langle z, \xi\rangle}\left(\sum_{|\alpha| \leq m} a_{\alpha}(z) \xi^{\alpha}\right) \hat{\phi}(\xi) d u \\
& =(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} e^{i\langle z, \xi\rangle} P(z, \xi) \hat{\phi}(\xi) d u
\end{aligned}
$$

Hence,

$$
\begin{equation*}
(P(z, D) \phi)(z)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} e^{i\langle z, \xi\rangle} P(z, \xi) \hat{\phi}(\xi) d u \tag{2.17}
\end{equation*}
$$

In (2.17) if we replace $P(z, \xi)$ by more general symbol $\theta(z, \xi)$ which are no longer polynomial in ξ. The operator is so called pseudo differential operator.
The pseudo-differential operators associated with symbol $\theta(z, \xi) \in V^{m}$ is defined by

$$
\begin{equation*}
\left(A_{\theta} \phi\right)(z)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} e^{i\langle z, \xi\rangle} \theta(z, \xi) \hat{\phi}(\xi) d u \tag{2.18}
\end{equation*}
$$

as $\xi=u+i t \in \mathbb{C}^{n}$ and $z \in \mathbb{C}^{n}$ and $\phi \in W_{M}^{\Omega}\left(\mathbb{C}^{n}\right)$.
For $s \in \mathbb{R}$, the pseudo-differential operators V_{s} associated with symbol $\theta(\xi)=\left(1+|\xi|^{2}\right)^{-s / 2}$ as $\xi=u+i t$ is defined by

$$
\begin{equation*}
\left(V_{s} f\right)(z)=F^{-1}\left(\left(1+|\xi|^{2}\right)^{-s / 2} \hat{f}\right)(z), \quad \text { for } f \in W_{M}^{\Omega}\left(\mathbb{C}^{n}\right) \tag{2.19}
\end{equation*}
$$

Now, the Sobolev space $G^{s, p}\left(\mathbb{C}^{n}\right)$ of $L^{p}\left(\mathbb{R}^{n}\right)$-type is defined to be the set of all $f \in\left[W_{M}^{\Omega}\left(\mathbb{C}^{n}\right)\right]^{\prime}$ such that

$$
\begin{equation*}
\|f\|_{s, p}=\left\|\left(V_{s} f\right)(z)\right\|_{p} \quad \text { for } 1 \leq p<\infty \tag{2.20}
\end{equation*}
$$

The notations and terminologies of this paper are taken from Wong [10, pp 1-4] and Friedman [2].

3 Properties of Psueudo-differential Operators

In this section we study the various properties of pseudo-differential operators A_{θ} associated with symbol $\theta(z, \xi)$ on $W_{M}^{\Omega}\left(\mathbb{C}^{n}\right)$-space.
Theorem 3.1. Let $\theta(z, \xi)$ be the symbol belong to V^{m}. Then A_{θ} maps $W_{M}^{\Omega}\left(\mathbb{C}^{n}\right)$ into itself.
Proof. Let $\phi \in W_{M}^{\Omega}\left(\mathbb{C}^{n}\right)$. Then, for any multi-indices α and β, we have to show that

$$
\sup _{z \in \mathbb{C}^{n}}\left|\exp [M[(a x)]-\Omega[(b y)]]\left(A_{\theta} \phi\right)(z)\right|<\infty
$$

Now from (2.18) the pseudo-differential operator can be written as

$$
z^{\beta}\left(A_{\theta} \phi\right)(z)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} D_{\xi}^{(\beta)} e^{i\langle z, \xi\rangle} \theta(z, \xi) \hat{\phi}(\xi) d u, \quad z, \xi \in \mathbb{C}^{n}
$$

Using integration by parts we have

$$
\begin{aligned}
& z^{\beta}\left(A_{\theta} \phi\right)(z)=(2 \pi)^{-n / 2}(-1)^{|\beta|} \int_{\mathbb{R}^{n}} e^{i\langle z, \xi\rangle} D_{\xi}^{(\beta)}[\theta(z, \xi) \hat{\phi}(\xi)] d u \\
&=(2 \pi)^{-n / 2}(-1)^{|\beta|} \int_{\mathbb{R}^{n}} \sum_{\gamma \leq \beta}\binom{\beta}{\gamma}\left(D_{\xi}^{(\beta-\gamma)} \theta\right)(z, \xi) D_{\xi}^{(\gamma)} \hat{\phi}(\xi) d u \\
&=(2 \pi)^{-n / 2}(-1)^{|\beta|} \sum_{\gamma \leq \beta}\binom{\beta}{\gamma} \int_{\mathbb{R}^{n}} e^{i\langle z, \xi\rangle}\left(D_{\xi}^{(\beta-\gamma)} \theta\right)(z, \xi) D_{\xi}^{(\gamma)} \hat{\phi}(\xi) d u \\
&=(2 \pi)^{-n / 2}(-1)^{|\beta|} \sum_{\gamma \leq \beta}\binom{\beta}{\gamma} \int_{\mathbb{R}^{n}} D_{z}^{(\alpha)}\left(e^{i\langle z, \xi+1\rangle} e^{-i\langle z, 1\rangle}\right) \prod_{j=1}^{n}\left[\left(1+\xi_{j}\right)\right]^{-\alpha_{j}} \\
& \quad\left(D_{\xi}^{(\beta-\gamma)} \theta\right)(z, \xi) D_{\gamma}^{(\gamma)} \hat{\phi}(\xi) d u
\end{aligned}
$$

