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Abstract In this article we review the notion of random coupled coincidence and prove a
random coupled fixed point theorem under a certain set of conditions.

1 Introduction and Preliminaries

Probabilistic functional analysis is one of the most crucial research fields in mathematics be-
cause, it has applications to probabilistic models in real world problems. In particular, proba-
bilistic functional analysis is needed for the study of various classes of random equations and
random operators which form the center of this field. Random fixed point theorems are stochas-
tic generalizations of classical fixed point theorems for random operators. Because of their
importance, the study of random fixed points and random approximations attracted considerable
attention from a lot of authors, see e.g. [4]-[8], [14, 11],[16, 17] [21, 22],[27]-[30],[37]-[38].

One of the recent trends, initiated by Ran and Reurings [28], in fixed point theory is to study
the existence and uniqueness of certain operators in the context of partially ordered metric spaces
(see e.g. [1]-[3],[5, 9, 12, 25, 26, 34]). In 1987, Guo and Lakshmikantham [15] introduced the
concept of coupled coincidence point of a mapping F : X ×X → X where X is a metric space.
In 2006, Gnana-Bhaskar and Lakshmikantham [9] introduced the mixed monotone property for
F and studied fixed point theorems in partially ordered metric spaces. Moreover, the authors [9]
discussed the existence and uniqueness of solution for a periodic boundary value problem as an
application. Later Karapınar [18, 19] extended the results of Bhaskar and Lakshmikantham to
cone metric spaces. In [20] Lakshmikantham and Ćirić studied common/coincidence coupled
fixed point theorems for nonlinear contractions in partially ordered metric spaces. Coupled fixed
point theorems is one of the active research areas in fixed point theory (see e.g. [10, 13, 18, 19,
23, 33, 34, 32] and the references there in ). The same authors, Ciric and Lakshmikantham [12],
also considered random coupled fixed point and random coupled coincidence point theorems for
a pair of random mappings F : Ω×(X×X)→ X and g : Ω×X → X under certain contractive
conditions.

We recall some basic notions and fundamental results in the literature. A triple (X, d,�) is
called a partially ordered metric space if the pair (X,�) is a partially ordered set endowed with
a metric d on X . A partially ordered metric space (X, d,�) is called ordered complete, if for
each convergent sequence {xn}∞n=0 ⊂ X , the following condition holds: either

• if {xn} is a non-increasing sequence in X such that xn → x∗ implies
x∗ � xn ∀n ∈ N, or

• if {xn} is a non-decreasing sequence in X such that xn → x∗ implies
xn � x∗ ∀n ∈ N.

Recall that if (X,�) is partially ordered set and F : X → X is a mapping such that for
x, y ∈ X , x � y implies F (x) � F (y) then F is said to be nondecreasing.

Definition 1.1. (See [9]) Let (X,�) be an ordered set and F : X × X → X be a mapping.
Then F is said to has the mixed monotone property if F is monotone non-decreasing in its first
argument and is monotone non-increasing in its second argument, that is, for any x, y ∈ X ,

x1, x2 ∈ X,x1 � x2 ⇒ F (x1, y) � F (x2, y) for all y ∈ X,
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and
y1, y2 ∈ X, y1 � y2 ⇒ F (y2, x) � F (y1, x) for all x ∈ X. (1.1)

Definition 1.2. (See [9]) An element (x, y) ∈ X is called a coupled fixed point of the mapping
F : X ×X → X if,

F (x, y) = x, F (y, x) = y.

Definition 1.3. (See [12]) Let (X,�) be an ordered set, F : X ×X → X and g : X → X . The
mapping F is said to have mixed g-monotone property if F (x, y) is monotone g-nondecreasing
in x and is monotone g-nonincreasing in y; that is, for any x, y ∈ X ,

x1, x2 ∈ X, gx1 � gx2 ⇒ F (x1, y) � F (x2, y) for all y ∈ X,

and
y1, y2 ∈ X, gy1 � gy2 ⇒ F (y2, x) � F (y1, x) for all x ∈ X.

Definition 1.4. (See [12]) An element (x, y) ∈ X is called a coupled fixed point of the mapping
F : X ×X → X if,

F (x, y) = gx, F (y, x) = gy.

Definition 1.5. (See [12]) LetX be a non empty set. Then we say that the mappings F : X×X →
X and g : X → X are commutative if

gF (x, y) = F (gx, gy).

