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Abstract. LetR be a semiprime ring equipped with an involution ∗ and α be an epimorphism
of R. In this paper, we prove that an additive mapping T : R → R is a Jordan α−∗centralizer if
the following holds:

2T (xyx) = T (x)α(y∗)α(x∗) + α(x∗)α(y∗)T (x), for all x, y ∈ R.

1 Introduction

Throughout, R will represent an associative ring with center Z. Recall that a ring R is prime
if xRy = 0 implies x = 0 or y = 0, and semiprime if xRx = 0 implies x = 0. An additive
mapping x 7→ x∗ satisfying (xy)

∗
= y∗x∗ and (x∗)

∗
= x for all x, y ∈ R is called an involution

and R is called a ∗-ring.
According B. Zalar [8], an additive mapping T : R → R is called a left (resp. right) central-

izer of R if T (xy) = T (x) y (resp. T (xy) = xT (y)) holds for all x, y ∈ R. If T is both left as
well right centralizer, then it is called a centralizer. This concept appears naturally C∗−algebras.
In ring theory it is more common to work with module homorphisms. Ring theorists would write
that T : RR → RR is a homomorphism of a ring module R into itself instead of a left centralizer.
In case T : R → R is a centralizer, then there exists an element λ ∈ C such that T (x) = λx for
all x ∈ R and λ ∈ C, where C is the extended centroid of R.

An additive mapping T : R → R is said to be a left (resp. right) Jordan centralizer if
T
(
x2
)
= T (x)x (resp. T

(
x2
)
= xT (x)) holds for all x ∈ R. Zalar proved in [8] that any left

(right) Jordan centralizer on 2−torsion free semiprime ring is a left (right) centralizer. Recently,
in [1], E. Albaş introduced the definition of α−centralizer of R, i. e. an additive mapping
T : R → R is called a left (resp. right) α−centralizer of R if T (xy) = T (x)α (y) (resp.
T (xy) = α (x)T (y)) holds for all x, y ∈ R, where α is an endomorphism of R. If T is left and
right α−centralizer then it is natural to call α−centralizer. Clearly every centralizer is a special
case of a α−centralizer with α = idR. Also, an additive mapping T : R → R associated with a
homomorphism α : R → R, if La(x) = aα(x) and Ra(x) = α(x)a for a fixed element a ∈ R
and for all x ∈ R, then La is a left α−centralizer and Ra is a right α−centralizer. Albaş showed
Zalar’s result holds for α−centralizer. Considerable work has been done on this topic during the
last couple of decades (see [1-8], where further references can be found).

On the other hand, it was proved that T is a centralizer if one of the following holds

2T (x2) = T (x)x+ xT (x),

2T (xyx) = T (x)yx+ xyT (x), for all x, y ∈ R,

where T : R → R is an additive mapping respectively in [5] and [7]. These results proved for
α−centralizer in [4] and [3].

Inspired by the definition centralizer, the notion of ∗−centralizer was extended as follow:
Let R be a ring with involution ∗. An additive mapping T : R → R is called a left (resp.

right) ∗−centralizer of R if T (xy) = T (x) y∗ (resp. T (xy) = x∗T (y)) holds for all x, y ∈ R.
An additive mapping T : R → R is said to be a left (resp. right) Jordan ∗−centralizer if
T
(
x2
)
= T (x)x∗ (resp. T

(
x2
)
= x∗T (x)) holds for all x ∈ R. In [2], the authors proved

that if R is a 2−torsion free semiprime ring and T : R → R is an additive mapping such that
2T (x2) = T (x)α(x∗) +α(x∗)T (x), for all x ∈ R, then T is a Jordan α−∗centralizer. Motivated
this result, we will prove that an additive mapping T : R → R is a Jordan α−∗centralizer if the
following holds:

2T (xyx) = T (x)α(y∗)α(x∗) + α(x∗)α(y∗)T (x), for all x, y ∈ R
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This enables us a unified treatment (and extensions) of several results that can be found in
the literature.

2 Results

Lemma 2.1. [6, Lemma 1] Let R be a 2−torsion free semiprime ring. Suppose that the identity
axb+ bxc = 0 holds for all x ∈ R and some a, b, c ∈ R. Then in this case (a+ c)xb = 0 satisfied
for all x ∈ R.

Lemma 2.2. [2, Theorem 2.1] Let R be a a 2−torsion free semiprime ∗−ring. Suppose that α is
an automorphism of R. If T : R→ R is an additive mapping satisfying 2T (x2) = T (x)α(x∗) +
α(x∗)T (x) for all x ∈ R, then T is a Jordan α−∗centralizer.

Theorem 2.3. Let R be a a 2−torsion free semiprime ∗−ring. Suppose that α is an automor-
phism of R. If T : R → R is an additive mapping satisfying 2T (xyx) = T (x)α(y∗)α(x∗) +
α(x∗)α(y∗)T (x) for all x, y ∈ R, then T is a Jordan α−∗centralizer.