Again using integration by parts we have

$$
\begin{aligned}
& z^{\beta}\left(A_{\theta} \phi\right)(z)=(2 \pi)^{-n / 2}(-1)^{|\alpha|+|\beta|} \sum_{|\gamma| \leq \beta}\binom{\beta}{\gamma} \int_{\mathbb{R}^{n}} e^{i\langle z, \xi+1\rangle} D_{z}^{(\alpha)}\left(e^{-i\langle z, 1\rangle} D_{\xi}^{(\beta-\gamma)} \theta(z, \xi)\right) \\
& \left(\prod_{j=1}^{n}\left(1+\xi_{j}\right)^{-\alpha_{j}}\right) D_{\xi}^{(\gamma)} \hat{\phi}(\xi) d u \\
& =(2 \pi)^{-n / 2}(-1)^{|\alpha|+|\beta|} \sum_{|\gamma| \leq \beta} \sum_{|\delta| \leq \alpha}\binom{\beta}{\gamma}\binom{\alpha}{\delta} \int_{\mathbb{R}^{n}} e^{i\langle z, \xi+1\rangle}\left(D_{z}^{(\alpha-\delta)} D_{\xi}^{(\beta-\gamma)} \theta\right)(z, \xi) \\
& \left(\prod_{j=1}^{n}\left(1+\xi_{j}\right)^{-\alpha_{j}}\right) D_{z}^{\delta} e^{-i\langle z, 1\rangle} D_{\xi}^{(\gamma)} \hat{\phi}(\xi) d u \\
& =(2 \pi)^{-n / 2}(-1)^{|\alpha|+|\beta|} \sum_{|\gamma| \leq \beta|\delta| \leq \alpha} \sum\binom{\beta}{\gamma}\binom{\alpha}{\delta} \int_{\mathbb{R}^{n}} e^{i\langle z, \xi+1\rangle}\left(D_{z}^{(\alpha-\delta)} D_{\xi}^{(\beta-\gamma)} \theta\right) \\
& (z, \xi)\left(\prod_{j=1}^{n}\left(1+\xi_{j}\right)^{-\alpha_{j}}\right)(-1)^{|\delta|} e^{-i\langle z, 1\rangle} D_{\xi}^{(\gamma)} \hat{\phi}(\xi) d u \\
& z^{\beta}\left(A_{\theta} \phi\right)(z)=(2 \pi)^{-n / 2}(-1)^{|\alpha|+|\beta|} \sum_{|\gamma| \leq \beta|\delta| \leq \alpha} \sum\binom{\beta}{\gamma}\binom{\alpha}{\delta}(-1)^{|\delta|} \int_{\mathbb{R}^{n}} e^{i\langle z, \xi\rangle}(i)^{-|\delta|} \\
& \left(D_{z}^{(\alpha-\delta)} D_{\xi}^{(\beta-\gamma)} \theta\right)(z, \xi)\left(\prod_{j=1}^{n}\left(1+\xi_{j}\right)^{-\alpha_{j}}\right) D_{\xi}^{(\gamma)} \hat{\phi}(\xi) d u .
\end{aligned}
$$

Then

$$
\begin{aligned}
&\left|z^{\beta}\left(A_{\theta} \phi\right)(z)\right| \leq(2 \pi)^{-n / 2} \sum_{|\gamma| \leq \beta} \sum_{|\delta| \leq \alpha}\binom{\beta}{\gamma}\binom{\alpha}{\delta} \int_{\mathbb{R}^{n}}\left|e^{i\langle z, \xi\rangle}\left(D_{z}^{(\alpha-\delta)} D_{\xi}^{(\beta-\gamma)} \theta\right)(z, \xi)\right| \\
& \leq(1+|\xi|)^{-|\alpha|}\left|D_{\xi}^{(\gamma)} \hat{\phi}(\xi)\right| d u \\
& \leq \sum_{|\gamma| \leq \beta|\delta| \leq \alpha} \sum^{-n / 2}\binom{\beta}{\gamma}\binom{\alpha}{\delta} \int_{\mathbb{R}^{n}}\left|e^{i\langle(x+i y),(u+i t)\rangle}\right| \\
& \leq(2 \pi)^{-n / 2} \sum_{|\gamma| \leq \beta} \sum_{|\delta| \leq \alpha}\binom{\beta}{\gamma}\binom{\alpha}{\delta} \int_{\mathbb{R}^{n}}|\exp (-\langle y, u\rangle-\langle x, t\rangle)| \\
& \quad\left|\left(D_{z}^{(\alpha-\delta)} D_{\xi}^{(\beta-\gamma)} \theta\right)(z, \xi)\right|(1+|\xi|)^{-|\alpha|}\left|D_{\xi}^{(\gamma)} \hat{\phi}(\xi)\right| d u
\end{aligned}
$$

Now,

$$
\begin{aligned}
&\left|z^{\beta}\left(A_{\theta} \phi\right)(z)\right| \leq(2 \pi)^{-n / 2} \sum_{|\gamma| \leq \beta} \sum_{|\delta| \leq \alpha}\binom{\beta}{\gamma}\binom{\alpha}{\delta} \int_{\mathbb{R}^{n}}|\exp [\langle y, u\rangle-\langle x, t\rangle]| \\
&\left|\left(D_{z}^{(\alpha-\delta)} D_{\xi}^{(\beta-\gamma)} \theta\right)(z, \xi)\right|(1+|\xi|)^{-|\alpha|}\left|D_{\xi}^{(\gamma)} \hat{\phi}(\xi)\right| d u \\
& \leq(2 \pi)^{-n / 2} \sum_{|\gamma| \leq \beta} \sum_{|\delta| \leq \alpha}\binom{\beta}{\gamma}\binom{\alpha}{\delta} \int_{\mathbb{R}^{n}}|\exp [\langle y, u\rangle-\langle x, t\rangle]| \\
& \quad C_{\alpha-\delta, \beta-\gamma}(1+|\xi|)^{m-|\beta|+|\gamma|-|\alpha|}\left|D_{\xi}^{(\gamma)} \hat{\phi}(\xi)\right| d u
\end{aligned}
$$

Using inequality $(1+|\xi|)^{m-|\beta|+|\gamma|-|\alpha|} \leq \exp \left[M^{0}\left(a_{1} u\right)+\Omega^{0}\left(b_{1} t\right)\right]$ for $m-|\beta|+|\gamma|-|\alpha|>0$
and (2.9) we have

$$
\begin{aligned}
\left|z^{\beta}\left(A_{\theta} \phi\right)(z)\right| \leq(2 \pi)^{-n / 2} & \sum_{|\gamma| \leq \beta} \sum_{|\delta| \leq \alpha}\binom{\beta}{\gamma}\binom{\alpha}{\delta} C_{\alpha-\delta, \beta-\gamma} \\
& \int_{\mathbb{R}^{n}}|\exp [\langle y, u\rangle-\langle x, t\rangle]| \exp \left[M^{0}\left(a_{1} u\right)+\Omega^{0}\left(b_{1} t\right)\right] \\
& \exp \left[-M^{0}\left(a^{\prime \prime} \cdot u\right)+\Omega^{0}\left(b^{\prime \prime} t\right)\right] d u .
\end{aligned}
$$