For the sake of consistency, throughout the paper, we follow the notations of Ćirić, V. Lak-
shmikantham [12]: Let (Ω,Σ) be a measurable space, where Σ is a sigma algebra of subsets of
Ω. Let (X, d) be a metric space. A mapping T : Ω → X is called σ-measurable if for any open
subset U of X , the set T−1(U) = {ω : T (ω) ∈ U} ∈ Σ. Notice that when we say that a set A is
"measurable" we mean thatA is σ-measurable. A mapping T : Ω→ X is called a random opera-
tor if T (·, x) is measurable for any x ∈ X . A measurable mapping ζ : Ω→ X is called a random
fixed of T : Ω → X if ζ(ω) = T (ω, ζ(ω)) for all ω ∈ Ω. A measurable mapping ζ : Ω → X
is called random coincidence of T : Ω → X and g : Ω → X if g(ω, ζ(ω)) = T (ω, ζ(ω)) for all
ω ∈ Ω.

Ćirić and Lakshmikantham [12] proved the following theorem:

Theorem 1.6. Let (X,�) be a partially ordered set, (X, d) be a complete separable metric space,
and (Ω,Σ) be a measurable space. Let F : Ω× (X×X)→ X and g : Ω×X → X be mappings
such that there is a non negative real number k with

d(F (ω, (x, y)), F (ω, (u, v))) ≤ k

2
[d(g(ω, x), g(ω, u)) + d(g(ω, y), g(ω, v))] (1.2)

for all x, y, u, v ∈ X with g(ω, x) � g(ω, u) and g(ω, v) � g(ω, y) for all ω ∈ Ω. Assume that F
and g satisfy the following conditions:

(i) F (ω, ·) and g(ω, ·) are continuous for all ω ∈ Ω,

(ii) F (·, v), g(.·, x) are measurable for all v ∈ X ×X and x ∈ X , respectively,

(iii) F (ω ×X) ⊆ X for each ω ∈ Ω

(iv) g is continuous and commutes with F and also suppose either

(a) F is continuous or

(b) X is ordered complete

If there exist measurable mappings η0, θ0 ∈ X such that g(ω, η0(ω) � F (ω, (η0, θ0)) and
F (ω, (η0(ω), θ0(ω))) � g(ω, θ0(ω)), then there are measurable mappings η, θ : Ω → X such
that g(ω, η(ω)) = F (ω, (η(ω), θ(ω))) and F (ω, (η(ω), θ(ω))) = g(ω, θ(ω)), for all ω ∈ Ω, that
is, F and g have a random coupled coincidence.

The aim of this paper is to prove some random coupled fixed point theorems for mixed g-
monotone operator in the context of ordered metric spaces involving following functions.
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2 Main Result

In this section, we study random version of a random coupled fixed point theorem for a pair of
random mappings F : Ω× (X ×X)→ X and g : Ω×X → X under the set of conditions.

Let (X,�) be a partially ordered set and d a metric onX such that (X, d) is a complete metric
space. Furthermore, we consider the product space X ×X with the following partial order:

if (x, y), (u, v) ∈ X ×X, (x, y) �2 (u, v)⇐⇒ x � u and y ≥ v.

Let ∆ denote the class of those functions β : [0,∞) → [0,∞) which satisfy the following
condition

β(tn)→ 1 implies tn = 0.

Now we present our main result which is given as follows.

Theorem 2.1. Let (X,�) be a partially ordered set, (X, d) be a complete separable metric space,
and (Ω,Σ) be a measurable space. Let F : Ω× (X×X)→ X and g : Ω×X → X be mappings
such that,

d(F (ω, (x, y)), F (ω, (u, v))) ≤ β(Mω(x, y, u, v, ))Mω(x, y, u, v) (2.1)

where
Mω(x, y, u, v) = max{d(g(ω, x), g(ω, u)), d(g(ω, y), g(ω, v))}

for all x, y, u, v ∈ X and β ∈ ∆ with g(ω, x) � g(ω, u) and g(ω, v) � g(ω, y) for all ω ∈ Ω.
Assume that F and g satisfy the following conditions:

(i) F (ω, ·), g(ω, ·) are continuous for all ω ∈ Ω,

(ii) F (·, v), g(.·, x) are measurable for all v ∈ X ×X and x ∈ X , respectively,

(iii) F (ω ×X) ⊆ X for each ω ∈ Ω

(iv) g is continuous and commutes with F and also suppose either

(a) F is continuous or

(b) X is ordered complete

If there exist measurable mappings η0, θ0 ∈ X such that g(ω, η0(ω)) � F (ω, (η0(ω), θ0(ω))) and
F (ω, (η0(ω), θ0(ω))) � g(ω, θ0(ω)), then there are measurable mappings η, θ : Ω → X such
that g(ω, η(ω)) = F (ω, (η(ω), θ(ω))) and F (ω, (η(ω), θ(ω))) = g(ω, θ(ω)), for all ω ∈ Ω, that
is, F and g have a random coupled coincidence.