Proof. By the hyphotesis, we have

2T (xyx) = T (x)α(y∗)α(x∗) + α(x∗)α(y∗)T (x), for all x, y ∈ R. (2.1)

Replacing x by x+ z in (2.1) and using this, we obtain that

2T (xyz + zyx) = T (x)α(y∗)α(z∗) + T (z)α(y∗)α(x∗)

+ α(x∗)α(y∗)T (z) + α(z∗)α(y∗)T (x), for all x, y, z ∈ R.
(2.2)

Taking x2 instead of z, we arrive at

2T (xyx2 + x2yx) = T (x)α(y∗)α(x∗)α(x∗) + T (x2)α(y∗)α(x∗)

+ α(x∗)α(y∗)T (x2) + α(x∗)α(x∗)α(y∗)T (x), for all x, y ∈ R.
(2.3)

Substituting xy + yx for x in (2.1), we have

2T (xyx2 + x2yx) = T (x)α(y∗)α(x∗)α(x∗) + T (x)α(x∗)α(y∗)α(x∗)

+ α(x∗)α(y∗)α(x∗)T (x) + α(x∗)α(x∗)α(y∗)T (x), for all x, y ∈ R.
(2.4)

By comparing (2.3) and (2.4), we get

T (x2)α(y∗)α(x∗) + α(x∗)α(y∗)T (x2) = T (x)α(x∗)α(y∗)α(x∗) + α(x∗)α(y∗)α(x∗)T (x),

and so

(T (x2)− T (x)α(x∗))α(y∗)α(x∗)

+ α(x∗)α(y∗)(T (x2)− α(x∗)T (x)) = 0, for all x, y ∈ R.
(2.5)

Putting y∗ for y in (2.4) yields that

(T (x2)− T (x)α(x∗))α(y)α(x∗) + α(x∗)α(y)(T (x2)− α(x∗)T (x)) = 0, for all x, y ∈ R.

Since α is an epimorphism of R, we have

(T (x2)− T (x)α(x∗))yα(x∗) + α(x∗)y(T (x2)− α(x∗)T (x)) = 0, for all x, y ∈ R.

By Lemma 2.1, we conclude that

(2T (x2)− T (x)α(x∗)− α(x∗)T (x))yα(x∗) = 0, for all x, y ∈ R. (2.6)

Define A(x) = 2T (x2)− T (x)α(x∗)− α(x∗)T (x). Hence (2.6) can be rewritten as
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A(x)yα(x∗) = 0, for all x, y ∈ R. (2.7)

Substituting α(x∗)yA(x) for y in (2.7), we get

A(x)α(x∗)yA(x)α(x∗) = 0, for all x, y ∈ R.

Using R is semiprime ring, we arrive at

A(x)α(x∗) = 0, for all x ∈ R. (2.8)

Left multiplying (2.7) by α(x∗) and right multiplying (2.8) by A(x), we have

α(x∗)A(x)yα(x∗)A(x) = 0, for all x ∈ R.

By the semiprimeness of R, we find that

α(x∗)A(x) = 0, for all x ∈ R. (2.9)

Replacing x by x+ y in (2.8) and using this, we obtain that

A(x+ y)α(x∗ + y∗) = 0,

and so

(A(x)+A(y)+2T (xy+yx)−T (x)α(y∗)−T (y)α(x∗)−α(x∗)T (y)−α(y∗)T (x))α(x∗+y∗) = 0.

That is

A(x)α(x∗) +A(y)α(x∗) +B(x, y)α(x∗) +A(x)α(y∗)

+A(y)α(y∗) +B(x, y)α(y∗) = 0, for all x, y ∈ R,

where B(x, y) = 2T (xy + yx) − T (x)α(y∗) − T (y)α(x∗) − α(x∗)T (y) − α(y∗)T (x). Using

(2.8) in the last equation, we see that

A(x)α(y∗) +A(y)α(x∗) +B(x, y)α(x∗) +B(x, y)α(y∗) = 0, for all x, y ∈ R. (2.10)

Substituting −x for x in (2.10) and using A(−x) = A(x), B(−x, y) = −B(x, y), we arrive

at

A(x)α(y∗)−A(y)α(x∗) +B(x, y)α(x∗)−B(x, y)α(y∗) = 0, for all x, y ∈ R. (2.11)

Now, combining (2.10) and (2.11), we get

A(x)α(y∗) +B(x, y)α(x∗) = 0, for all x, y ∈ R. (2.12)

Multiplying (2.12) from the right by A(x) and using (2.9), we obtain that

A(x)α(y∗)A(x) = 0, for all x, y ∈ R.

Writing y∗ instead of y and α is an epimorphism of R, we have

A(x)yA(x) = 0, for all x, y ∈ R.

By the semiprimeness of R, we find that A(x) = 0 for all x ∈ R, and so

2T (x2) = T (x)α(x∗) + α(x∗)T (x), for all x, y ∈ R.

Hence T is a Jordan α−∗centralizer by Lemma 2.2.



448 Öznur Gölbaşı and Ahu Kadriye Gürcan

References
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