Using (2.3) and (2.4) we have

$$
\begin{aligned}
\left|z^{\beta}\left(A_{\theta} \phi\right)(z)\right| \leq & (2 \pi)^{-n / 2} \sum_{|\gamma| \leq \beta} \sum_{|\delta| \leq \alpha}\binom{\beta}{\gamma}\binom{\alpha}{\delta} C C_{\alpha-\delta, \beta-\gamma} \\
& \int_{\mathbb{R}^{n}} \exp \left[|\langle y, u\rangle|-M^{0}\left[\left(a^{\prime \prime}-a_{1}\right) u\right]\right] \exp \left[-\langle x, t\rangle+\Omega^{0}\left(b_{1}+b^{\prime \prime}\right) t\right] d u \\
\leq & (2 \pi)^{-n / 2} \sum_{|\gamma| \leq \beta} \sum_{|\delta| \leq \alpha}\binom{\beta}{\gamma}\binom{\alpha}{\delta} C \cdot C_{\alpha-\delta, \beta-\gamma} \\
& \exp \left[-\langle x, t\rangle+\Omega^{0}\left(b_{1}+b^{\prime \prime}\right) t\right] \int_{\mathbb{R}^{n}} \exp \left[|\langle y, u\rangle|-M^{0}\left[\left(a^{\prime \prime}-a_{1}\right) u\right]\right] d u \\
\leq & (2 \pi)^{-n / 2} \sum_{|\gamma| \leq \beta} \sum_{|\delta| \leq \alpha}\binom{\beta}{\gamma}\binom{\alpha}{\delta} C_{\alpha-\delta, \gamma-\beta}^{\prime} \\
& \exp \left[-\langle x, t\rangle+\Omega^{0}\left[\left(b^{\prime \prime}+b_{1}\right) t\right]\right] \int_{\mathbb{R}^{n}} \exp \left[|\langle y, u\rangle|-M^{0}\left[\left(a^{\prime \prime}-a_{1}\right) u\right]\right] d u .
\end{aligned}
$$

Using (2.11) and (2.12) and the arguements of [2, p.134]

$$
\begin{aligned}
\left|z^{\beta}\left(A_{\theta} \phi\right)(z)\right| \leq & (2 \pi)^{-n / 2} \sum_{|\gamma| \leq \beta} \sum_{|\delta| \leq \alpha}\binom{\beta}{\gamma}\binom{\alpha}{\delta} C_{\alpha-\delta, \beta-\delta}^{\prime} \\
& \exp \left[-M\left[\left(b^{\prime \prime}+b_{1}\right)^{-1} x\right]+\Omega\left[\left(a^{\prime \prime}-2 a_{1}\right)^{-1} y\right]\right] \\
& \int_{\mathbb{R}^{n}} \exp \left[-M^{0}\left(a_{1} u\right)\right] d u \\
\leq & C_{\alpha, \beta}^{\prime} \exp \left[-M\left[\left(b_{1}+b^{\prime \prime}\right)^{-1} x\right]+\Omega\left[\left(a^{\prime \prime}-2 a_{1}\right)^{-1} y\right]\right.
\end{aligned}
$$

Hence

$$
\left|\exp \left[M\left[\left(b_{1}+b^{\prime \prime}\right)^{-1} x\right]-\Omega\left[\left(a^{\prime \prime}-2 a_{1}\right)^{-1} y\right]\right]\left(A_{\theta} \phi\right)(z)\right| \leq C_{\alpha, \beta}^{\prime}\left(1+|z|^{\beta}\right)^{-1}
$$

Thus

$$
\begin{aligned}
\sup _{z \in \mathbb{C}^{n}}\left|\exp \left[M\left(b_{1}+b^{\prime \prime}\right)^{-1} x\right]-\Omega\left[\left(a^{\prime \prime}-2 a_{1}\right)^{-1} y\right]\left(A_{\theta} \phi\right)(z)\right| & \leq C_{\alpha, \beta}^{\prime} \\
& <\infty
\end{aligned}
$$

This implies that

$$
\left(A_{\theta} \phi\right)(z) \in W_{M}^{\Omega}\left(\mathbb{C}^{n}\right)
$$

Theorem 3.2. A_{θ} is continuous linear mapping $W_{M}^{\Omega}\left(\mathbb{C}^{n}\right)$ into itself.
Proof. If the functions $\phi(z)$ converge uniformly to zero as $\nu \rightarrow \infty$ in any bounded domain of the z-plane and in addition satisfy the inequalities.

$$
\left|\phi_{\nu}(z)\right| \leq C \exp [-M[(a x)]+\Omega[(b y)]],
$$

then the sequence $\phi_{\nu}(z) \in W_{M}^{\Omega}\left(\mathbb{C}^{n}\right)$ is said to converge to zero as $\nu \rightarrow \infty$, where the constants C, a and b do not depend on the index ν.

Since from Theorem 3.1 $A_{\theta} \phi$ is a mapping from $W_{M}^{\Omega}\left(\mathbb{C}^{n}\right)$ into itself. Using above results, $A_{\theta} \phi_{\nu} \in W_{M}^{\Omega}\left(\mathbb{C}^{n}\right)$ converge to zero uniformly in any bounded domain of the z-plane as $\nu \rightarrow \infty$ and satisfies the above inequality. Therefore, the sequence $A_{\theta} \phi \in W_{M}^{\Omega}\left(\mathbb{C}^{n}\right)$ is converges to zero as $\nu \rightarrow \infty$. This shows that A_{θ} maps continuously into itself.

Now, we define the pseudo-differential operator A_{θ} on $\left[W_{M}^{\Omega}\left(\mathbb{C}^{n}\right)\right]^{\prime}$-space by

$$
\begin{equation*}
\left\langle A_{\theta} f, \phi\right\rangle=\left\langle f, \overline{A_{\phi}^{*} \phi}, \quad \phi \in W_{M}^{\Omega}\left(\mathbb{C}^{n}\right)\right. \tag{3.1}
\end{equation*}
$$

Theorem 3.3. A_{θ} is a linear mapping from $\left[W_{M}^{\Omega}\left(\mathbb{C}^{n}\right)\right]^{\prime}$ into itself.
Proof. Let $f \in\left[W_{M}^{\Omega}\left(\mathbb{C}^{n}\right)\right]^{\prime}$. Then, for any sequence $\left\{\phi_{\nu}\right\}$ of functions in $W_{M}^{\Omega}\left(\mathbb{C}^{n}\right)$ converging to zero in $W_{M}^{\Omega}\left(\mathbb{C}^{n}\right)$, as $\nu \rightarrow \infty$. From (2.20) we have

$$
\begin{equation*}
\left\langle A_{\theta} f, \phi_{\nu}\right\rangle=\left\langle f, \overline{A_{\phi}^{*} \phi_{\nu}}\right\rangle, \quad \nu=1,2,3, \cdots \tag{3.2}
\end{equation*}
$$

By the arguements of Theorem 3.2, we conclude that $\left\langle A_{\theta} f, \phi_{\nu}\right\rangle \rightarrow 0$ as $\nu \rightarrow \infty$. Hence $A_{\theta} f \in\left[W_{M}^{\Omega}\left(\mathbb{C}^{n}\right)\right]^{\prime}$.