Proof. Let Θ = {η : Ω → X} be a family of measurable mappings. We define a function
h : Ω×X → R+ as follows,

h(ω, x) = d(x, g(ω, x)).

Since x → g(ω, x) is continuous for all ω ∈ Ω, we find that h(ω, ·) is continuous for all
ω ∈ Ω. Also, due to the fact that ω → g(ω, x) is measurable for x ∈ X , we derive that h(·, x) is
measurable for all ω ∈ Ω (in [38], pp. 868]). Hence, h(·, x) is a Caratheodory function. Thus, if
η : Ω→ X is measurable, then ω → h(ω, η(ω)) is also measurable. Further, for each θ ∈ Θ the
function η : Ω→ X defined by η(ω) = g(ω, θ(ω)) is measurable; that is, η ∈ Θ.

We shall construct two sequences of measurable mappings {ζn} and {ηn} in Θ and two
sequences g(ω, ζn(ω))) and g(ω, ηn(ω))) in X as follows: Let ζ0, η0 ∈ Θ be such that

g(ω, ζ0(ω)) � F (ω, (ζ0(ω), η0(ω))) and g(ω, η0(ω)) ≥ F (ω, (η0(ω), ζ0(ω)))

for all ω ∈ Ω.
Since F (ω, (ζ0(ω), η0(ω))) ∈ X = g(ω × X), (by a sort of Filippov’s measurable implicit

function theorem (see [5, 16, 17, 24])), there is ζ1 ∈ Θ such that

g(ω, ζ1(ω)) = F (ω, (ζ0(ω), η0(ω))).

Similarly, as F (ω, (η0(ω), ζ0(ω))) ∈ X = g(ω ×X), there is η1 ∈ Θ such that

g(ω, η1(ω)) = F (ω, (η0(ω), ζ0(ω))).

Thus F (ω, (ζ0(ω), η0(ω))) and F (ω, (η0(ω), ζ0(ω))) are well defined. Since

F (ω, (η1(ω), ζ1(ω))), F (ω, (ζ1(ω), η1(ω))) ∈ g(ω ×X) (2.2)
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there are η2, ζ2 ∈ Θ such that

g(ω, ζ2(ω)) = F (ω, (ζ1(ω), η1(ω))) and g(ω, η2(ω)) = F (ω, (η1(ω), ζ1(ω))).

Continuing this process we can construct sequences {ζn(ω)} and {ηn(ω)} in X such that

g(ω, ζn+1(ω)) = F (ω, (ζn(ω), ηn(ω))) and g(ω, ηn+1(ω)) = F (ω, (ηn(ω), ζn(ω)))

for all n ∈ N ∪ {0}.

In order to cover the proof more comprehensively we will divide it in several steps.
Step 1. First we will show that,

g(ω, ζn(ω)) � g(ω, ζn+1(ω)), and,

g(ω, ηn(ω)) ≥ g(ω, ηn+1(ω)),
(2.3)

for all n ∈ N ∪ {0}.
For this purpose we use mathematical induction. Let n = 0. By the assumption we have

g(ω, ζ0(ω)) � F (ω, (ζ0(ω), η0(ω))) and g(ω, η0(ω)) ≥ F (ω, (η0(ω), ζ0(ω))).

Since

g(ω, ζ1(ω)) = F (ω, (ζ0(ω), η0(ω))) and g(ω, η1(ω)) = F (ω, (η0(ω), ζ0(ω))),

we have
g(ω, ζ0(ω)) � g(ω, ζ1(ω)) and g(ω, η0(ω)) ≥ g(ω, η1(ω)).

