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Abstract. We prove that the sum of n powers of b is divisible by (bn − 1)/(b − 1) if and
only if the n exponents are all distinct modulo n. If b = 10, this result is already known, and we
present an alternate proof with this generalization.

1 Introduction

The generalized repunit Rn(b) was introduced by Snyder [1] and is given by

Rn(b) =
bn − 1
b− 1

,

where n ≥ 1 and b ≥ 2, both integers. The name repunit refers to the fact that Rn(b) is repre-
sented by a string of n ones when the base-b number system is considered. In particular, when
b = 10, the number Rn = Rn(10) is called the n-th repunit.

This article is a short note on a criterion involving multiples of Rn(b) which has been given
recently for the case b = 10 as part of a construction of Smith numbers [2, Theorem 2.3]. We
state the result as follows.

Theorem 1.1. Let m = be1+be2+· · ·+ben with non-negative integers e1, e2, . . . , en, not assumed
distinct. Then m is divisible by Rn(b) if and only if the set {e1, e2, . . . , en} is a complete residue
system modulo n.

For example with n = 2, we have that b+ 1 divides be1 + be2 if and only if e1 + e2 is an odd
number. This special case is obvious if we observe that

be1 + be2 ≡ (−1)e1 + (−1)e2 (mod b+ 1),

which is congruent to zero if and only if e1 and e2 are of opposite parity.

2 Proof

Let m = be1 + be2 + · · ·+ ben . By the definition of Rn(b), the following congruence holds:

bn ≡ 1 (mod Rn(b)), (2.1)

which then implies the congruence

bek ≡ bek mod n (mod Rn(b)). (2.2)

Hence, if {e1, e2, . . . , en} is a complete residue system modulo n, then

m =
n∑

k=1

bek ≡ b0 + b1 + b2 + · · ·+ bn−1 = Rn(b) ≡ 0 (mod Rn(b)).

This establishes the sufficiency in the theorem.
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To prove necessity, we will now assume without loss of generality, in view of Congruence
(2.2), that ek ≤ n − 1 for all k in the range 1 ≤ k ≤ n. Furthermore, let us agree that by the
notation (a1, a2, . . . , an) we mean the quantity given by

(a1, a2, . . . , an) = a1 + a2b+ · · ·+ anb
n−1.

So by collecting identical terms among the n powers be1 , be2 , . . . , ben , we will be able to write
m = (a1, a2, . . . , an) with non-negative integers a1, a2, . . . , an, where each ak is determined by
the number of exponents among e1, e2, . . . , en, which are equal to k − 1. Note that a1 + a2 +
· · ·+ an = n.

Because of Congruence (2.1), we now have

(a1, a2, . . . , an) ≡ b(a2, a3, . . . , an, a1)

≡ b2(a3, a4, . . . , an, a1, a2)

≡ . . .

≡ bn−1(an, a1, a2, . . . , an−1) (mod Rn(b)).

This chain of congruences, together with the fact that gcd(Rn(b), b) = 1, implies that the number
Rn(b) divides (a1, a2, . . . , an) if and only if Rn(b) also divides each one of the quantities

(a2, a3, . . . , an, a1), (a3, a4, . . . , an, a1, a2), . . . , (an, a1, a2, . . . , an−1).

However, we observe that since a1 + a2 + · · ·+ an = n,

(a1, a2, . . . , an) + (a2, a3, . . . , an, a1) + · · ·+ (an, a1, a2, . . . , an−1) = nRn(b).

And the only way we can have n positive multiples of Rn(b) that add up to nRn(b) is when each
multiple actually equals Rn(b). In particular, we cannot have ak ≥ 2 for any of k = 1, 2, . . . , n;
otherwise we would have a contradiction:

Rn(b) = (a(k mod n)+1, . . . , an, a1, . . . , ak) ≥ 2bn−1 > Rn(b).

So we must have a1, a2, . . . an ≤ 1, and to have their sum equals n, we conclude that a1 = a2 =
· · · = an = 1.

Thus we have proved that the number m is a multiple of Rn(b) if and only if {e1, e2, . . . , en} =
{0, 1, 2, . . . n − 1}. That is, if we omit the assumption that ek ≤ n − 1, then we have in general
that Rn(b) divides m if and only if {e1, e2, . . . , en} is a complete residue system modulo n.

3 Remarks

(i) Congruence (2.2) gives a divisibility test by Rn(b) for any number m, where we are allowed
to replace m by the sum of successive digital strings of length n truncated from m, when
written in base b. For example, consider the decimal number 9959585640719, which is
supposedly a multiple of R4(10). We may state that m = 9, 9595, 8564, 0719 is divisible
by 1111 if and only if the sum

9 + 9595 + 8564 + 0719 = 18887

is also divisible by 1111. In turn, 18887 is divisible by 1111 if and only if 1+8887 = 8888
is too. At this point it is clear that 8888 is a multiple of 1111, so we conclude that m is in
fact divisible by R4.

(ii) Another fact concerning multiples of Rn(b) which is already known states that if Rn(b)
divides a positive number m, then at least n of the base-b digits in m must be non-zero.
Theorem 1.1 supplements this result by dealing with numbers m which are composed of n
ones as the only non-zero digits. However, the theorem does not generalize to any number
m having exactly n non-zero digits. For example, in base 10 the number m = 3060805 is a
multiple of R4, since 306+0805 = 1111. Nevertheless, note that m has exactly 4 non-zero
digits and that

3060805 = 3 · 106 + 6 · 104 + 8 · 102 + 5 · 100,

where the four exponents 6, 4, 2, 0, do not form a complete residue system modulo 4.
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