Definition 3.4. A sequence of distributions $\left\{f_{\nu}\right\}$ in $\left[W_{M}^{\Omega}\left(\mathbb{C}^{n}\right)\right]^{\prime}$ is said to converge to zero in $\left[W_{M}^{\Omega}\left(\mathbb{C}^{n}\right)\right]^{\prime}$ if $\left\langle f_{\nu}, \phi\right\rangle \rightarrow 0$ as $\nu \rightarrow \infty$ for all $\phi \in W_{M}^{\Omega}\left(\mathbb{C}^{n}\right)$.

Theorem 3.5. A_{θ} maps continuously $\left[W_{M}^{\Omega}\left(\mathbb{C}^{n}\right)\right]^{\prime}$ into itself.
Proof. Let $\phi \in\left[W_{M}^{\Omega}\left(\mathbb{C}^{n}\right)\right]$. Then, using (3.2) and the fact that $f_{\nu} \rightarrow 0$ in $\left[W_{M}^{\Omega}\left(\mathbb{C}^{n}\right)\right]^{\prime}$ as $\nu \rightarrow \infty$,

$$
\left\langle A_{\theta} f_{\nu}, \phi\right\rangle=\left\langle f_{\nu}, A_{\theta}^{*} \bar{\phi}\right\rangle \rightarrow 0
$$

as $\nu \rightarrow \infty$. Hence $A_{\theta} f_{\nu} \rightarrow 0$ in $\left[W_{M}^{\Omega}\left(\mathbb{C}^{n}\right)\right]^{\prime}$ as $\nu \rightarrow \infty$, and the proof is complete.
Theorem 3.6. Let $\theta \in C^{k}\left(\mathbb{C}^{n}\right), k \geq n / 2$, be such that there exists a positive constant B such that

$$
\begin{equation*}
\left|\left(D_{\xi}^{(\alpha)} \theta\right)(\xi)\right| \leq C_{\alpha, n}(1+|\xi|)^{-|\alpha|}, \quad \xi \neq 0 \tag{3.3}
\end{equation*}
$$

for multi-indices α with $|\alpha| \leq k$. Then, for $1 \leq p<\infty$, there exists a positive constant B, depending on α and N, such that

$$
\begin{equation*}
\|(A \phi)(z)\|_{p} \leq M_{\alpha, n}^{\prime}\|\phi\|_{p}, \quad \phi \in W_{M}^{\Omega}\left(\mathbb{C}^{n}\right) \tag{3.4}
\end{equation*}
$$

where

$$
\begin{equation*}
(A \phi)(z)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} e^{i\langle z, \xi\rangle} \theta(\xi) \hat{\phi}(\xi) d u \tag{3.5}
\end{equation*}
$$

$\xi=u+i t$, and $\hat{\phi}$ denotes the Fourier transformation of ϕ.
Proof. (3.5) can be written as

$$
\begin{equation*}
(A \phi)(z)=(2 \pi)^{-n / 2} F^{-1}[\theta(\xi) \hat{\phi}(\xi)](z) \tag{3.6}
\end{equation*}
$$

where F^{-1} denotes the inverse Fourier transformation of a function z as $z=x+i y$.
Now, we assume that

$$
\begin{equation*}
F^{-1}[\theta(\xi) \hat{\phi}(\xi)](z)=(f * g)(z) \tag{3.7}
\end{equation*}
$$

Then by convolution property of Fourier transformation, we have

$$
\begin{aligned}
\theta(\xi) \hat{\phi}(\xi) & =F[(f * g)](\xi) \\
& =\hat{f}(\xi) \cdot \hat{g}(\xi)
\end{aligned}
$$

This implies that

$$
f(z)=F^{-1}[\theta(\xi)](z), \quad g(z)=\phi(z)
$$

Thus, the expression (3.7) yields

$$
(A \phi)(z)=(2 \pi)^{-n / 2}\left(F^{-1}[\theta(\xi)] * \phi\right)(z)
$$

Using convolution property $\|f * \phi\|_{p} \leq\|f\|_{1}\|\phi\|_{p}$ for $f \in L^{1}\left(\mathbb{R}^{n}\right)$ and $\phi \in L^{p}\left(\mathbb{R}^{n}\right)$ we have

$$
\begin{align*}
\|(A \phi)(z)\|_{p} & =(2 \pi)^{-n / 2}\left\|\left(F^{-1}[\theta(\xi)] * \phi\right)(x)\right\|_{p} \\
& \leq(2 \pi)^{-n / 2}\left\|F^{-1}[\theta(\xi)]\right\|_{1}\|\phi\|_{p} \tag{3.8}
\end{align*}
$$

Next, we have to prove that

$$
F^{-1}[\theta(\xi)] \in L^{1}\left(\mathbb{R}^{n}\right)
$$

Thus, from [3, p. 24] we have

$$
F^{-1}[\theta(\xi)](z)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} e^{i\langle z, \xi\rangle} \theta(\xi) d u
$$

By property of Fourier transformation the above expression gives

$$
(z)^{\alpha} F^{-1}[\theta(\xi)](z)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} D_{\xi}^{(\alpha)}\left(e^{-i\langle z, \xi\rangle}\right) \theta(\xi) d u
$$