Therefore (2.3) holds for n = 0. Suppose (2.3) holds for some fixed n ≥ 0. Then, since

g(ω, ζn(ω)) � g(ω, ζn+1(ω)) and g(ω, ηn(ω)) ≥ g(ω, ηn+1(ω))

and F is monotone g-nonincreasing in its first argument, we have

F (ω, (ζn(ω), ηn(ω))) � F (ω, (ζn+1(ω), ηn(ω))) (2.4)

and
F (ω, (ηn+1(ω), ζn(ω))) � F (ω, (ηn(ω), ζn(ω))). (2.5)

Also, since

g(ω, ζn(ω)) � g(ω, ζn+1(ω)) and g(ω, ηn(ω)) ≥ g(ω, ηn+1(ω))

and F is monotone g-nondecreasing in its second argument, we have

F (ω, (ζn+1(ω), ηn+1(ω))) ≥ F (ω, (ζn+1(ω), ηn(ω))) (2.6)

and
F (ω, (ηn+1(ω), ζn(ω))) ≥ F (ω, (ηn+1(ω), ζn+1(ω))). (2.7)

Thus, from (2.4) - (2.7), we get

g(ω, ζn+1(ω)) � g(ω, ζn+2(ω)) and g(ω, ηn+1(ω)) ≥ g(ω, ηn+2(ω)).

Thus by mathematical induction we conclude that (2.3) holds for all n ∈ N ∪ {0}.
Step 2. In this step we prove

lim
n→∞

d(g(ω, ζn(ω)), g(ω, ζn+1(ω))) = 0

and
lim

n→∞
d(g(ω, ηn(ω)), g(ω, ηn+1(ω))) = 0.

For this, let n ∈ N ∪ {0}. Then by (2.1) - (2.3), we have

d(g(ω, ζn(ω)), g(ω, ζn+1(ω))) = d(F (ω, (ζn−1(ω), ηn−1(ω))), F (ω, (ζn(ω), ηn(ω))))

≤ β(t1)t1 ≤ t1
(2.8)
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where
t1 =Mω(ζn−1(ω), ζn(ω), ηn−1(ω), ηn(ω))

and

d(g(ω, ηn+1(ω)), g(ω, ηn(ω))) = d(F (ω, (ηn(ω), ζn(ω))), F (ω, (ζn−1(ω), ζn−1(ω))))

≤ β(t2)t2 ≤ t2
(2.9)

where
t2 =Mω(ηn−1(ω), ηn(ω), ζn−1(ω), ζn(ω)).

By the use of two inequalities above, we have

Mω(ζn+1(ω), ζn(ω), ηn+1(ω), ηn(ω) ≤Mω(ηn(ω), ηn−1(ω), ζn(ω), ζn−1(ω))

and the sequence {Mω(ζn+1(ω), ζn(ω), ηn+1(ω), ηn(ω))} is nonnegative nonincreasing. This
implies that there exists r ≥ 0 such that

lim
n→∞

Mω(ζn+1(ω), ζn(ω), ηn+1(ω), ηn(ω)) = r (2.10)

We shall show that r = 0. Suppose, to the contrary, that r > 0. Taking (2.8) and (2.9) into
account, we get

Mω(ζn+1(ω), ζn(ω), ηn+1(ω), ηn(ω))

Mω(ζn(ω), ζn−1(ω), ηn(ω), ηn−1(ω))
≤ β(Mω(ζn(ω), ζn−1(ω), ηn(ω), ηn−1(ω))). (2.11)

Letting n→∞ in the last inequality and by (2.10), we get

lim
n→∞

β(Mω(ζn(ω), ζn−1(ω), ηn(ω), ηn−1(ω))) = 1

and since β ∈ ∆ this implies r = 0 and, consequently,

lim
n→∞

Mω(ζn(ω), ζn−1(ω), ηn(ω), ηn−1(ω)) = 0,

which shows our claim.
Step 3. In this step we prove {ζn} and {ηn} are Cauchy sequences. On the contrary, assume

that at least one of the sequences {ζn} or {ηn} is not a Cauchy sequence. This implies that

lim
n→∞

d(g(ω, ζm(ω)), g(ω, ζn(ω)))→ 0,

and
lim

n→∞
d(g(ω, ηm(ω)), g(ω, ηn(ω)))→ 0.

Consequently,
lim

n,m→∞
Mω(ζn(ω), ζm(ω), ηn(ω), ηm(ω))→ 0.

This means that there exist ε > 0 for which we can find subsequences {ζn(k)}, {ηn(k)} ,
{ζm(k)} and {ηm(k)} with n(k) > m(k) > k such that

lim
n,m→∞

Mω(ζn(k)(ω), ζm(k)(ω), ηn(k)(ω), ηm(k)(ω)) ≥ ε. (2.12)

Furthermore, corresponding to m(k) we can choose n(k) in such way that it is the smallest
integer with n(k) > m(k) satisfying (2.12).
Then

Mω(ζn(k)(ω), ζn(k)−1(ω), ηn(k)(ω), ηm(k)−1(ω)) < ε. (2.13)

Since g(ω, ζn(k)−1(ω)) ≥ g(ω, ζm(k)−1(ω)) and g(ω, ηn(k)−1(ω)) � g(ω, ηm(k)−1(ω)), using the
contractive condition we can obtain

Mω(ζn(k)(ω), ζm(k)(ω), ηn(k)(ω), ηm(k)(ω))

Mω(ζn(k)−1(ω), ζm(k)−1(ω), ηn(k)−1(ω), ηm(k)−1(ω))

≤ β(Mω(ζn(k)−1(ω), ζm(k)−1(ω), ηn(k)−1(ω), (ηm(k)−1(ω))).