Integration by parts, above expression can be obtained

$$
\begin{aligned}
(z)^{\alpha} F^{-1}[a(\xi)](z) & =(2 \pi)^{-n / 2}(-1)^{|\alpha|} \int_{\mathbb{R}^{n}} e^{-i\langle z, \xi\rangle}\left(D_{\xi}^{(\alpha)} \theta\right)(\xi) d u \\
& =(2 \pi)^{-n / 2}(-1)^{|\alpha|} \int_{\mathbb{R}^{n}} \exp [-\langle x, u\rangle-\langle y, t\rangle]\left(D_{\xi}^{(\alpha)} \theta\right)(\xi) d u
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\left|(z)^{\alpha} F^{-1}[a(\xi)](z)\right| & \leq B C_{n}|\exp [-\langle y, t\rangle]| \int_{\mathbb{R}^{n}}|\exp [-\langle x, u\rangle]|(1+|\xi|)^{-|\alpha|} d u \\
& \leq B_{n}|\exp [-\langle y, t\rangle]| \sup _{u}|\exp [-\langle x, u\rangle]| \int_{\mathbb{R}^{n}}(1+|\xi|)^{-|\alpha|} d u \\
& \leq B_{\alpha, n}|\exp [-\langle y, t\rangle]| \\
& \leq B_{\alpha, n}
\end{aligned}
$$

This implies that

$$
\begin{equation*}
\left|F^{-1}[\theta(\xi)]\right| \leq B_{\alpha, n}\left\|\left(1+|z|^{n}\right)^{-1}\right\|_{1} \tag{3.9}
\end{equation*}
$$

From (3.8) - (3.9), we find the required result (3.4)
Theorem 3.7. Let $\phi \in W_{M}^{\Omega}\left(\mathbb{C}^{n}\right)$ and symbol $\theta_{m}(z, \xi)$ has compact support in z. Then, pseudodifferential operators $A_{\theta_{m}} \phi$ can be expressed as

$$
\left.\left(A_{\theta_{m}} \phi\right)(z)=(2 \pi)^{-n}\left(\int_{\mathbb{R}^{n}} e^{-i\langle\lambda, z\rangle}\left(\int_{\mathbb{R}^{n}} e^{i\langle z, \xi\rangle} \hat{\theta}_{m}(\lambda, \xi) \hat{\phi}(\xi) d u\right)\right) d v\right)
$$

where

$$
\begin{equation*}
\left(A_{\lambda} \phi\right)(z)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} e^{-i\langle z, \lambda\rangle} \hat{\theta}_{m}(\lambda, \xi) \hat{\phi}(\xi) d u \tag{3.10}
\end{equation*}
$$

as $z=x+i y, \lambda=v+i v^{\prime}$ and

$$
\hat{\theta}_{m}(\lambda, \xi)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} e^{-i\langle\lambda, z\rangle} \theta_{m}(z, \xi) d x, \quad \lambda, \xi \in \mathbb{C}^{n}
$$

Proof. Since

$$
\left(A_{\theta} \phi\right)(z)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} e^{i\langle z, \xi\rangle} \theta_{m}(z, \xi) \hat{\phi}(\xi) d u
$$

then, by using the property of Fourier transformation we have

$$
\left(A_{\theta_{m}} \phi\right)(z)=(2 \pi)^{-n / 2}\left(\int_{\mathbb{R}^{n}} e^{-i\langle\lambda, z\rangle}\left((2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} e^{i\langle, z, \xi\rangle} \hat{\theta}_{m}(\lambda, \xi) d v\right) \hat{\phi}(\xi) d u\right)
$$

as $\lambda=v+i v^{\prime}$. By Fubini's theorem and (3.10) we get

$$
\begin{equation*}
\left(A_{\theta_{m}} \phi\right)(z)=(2 \pi)^{-n}\left(\int_{\mathbb{R}^{n}} e^{-i\langle\lambda, z\rangle}\left(\int_{\mathbb{R}^{n}} e^{i\langle z, \xi\rangle} \hat{\theta}_{m}(\lambda, \xi) \hat{\phi}(\xi) d u\right) d v\right) \tag{3.11}
\end{equation*}
$$

Lemma 3.8. For all multi-indices α and β and positive integers N, there is a positive constant $C_{\alpha, N}$, depending on α and N such that

$$
\left|\left(D_{\xi}^{(\alpha)} \hat{\theta}_{m}\right)(\lambda, \xi)\right| \leq C_{\alpha, N}\left(1+|\lambda|^{|\beta|}\right)^{-1}(1+|\xi|)^{-|\alpha|}
$$

for $\xi=u+i t$ and $\lambda=v+i v^{\prime}$.
Proof. The Fourier transformation of θ_{m} with respect to $\lambda=v+i v^{\prime}$ is given by

$$
\hat{\theta}_{m}(\lambda, \xi)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} e^{-i\langle z, \lambda\rangle} \theta_{m}(z, \xi) d x
$$

Then

$$
(i \lambda)^{\beta} D_{\xi}^{(\alpha)} \hat{\theta}_{m}(\lambda, \xi)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} \partial_{z}^{(\beta)}\left[e^{-i\langle z, \lambda\rangle}\right] D_{\xi}^{(\alpha)} \theta_{m}(z, \xi) d x
$$

Integration by parts we have

$$
(i \lambda)^{\beta} D_{\xi}^{(\alpha)} \hat{\theta}_{m}(\lambda, \xi)=(2 \pi)^{-n / 2}(-1)^{|\beta|} \int_{\mathbb{R}^{n}} e^{i\langle z, \lambda\rangle} \partial_{z}^{(\beta)} D_{\xi}^{(\alpha)} \theta_{m}(z, \xi) d x
$$

as $z=x+i y$.
Hence,

$$
\begin{array}{r}
(i \lambda)^{\beta} D_{\xi}^{(\alpha)} \hat{\theta}_{m}(\lambda, \xi)=(2 \pi)^{-n / 2}(-1)^{\beta} \int_{\mathbb{R}^{n}} e^{i\langle z, \lambda\rangle} \partial_{z}^{(\beta)} D_{\xi}^{(\alpha)}[\eta(z-m) \theta(z, \xi)] d x \\
=(2 \pi)^{-n / 2}(-1)^{\beta} \int_{\mathbb{R}^{n}} e^{i\langle z, \lambda\rangle} \sum_{|\gamma| \leq \beta}\binom{\beta}{\gamma} D_{z}^{(\gamma)} \eta(z-m) \\
\partial_{z}^{(\beta-\gamma)} D_{\xi}^{(\alpha)} \theta(z, \xi) d x
\end{array}
$$

Now

$$
\begin{aligned}
& \left|\lambda^{\beta} D_{\xi}^{(\alpha)} \hat{\theta}_{m}(\lambda, \xi)\right| \\
& \left.\left.\quad \leq(2 \pi)^{-n / 2} \sum_{|\gamma| \leq \beta}\binom{\beta}{\gamma} \int_{\mathbb{R}^{n}} \right\rvert\, \exp -\langle x, v\rangle-\left\langle y, v^{\prime}\right\rangle\right)\left|\left|D_{\xi}^{(\gamma)} \eta(z-m)\right|\right| D_{z}^{(\beta-\gamma)} D_{\xi}^{\alpha} \theta(z, \xi) \mid d x \\
& \quad \leq(2 \pi)^{-n / 2} \sum_{|\gamma| \leq \beta}\binom{\beta}{\gamma} \int_{\mathbb{R}^{n}}\left|\exp \left[-\langle x, v\rangle-\left\langle y, v^{\prime}\right\rangle\right]\right|\left|\partial_{z}^{(\gamma)} \eta(z-m)\right| C_{\beta-\gamma, \alpha}(1+|\xi|)^{-|\alpha|} d x \\
& \left.\left.\quad \leq(2 \pi)^{-n / 2} \sum_{|\gamma| \leq \beta}\binom{\beta}{\gamma} C_{\beta-\gamma, \alpha} \int_{\mathbb{R}^{n}} \right\rvert\, \exp \left[-\langle x, v\rangle-\left\langle y, v^{\prime}\right\rangle\right)\right]\left|\left|\partial_{z}^{(\gamma)} \eta(z-m)\right|(1+|\xi|)^{-|\alpha|} d x\right. \\
& \leq(2 \pi)^{-n / 2} \sum_{|\gamma| \leq \beta}\binom{\beta}{\gamma} C_{\beta-\gamma, \alpha}(1+|\xi|)^{-|\alpha|} \int_{\mathbb{R}^{n}}\left|\exp [-\langle x, v\rangle] \partial_{z}^{(\gamma)} \eta(z-m)\right| d x .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \left|\lambda^{\beta} D_{\xi}^{\alpha} \hat{\theta}_{m}(\lambda, \xi)\right| \\
& \quad \leq(2 \pi)^{-n / 2} \sum_{|\gamma| \leq \beta}\binom{\beta}{\gamma} C_{\beta-\gamma, \alpha}(1+|\xi|)^{-|\alpha|} \int_{\mathbb{R}^{n}}\left|\partial_{z}^{(\gamma)} \eta(z-m)\right| d x \\
& \quad \leq(2 \pi)^{-n / 2}(1+|\xi|)^{-|\alpha|} \sum_{|\gamma| \leq \beta}\binom{\beta}{\gamma} C_{\gamma} C_{\beta-\gamma, \alpha} \\
& \leq(2 \pi)^{-n / 2}(1+|\xi|)^{-|\alpha|} C_{\beta} \\
& \leq C_{\beta, n}(1+|\xi|)^{-|\alpha|}
\end{aligned}
$$

Hence, for large arbitrary positive integers N, we have

$$
\left|\left(D_{\xi}^{(\alpha)} \hat{\theta}_{m}\right)(\lambda, \xi)\right| \leq C_{n, \beta}\left(1+|\lambda|^{N}\right)^{-1}(1+|\xi|)^{-|\alpha|}
$$

as $\xi=u+i t$.
Theorem 3.9. Let $\theta \in V^{0}$. Then we get the following relation

$$
\int_{Q_{m}}\left|\left(A_{\theta} \phi\right)(z)\right|^{p} d x \leq C_{N}^{p}\|\phi\|_{p}^{p} \quad \forall \phi \in W_{M}^{\Omega}\left(\mathbb{C}^{n}\right)
$$

Proof. From Wong [10, p. 80], we can write

$$
\begin{equation*}
\left(\int_{Q_{m}}\left|\left(A_{\theta} \phi\right)(z)\right|^{p} d x\right) \leq\left(\int_{\mathbb{R}^{n}}\left|\left(A_{\theta_{m}} \phi\right)(z)\right|^{p} d x\right) \tag{3.12}
\end{equation*}
$$

Using Lemma 3.8 and Theorem 3.6, we find that

$$
\begin{equation*}
\left\|A_{\lambda} \phi\right\|_{p} \leq C_{N}(1+|\lambda|)^{-N}\|\phi\|_{p} \quad \forall \phi \in W_{M}^{\Omega}\left(\mathbb{C}^{n}\right) \tag{3.13}
\end{equation*}
$$

Using (3.11), (3.13) and Minkowski's inequality in the integral form we obtain

$$
\begin{aligned}
\left\|A_{\theta_{m}} \phi\right\|_{p} & =(2 \pi)^{-n / 2}\left(\int_{\mathbb{R}^{n}}\left|\int_{\mathbb{R}^{n}} e^{i\langle z, \lambda\rangle}\left(A_{\lambda} \phi\right)(z) d v\right|^{p} d x\right)^{1 / p} \\
& =(2 \pi)^{-n / 2}\left(\int_{\mathbb{R}^{n}}\left|\int_{\mathbb{R}^{n}} \exp \left[-\left\langle x, v^{\prime}\right\rangle-\langle y, v\rangle\right]\left(A_{\lambda} \phi\right)(z) d v\right|^{p} d x\right)^{1 / p} \\
& \leq(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}}\left(\int_{\mathbb{R}^{n}}\left|\exp \left[-\left\langle x, v^{\prime}\right\rangle\right]\left(A_{\lambda} \phi\right)(z)\right|^{p} d x\right)^{1 / p} d v \\
& \leq(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}}\left(\int_{\mathbb{R}^{n}}\left|\left(A_{\lambda} \phi\right)(z)\right|^{p} d x\right)^{1 / p} d v \\
& \leq(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}}\left\|\left(A_{\lambda} \phi\right)(z)\right\|_{p} d v
\end{aligned}
$$

Using (3.13) we get

$$
\begin{aligned}
\left\|A_{\theta_{m}} \phi\right\|_{p} & \leq(2 \pi)^{-n / 2} C_{N}\left(\int_{\mathbb{R}^{n}}(1+|\lambda|)^{-N} d v\right)\|\phi\|_{p} \\
& \leq(2 \pi)^{-n / 2} C_{N}\|\phi\|_{p} \quad \phi \in W_{M}^{\Omega}\left(\mathbb{C}^{n}\right) .
\end{aligned}
$$

Hence from (3.12) and (3.13) we have

$$
\begin{equation*}
\int_{Q_{m}}\left|\left(A_{\theta} \phi\right)(z)\right|^{p} d x \leq C_{N, n}^{p}\|\phi\|_{p}^{p}, \quad \phi \in W_{M}^{\Omega}\left(\mathbb{C}^{n}\right) \tag{3.14}
\end{equation*}
$$