(2.14)
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On the other hand, the triangle inequality and (2.13) give us

d(g(ω, ζm(k)(ω)), g(ω, ζn(k)(ω))) ≤ d(g(ω, ζm(k)(ω)), g(ω, ζn(k)−1(ω)))

+d(g(ω, ζm(k)−1(ω)), g(ω, ζm(k)(ω)))

< d(g(ω, ζn(k)(ω)), g(ω, ζn(k)−1(ω))) + ε

(2.15)

and

d(g(ω, ηm(k)(ω)), g(ω, ηn(k)(ω))) ≤ d(g(ω, ηm(k)(ω)), g(ω, ηn(k)−1(ω)))

+d(g(ω, ηm(k)−1(ω)), g(ω, ηm(k)(ω)))

< d(g(ω, ηn(k)(ω)), g(ω, ηn(k)−1(ω))) + ε.

(2.16)

From (2.12), (2.15) and (2.16) we get

ε ≤Mω(ζn(k)(ω), ζm(k)(ω), ηn(k)(ω), ηm(k)(ω))

≤Mω(ζn(k)(ω), ζn(k)−1(ω), ηn(k)(ω), ηn(k)−1(ω)) + ε.
(2.17)

Letting k →∞ in the last inequality and taking Step 2 into the account we have

lim
k→∞

(Mω(ζn(k)(ω), ζm(k)(ω), ηn(k)(ω), g(ω, (ηm(k)(ω)) = ε. (2.18)

Again, the triangle inequality and (2.13) give us

d(g(ω, ζn(k)−1(ω)), g(ω, ζm(k)−1(ω))) ≤ d(g(ω, ζn(k)−1(ω)), g(ω, ζm(k)(ω)))

+d(g(ω, ζm(k)(ω)), g(ω, ζm(k)−1(ω)))

< d(g(ω, ζm(k)(ω)), g(ω, ζm(k)−1(ω))) + ε

(2.19)

and

d(g(ω, ηn(k)−1(ω)), g(ω, ηm(k)−1(ω))) ≤ d(g(ω, ηn(k)−1(ω)), g(ω, ηm(k)(ω)))

+d(g(ω, ηm(k)(ω)), g(ω, ηm(k)−1(ω)))

< d(g(ω, ηm(k)(ω)), g(ω, ηm(k)−1(ω))) + ε

(2.20)

and by the last inequality and (2.12) we get

ε ≤Mω(ζn(k)(ω), ζm(k)(ω), ηn(k)(ω), ηm(k)(ω))

≤Mω(ζn(k)(ω), ζn(k)−1(ω), ηn(k)(ω), ηn(k)−1(ω))

+Mω(ζn(k)−1(ω), ζm(k)−1(ω), ηn(k)−1(ω), ηm(k)−1(ω))

+Mω(ζm(k)−1(ω), ζm(k)(ω), ηm(k)−1(ω), ηm(k)(ω)).

(2.21)

Letting k →∞ in the last inequality and using Step 2 we obtain

lim
k→∞

Mω(ζn(k)−1(ω), ζm(k)−1(ω), ηn(k)−1(ω), g(ω, (ηm(k)−1(ω)) = ε. (2.22)

Finally, letting k →∞ in (2.14) and using (2.18) and (2.22) we get

ε ≤ β(Mω(ζn(k)−1(ω), ζm(k)−1(ω)), ηn(k)−1(ω), ηm(k)−1(ω)))ε

or
ε ≤ β(ε)ε.

We obtain
lim

n,m→∞
β(Mω(ζn(k)(ω), ζm(k)(ω), ηn(k)(ω), ηm(k)(ω))) = 1.

But since β ∈ ∆, we get

lim
n,m→∞

Mω(ζn(k)(ω), ζm(k)(ω), ηn(k)(ω), ηm(k)(ω)) = 0.

This is a contradiction. Then our claim follows. Since X is complete and g(ω ×X) = X , there
exist ζ0, η0 ∈ Θ such that

lim
n→∞

g(ω, ζn(ω)) = g(ω, ζ0(ω))

and
lim

n→∞
g(ω, ηn(ω)) = g(ω, η0(ω)).



354 Animesh Gupta and Erdal Karapınar

Define ζ, η : Ω→ X by ζ(ω) = g(ω, ζ0(ω)) and η(ω) = g(ω, η0(ω)). Since ζ(ω) = g(ω, ζ0(ω))
and ζ(ω) = g(ω, η0(ω)) are measurable, the functions ζ(ω) and η(ω) are also measurable. Thus,
we have

lim
n→∞

g(ω, ζn(ω)) = ζ(ω) (2.23)

and
lim

n→∞
g(ω, ηn(ω)) = η(ω). (2.24)

From (2.21) and (2.22) and the continuity of g, we have

lim
n→∞

g(ω, g(ω, ζn(ω))) = g(ω, ζ(ω))

and
lim

n→∞
g(ω, g(ω, ηn(ω))) = g(ω, η(ω)).

By using the fact that F and g are commutative, from (2.2) we have

F (ω, (g(ω, ζn(ω)), g(ω, ηn(ω))) = g(ω, F (ω, ζn(ω), ηn(ω))) = g(ω, g(ω, ζn+1(ω)))

and

F (ω, (g(ω, ηn(ω)), g(ω, ζn(ω))) = g(ω, F (ω, ηn(ω), ζn(ω))) = g(ω, g(ω, ηn+1(ω))).

Suppose F is continuous. Then

g(ω, ζ(ω)) = lim
n→∞

g(ω, g(ω, ζn+1(ω)))

= lim
n→∞

F (ω, (g(ω, ζn(ω)), g(ω, ηn(ω)))

= F (ω, ( lim
n→∞

g(ω, ζn(ω)), lim
n→∞

g(ω, ηn(ω)))

= F (ω, (ζ(ω), η(ω)))

(2.25)

and
g(ω, η(ω)) = lim

n→∞
g(ω, g(ω, ηn+1(ω)))

= lim
n→∞

F (ω, (g(ω, ηn(ω)), g(ω, ζn(ω)))

= F (ω, ( lim
n→∞

g(ω, ηn(ω)), lim
n→∞

g(ω, ζn(ω)))

= F (ω, (η(ω), ζ(ω))).

(2.26)

From the inequalities above, we deduce that (ζ(ω), η(ω)) ∈ X ×X is a coupled coincidence
of F and g.

Suppose that (b) holds. From (2.3), the sequence (g(ω, ζn(ω)) is non-decreasing and the se-
quence (g(ω, ηn(ω)) is non-increasing. Since X satisfies (b), we have (g(ω, ζn(ω)) � (g(ω, ζ(ω))
and (g(ω, ηn(ω)) � (g(ω, η(ω)). Thus from (2.1) and as n→∞, we conclude that

d(g(ω, ζ(ω)), F (ω, (ζ(ω), η(ω)))) = 0.

Hence

g(ω, ζ(ω)) = F (ω, (ζ(ω), η(ω))).

Similarly we can show that

g(ω, η(ω)) = F (ω, (η(ω), ζ(ω))).

Thus we prove that (ζ(ω), η(ω)) ∈ X ×X is a random coupled fixed point of F and g.

Example 2.2. Let X = R with the usual ordering and usual metric. Let Ω = [0, 1] and let
σ be the sigma algebra of Lebesgue?s measurable subset of [0, 1]. Define g : Ω × X → X
,F : Ω×X ×X → X and β : [0,∞)→ [0,∞) as follows.

g(ω, x) =
3
4
(
1− ω2)x,

and
F (ω, x, y) =

1
8
(
1− ω2) (x− y),
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ω ∈ Ω, and β(t) = (2/3)t for all t ∈ [0,∞). We will check that the contraction 2.1 is
satisfied for all x, y, u, v ∈ X satisfying g(ω, x) ≤ g(ω, y), g(ω, y) ≥ g(ω, v), for all ω ∈ Ω.
Then from 2.1 we have,

d(ω, (x, y)), F (ω, (u, v)))

= d

(
1
8
(
1− ω2) (x− y), 1

8
(
1− ω2) (u− v))

=
1
8
(
1− ω2) [(x− y)− (u− v)]

=
1
8
(
1− ω2) [(x− u) + (y − v)]

≤ 2
3
[max{d(g(ω, x), g(ω, u)), d(g(ω, y), g(ω, v))}]max{d(g(ω, x), g(ω, u)), d(g(ω, y), g(ω, v))}

that is, contraction 2.1 is satisfied. It is obvious that the other hypotheses of Theorem-2.1 are
satisfied. We deduce that (0,0) is the unique couple common random fixed point of F and g.