Now, we represent A_{θ} as a singular integral operator.
Lemma 3.10. Let $K(z, w)=\int_{\mathbb{R}^{n}} e^{i\langle z, w\rangle} \theta(z, w) d s, z=x+i y \in \mathbb{C}^{n} w=s+i v \in \mathbb{C}^{n}$ in the distributional sense. Then
(i) for each $z \in \mathbb{C}^{n}, K(z, w)$ is a function defined on \mathbb{R}^{n},
(ii) for each sufficiently large positive integer N, there is a positive constant C_{N} such that

$$
\begin{equation*}
|K(z-w, w)| \leq C_{N}\left(1+|z-w|^{N}\right)^{-1} \tag{3.15}
\end{equation*}
$$

(iii) for each fixed $z=x+i y$ and $\phi \in W_{M}^{\Omega}\left(\mathbb{C}^{n}\right)$ vanishing in the neighbourhood of \mathbb{C}^{n}, we find that

$$
\begin{equation*}
\left(A_{\theta} \phi\right)(z)=\int_{\mathbb{R}^{n}} K(z-w, w) \phi(w) d s \tag{3.16}
\end{equation*}
$$

Proof. (i) can be defined by using the arguments of [10, p. 26] and [1, pp. 23-24].
To prove (ii), let α be a multi-index with length greater than w. Then by the property of Fourier transformation $\left(D^{(\alpha)} u\right)^{\gamma}=\xi^{|\alpha|} \tilde{u}$ we have

$$
(i w)^{\alpha} K(z, w)=(-1)^{|\alpha|} \int_{\mathbb{R}^{n}} e^{i\langle\xi, w\rangle} D_{\xi}^{(\alpha)} \theta(z, \xi) d u
$$

Therefore, using (2.16)and tools of theorem (3.6) we have

$$
|K(z, w)| \leq C_{\alpha}^{\prime}\left(1+|w|^{\alpha}\right)^{-1}
$$

For large positive integer N we can obtain

$$
|K(z, z-w)| \leq C_{\alpha}^{\prime}\left(1+|z-w|^{N}\right)^{-1}
$$

To prove (iii), we define the distribution L_{z} on $W_{M}^{\Omega}\left(\mathbb{C}^{n}\right)$ by

$$
\left\langle L_{z}, \psi\right\rangle=\int_{\mathbb{R}^{n}} \theta(z, \xi) \psi(\xi) d u
$$

where $z=x+i y, \xi=u+i \tau$ and $w=s+i v$. By the definition of pseudo-differential operator (2.18)

$$
\begin{align*}
\left(A_{\theta} \phi\right)(z) & =\int_{\mathbb{R}^{n}} e^{i\langle z, \xi\rangle} \theta(z, \xi) \hat{\phi}(\xi) d u \\
& =L_{z}\left(M_{z} \hat{\phi}\right) \tag{3.17}
\end{align*}
$$

Using Gelfand and Shilov [3] technique of integration we get

$$
\begin{align*}
\left(A_{\theta} \phi\right)(z) & =L_{z}\left(T_{z} \phi\right)^{\gamma} \\
& =\hat{L}_{z}\left(T_{z} \phi\right) \tag{3.18}
\end{align*}
$$

From (i) we have

$$
\hat{L}_{z}(\psi)=\int_{\mathbb{R}^{n}} \theta(z,-w) \psi(w) d s
$$

Hence

$$
\begin{aligned}
\left(A_{\theta} \phi\right)(z) & =\int_{\mathbb{R}^{n}} \theta(z,-w)\left(T_{z} \phi\right)(w) d s \\
& =\int_{\mathbb{R}^{n}} \theta(z,-w) \phi(z+w) d s \\
& =\int_{\mathbb{R}^{n}} \theta(z, z-w) \phi(w) d s
\end{aligned}
$$

This completes the proof of the theorem.
Theorem 3.11. Let $\theta(z, \xi)$ be a symbol in V^{0}. Then $A_{\theta}: L^{p}\left(\mathbb{R}^{n}\right) \rightarrow L^{p}\left(\mathbb{R}^{n}\right)$ is a bounded linear operator for $1<p<\infty$.

Proof. From Theorem 3.6, Theorem 3.7, Theorem 3.9 and Lemma 3.10 we can show that the pseudo-differential operator A_{θ} is a bounded linear operator from $L^{p}\left(\mathbb{R}^{n}\right)$ into $L^{p}\left(\mathbb{R}^{n}\right)$ for $1<p<\infty$.

4 The Sobolev Space

In this section, we study the pseudo-differential operators on Sobolev type space $G^{s, p}\left(\mathbb{C}^{n}\right)$ which is defined in Section 2.

For $s \in \mathbb{R}$, the pseudo-differential operator associated with symbol $\theta(\xi)=\left(1+|\xi|^{2}\right)^{-s / 2}$ as $\xi=u+i t$ is defined by

$$
\begin{equation*}
\left(V_{\theta} u\right)(z)=F^{-1}(\theta(\xi) \hat{u}(\xi))(z) \quad \text { for } u \in\left[W_{M}^{\Omega}\left(\mathbb{C}^{n}\right)\right]^{\prime} \tag{4.1}
\end{equation*}
$$

Now, we define the Sobolev space $G^{s, p}\left(\mathbb{C}^{n}\right)$ of L^{p}-type to be the set of all distribution $u \in$ $\left[W_{M}^{\Omega}\left(\mathbb{C}^{n}\right)\right]^{\prime}$ such that

$$
\begin{equation*}
\|u\|_{s, p}=\left\|V_{-s} u\right\|_{p} \quad \text { for } 1 \leq p<\infty \tag{4.2}
\end{equation*}
$$

Theorem 4.1. Let $u \in\left[W_{M}^{\Omega}\left(\mathbb{C}^{n}\right)\right]^{\prime}$. Then
(i) $V_{s} V_{t} u=V_{s+t} u$,
(ii) $V_{0} u=u$.

Proof. The proof of the above theorem is obvious from [10, p. 90].
Theorem 4.2. $G^{s, p}\left(\mathbb{C}^{n}\right)$ is a Banach space with respect to $\|u\|_{s, p}$.
Proof. The proof of the above theorem is usual from [10, p. 81].