Example 2.3. Let X = R with the usual ordering and usual metric. Let Ω = [0, 1] and let
σ be the sigma algebra of Lebesgue’s measurable subset of [0, 1]. Define g : Ω × X → X
,F : Ω×X ×X → X and β : [0,∞)→ [0,∞) as follows.

g(ω, x) =
n+ 1
n

(
1− ω2)x,

and
F (ω, x, y) =

1
4
(
1− ω2)x

ω ∈ Ω, and β(t) = n
n+1 t for all t ∈ [0,∞). We will check that the contraction 2.1 is satisfied

for all x, y, u, v ∈ X satisfying g(ω, x) ≤ g(ω, y), g(ω, y) ≥ g(ω, v), for all ω ∈ Ω. Then from
2.1 we have,

d(ω, (x, y)), F (ω, (u, v)))

= d

(
1
4
(
1− ω2)x, 1

4
(
1− ω2)u)

=
(1− ω2)

4
(
1− ω2) (x− y)

≤ n

n+ 1
[max{d(g(ω, x), g(ω, u)), d(g(ω, y), g(ω, v))}]max{d(g(ω, x), g(ω, u)), d(g(ω, y), g(ω, v))}

that is, contraction 2.1 is satisfied. It is obvious that the other hypotheses of Theorem-2.1 are
satisfied. We deduce that (0,0) is the unique couple common random fixed point of F and g.

Example 2.4. Let X = R be ordered by the following relation

x ≤ y ⇐⇒ x = y or (x, y ∈ [0, 1] and x ≤ y).

Let g : Ω×X → X and F : Ω×X ×X → X be defined by

g(ω, x) =


1

20(1− ω)x if x < 0
1
2(1− ω)(x) if x ∈ [0, 1] and F (ω, x, y) = x+y

20 (1− ω)
1
20(1− ω)x+

9
20 if x > 1,

Take β(t) = 1
10 t. Then we found that all the conditions of Theorem 2.1 and Theorem 2.1 are

satisfied. Obviously, the mappings g and F have a unique common coupled fixed point (0, 0).

Example 2.5. Let X = [0, 1], with the usual partial ordered ≤. Let g : Ω × X → X and
F : Ω×X ×X → X be defined by

F (x, y) =
x+ y

24
(1− ω2) g(x) = x

3 (1− ω
2) (2.27)

Take β(t) = t
8 . Then we found that all the conditions of Theorem 2.1 and Theorem 2.1 are

satisfied. Obviously, the mappings g and F have a unique common coupled fixed point (0, 0).
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Example 2.6. Let X = [0, 1], with the usual partial ordered ≤. Let g : Ω × X → X and
F : Ω×X ×X → X be defined by

F (x, y) =
1
20

[sinx+ sin y](1− ω2) g(x) = x(1−ω2)
5 (2.28)

for all x, y ∈ X . Since (1− ω2) | sinx− sin y |≤ (1− ω2) | x− y | holds for all x, y ∈ X . Then
we have β = t

4 . So all the conditions of Theorem 2.1 and Theorem 2.1 are satisfied. Then there
exists a common coupled fixed point of F and g. In this case (0, 0) is a common coupled fixed
point of F and g.

In what follows, we give a sufficient condition for the uniqueness of coupled fixed point in
Theorem 2.1. This condition is, if

(ζ(ω), η(ω)), (ζ1(ω), η1(ω)) ∈ X ×X

then there exists
(ζ∗(ω), η∗(ω)) ∈ X ×X (2.29)

which is comparable to (ζ(ω), η(ω)) and (ζ1(ω), η1(ω)).

Notice that in X ×X we consider the partial order relation given by

(ζ(ω), η(ω)) � (ζ1(ω), η1(ω))⇔ ζ(ω) � ζ1(ω) and η(ω) � η1(ω).

Theorem 2.7. Adding the above condition to the hypothesis of Theorem 2.1, we obtain unique-
ness of random coupled fixed point of F and g.

Proof. Suppose that (ζ(ω), η(ω)) and (ζ1(ω), η1(ω)) are random coupled fixed points of F and
g, that is,

ζ(ω) = g(ω, ζ(ω)) = F (ω, (ζ(ω), η(ω))),

η(ω) = g(ω, η(ω)) = F (ω, (η(ω), ζ(ω))),

ζ1(ω) = g(ω, ζ1(ω)) = F (ω, (ζ1(ω), η1(ω)))

and
η1(ω) = g(ω, η1(ω)) = F (ω, (η1(ω), ζ1(ω))).

Let (ζ∗(ω), η∗(ω)) ∈ X×X be an element comparable to (ζ(ω) and η(ω)) and (ζ1(ω), η1(ω)).
Suppose that

(ζ(ω), η(ω)) � (ζ∗(ω), η∗(ω))

(the proof is similar in other cases).

We construct the sequences {ζ∗n(ω)} and {η∗n(ω)} in X defined by

g(ω, ζ∗n+1(ω)) = F (ω, (ζ∗n(ω), η
∗
n(ω))) and g(ω, η∗n+1(ω)) = F (ω, (η∗n(ω), ζ

∗
n(ω))).

We claim that

(ζ(ω), η(ω)) � (ζ∗n(ω), η
∗
n(ω)) for each n ∈ N.

In fact, we will use the mathematical induction. For n = 0 as

(ζ(ω), η(ω)) � (ζ∗n(ω), η
∗
n(ω)) for each n ∈ N

this means
ζ∗(ω) � ζ(ω) and η∗(ω) � η(ω)

and consequently,
(ζ(ω), η(ω)) � (ζ∗0 (ω), η

∗
0 (ω))
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Suppose that
(ζ(ω), η(ω)) � (ζ∗n(ω), η

∗
n(ω))

then using mixed g-monotone property of F and g, we get

ζ∗n+1(ω) = F (ζ∗n(ω), η
∗
n(ω)) � F (ζ(ω), η∗n(ω)) � F (ζ(ω), η(ω)) = ζ(ω)

and

η∗n+1(ω) = F (η∗n(ω), ζ
∗
n(ω)) � F (η(ω), ζ∗n(ω)) � F (η(ω), ζ(ω)) = η(ω)

and this proves our claim.
Now, since ζ∗n(ω) � ζ(ω) and η∗n(ω) � η(ω), using the contractive condition we have

d(g(ω, ζ(ω), g(ω, ζ∗n(ω)) = d(F (ζ(ω, η(ω)), F (ζ∗n(ω, η
∗
n(ω)))

≤Mω(ζ(ω), ζ∗n−1(ω), η(ω), η
∗
n−1(ω))

(2.30)

and analogously

d(g(ω, η(ω), g(ω, η∗n(ω)) = d(F (η(ω, ζ(ω)), F (η∗n(ω, ζ
∗
n(ω)))

≤Mω(η(ω), η∗n−1(ω), ζ(ω), ζ
∗
n−1(ω))

(2.31)

From (2.30) and (2.31), we obtain

Mω(ζ(ω), ζ∗n(ω), η(ω), η
∗
n(ω))

≤Mω(ζ(ω), ζ∗n−1(ω), η(ω), η
∗
n−1(ω))

(2.32)

The sequence {Mω(ζ(ω), ζ∗n(ω), η(ω), η
∗
n(ω))} is decreasing and non negative, and so,

lim
n→∞

Mω(ζ(ω), ζ
∗
n(ω), η(ω), η

∗
n(ω)) = r (2.33)

for certain r ≥ 0.

Now we show that r = 0. Assume on the contrary that r > 0,
Using (2.33) and letting n→∞ in (2.32) we have

r ≤ β(r)r.

Consequently lim
n→∞

β(r) = 1, since β ∈ ∆, then

lim
n→∞

Mω(ζ(ω), g(ω, ζ
∗
n(ω), η(ω), η

∗
n(ω)) = 0. (2.34)

This is a contradiction. Therefore, r = 0. This gives us ζ∗n(ω)→ ζ(ω) and η∗n(ω)→ η(ω) using
a similar argument for (ζ1(ω), η1(ω)) we obtain ζ∗n(ω) → ζ1(ω) and η∗n(ω) → η1(ω), and the
uniqueness of the limit gives ζ(ω) = ζ1(ω) and η(ω) = η1(ω). This finishes the proof.
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[12] Lj.B. Ćirić, V. Lakshmikantham, Coupled random fixed point theorems for nonlinear contractions in par-
tially ordered metric spaces, Stochastic Analysis Appl. 27 (2009), 1246–1259.

[13] B. S. Choudhury, N. Metiya, A. Kundu, Coupled coincidence point theorems in ordered metric spaces,
Ann. Univ. Ferrara., 57 (2011) 1ÂŰ16.
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