Theorem 4.3. V_{t} is an isometry from $V^{s, p}$ onto $V^{s+t, p}$.
Proof. Let $u \in V^{s, p}$. Then from Theorem 4.1 we get $J_{-t} v \in G^{s, p}\left(\mathbb{C}^{n}\right)$ and $v_{t} v_{-t} v=v$. This implies $G^{s, p}\left(\mathbb{C}^{n}\right)$ is onto.

Theorem 4.4. Let $1<p<\infty$ and $s \leq t$. Then $G^{t, p}\left(\mathbb{C}^{n}\right) \subseteq G^{s, p}\left(\mathbb{C}^{n}\right)$.
Proof. See [10, p. 91]. This is called Sobolev embedding theorem.
Theorem 4.5. Let $s \geq 0$ and $1 \leq p<\infty$. Then

$$
\left\|V_{s} \phi\right\|_{p} \leq\|\phi\|_{p}, \quad \phi \in L^{p}\left(\mathbb{R}^{n}\right)
$$

Proof. We have

$$
\left.\left(J_{s} \phi\right) \hat{(} \xi\right)=\left(1+|\xi|^{2}\right)^{-s / 2} \hat{\phi}(\xi), \quad \xi \in \mathbb{C}^{n}
$$

Hence, for $\hat{G}_{s}(\xi)=\left(1+|\xi|^{2}\right)^{-s / 2}$ we have

$$
\begin{equation*}
\left.\left(G_{s} * \phi\right) \hat{(\xi}\right)=\left(1+|\xi|^{2}\right)^{-s / 2} \hat{\phi}(\xi) \tag{4.3}
\end{equation*}
$$

Hence, for all $\phi \in W_{M}^{\Omega}\left(\mathbb{R}^{n}\right)$,

$$
J_{s} \phi=\left(G_{s} * \phi\right),
$$

and using convolution property

$$
\begin{aligned}
\left\|J_{s} \phi\right\|_{p} & =\left\|G_{s} * \phi\right\|_{p} \\
& \leq\left\|G_{s}\right\|_{1}\|\phi\|_{p} \\
& \leq\|\phi\|_{p}
\end{aligned}
$$

Theorem 4.6. For symbol θ in $U^{m}, A_{\theta}: G^{m, p}\left(\mathbb{C}^{n}\right) \rightarrow G^{0, p}\left(\mathbb{C}^{n}\right)$ is a bounded linear operator for $1<p<\infty$.

Proof. Counsider the bounded linear operators

$$
\begin{gathered}
V_{-s}: G^{s, p}\left(\mathbb{C}^{n}\right) \rightarrow G^{0, p}\left(\mathbb{C}^{n}\right) \\
A_{\theta} V_{m}: G^{0, p}\left(\mathbb{C}^{n}\right) \rightarrow G^{0, p}\left(\mathbb{C}^{n}\right)
\end{gathered}
$$

and

$$
V_{s-m}: G^{0, p}\left(\mathbb{C}^{n}\right) \rightarrow G^{s-m, p}\left(\mathbb{C}^{n}\right)
$$

The first and the third operators are bounded by isometry of pseudo-differential operator of Theorem 4.3 and the second operator is bounded by $L^{p}\left(\mathbb{R}^{n}\right)$-boundedness property of pseudodifferential operator. Hence the product $V_{s-m} A_{\theta} V_{m-s}$ is a bounded linear operator from $G^{s, p}$ into $G^{s-m, p}$. By Theorem 4.3 operators V_{m-s} and V_{s-m} are isometric and onto. Hence, A_{0} : $G^{m, p} \rightarrow G^{0, p}$ must be bounded linear operator.

Theorem 4.7. Let $\theta(z, \xi)$ be any symbol in V^{m}, then $A_{\theta}: G^{s, p}\left(\mathbb{C}^{n}\right) \rightarrow G^{s-m, p}\left(\mathbb{C}^{n}\right)$ is a bounded linear operator for $1 \leq p<\infty$.

Proof. Since $V_{m-s} A_{\theta}$ is a pseudo-differential operator with symbol in V^{s}. Hence, from Theorem 4.6 we can easily prove that

$$
\left\|A_{\theta} u\right\|_{s-m, p}=\left\|J_{m-s} A_{\theta} u\right\|_{p} \leq C\|u\|_{s, p} \quad \forall u \in G^{s, p}
$$

References

[1] M. Cappiello, T.Gramchev, and L. Rodino, Gel'fand and Shilov spaces, pseudo-differential operators and localization operators, Operator Theory Advances and Applications, 172, 297-312, (2006).
[2] A. Friedman, Generalized Functions and Partial Differential Equations, Englewood Cliffs, New Jersey, (1963).
[3] I. M. Gel'fand and G. E. Shilov, Generalized Functions and Partial Differential Equations, volume III, Academic Press, New York, (1967).
[4] B. L. Gurevich, New types of test function spaces and spaces of generalized functions and the Cauchy problem for operator equations, Master's thesis, Kharkov, Russian, (1956).
[5] R. S. Pathak, Generalized Sobolev spaces and pseudo-differential operators of ultra distributions, In M. Morimoto and T. Kawai, editors, Structure and Solutions of Differential Equation, 343-368, World Scientific, Singapore, (1996)
[6] R. S. Pathak and G. Pandey, Wavelet transformation on spaces of type W, Rocky Mountain J Math, 39 (2),619-631, (2009).
[7] S. K. Upadhyay, Pseudo Differential Operators on $W^{\Omega}\left(C^{n}\right)$ - space, Journal of International Academy of Physical Sciences, 14 (1), 53-60, 2010.
[8] S. K. Upadhyay, R. N. Yadav, and L. Debnath, Infinite Pseudo Differential Operators on $W_{M}\left(R^{n}\right)$ space, Analysis, 32, 163-178, (2012).
[9] S. K. Upadhyay, R. N. Yadav, and L. Debnath, n-dimentional continuous wavelet transformation on Gel'fand and Shilov space, Survey of Mathematics and its Application, 4, 239-252, (2009).
[10] M. W. Wong, An Introduction to Pseudo-Differential Operators, World Scientific, Singapore, (1991).

Author information

S. K. Upadhyay, Department of Mathematical Sciences, Indian Institute of Technology and DST-CIMS, Banaras Hindu University, Varanasi-221005, India.
E-mail: sk_upadhyay2001@yahoo.com

Received: January 24, 2013
Accepted: July 2, 2013

