A criterion on multiples of generalized repunits

Amin Witno
Communicated by Ayman Badawi

MSC 2010 Classifications: 11A07, 11A63.
Keywords and phrases: generalized repunits.

Abstract. We prove that the sum of n powers of b is divisible by $\left(b^{n}-1\right) /(b-1)$ if and only if the n exponents are all distinct modulo n. If $b=10$, this result is already known, and we present an alternate proof with this generalization.

1 Introduction

The generalized repunit $R_{n}(b)$ was introduced by Snyder [1] and is given by

$$
R_{n}(b)=\frac{b^{n}-1}{b-1}
$$

where $n \geq 1$ and $b \geq 2$, both integers. The name repunit refers to the fact that $R_{n}(b)$ is represented by a string of n ones when the base- b number system is considered. In particular, when $b=10$, the number $R_{n}=R_{n}(10)$ is called the n-th repunit.

This article is a short note on a criterion involving multiples of $R_{n}(b)$ which has been given recently for the case $b=10$ as part of a construction of Smith numbers [2, Theorem 2.3]. We state the result as follows.

Theorem 1.1. Let $m=b^{e_{1}}+b^{e_{2}}+\cdots+b^{e_{n}}$ with non-negative integers $e_{1}, e_{2}, \ldots, e_{n}$, not assumed distinct. Then m is divisible by $R_{n}(b)$ if and only if the set $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ is a complete residue system modulo n.

For example with $n=2$, we have that $b+1$ divides $b^{e_{1}}+b^{e_{2}}$ if and only if $e_{1}+e_{2}$ is an odd number. This special case is obvious if we observe that

$$
b^{e_{1}}+b^{e_{2}} \equiv(-1)^{e_{1}}+(-1)^{e_{2}} \quad(\bmod b+1)
$$

which is congruent to zero if and only if e_{1} and e_{2} are of opposite parity.

2 Proof

Let $m=b^{e_{1}}+b^{e_{2}}+\cdots+b^{e_{n}}$. By the definition of $R_{n}(b)$, the following congruence holds:

$$
\begin{equation*}
b^{n} \equiv 1 \quad\left(\bmod R_{n}(b)\right), \tag{2.1}
\end{equation*}
$$

which then implies the congruence

$$
\begin{equation*}
b^{e_{k}} \equiv b^{e_{k} \bmod n} \quad\left(\bmod R_{n}(b)\right) \tag{2.2}
\end{equation*}
$$

Hence, if $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ is a complete residue system modulo n, then

$$
m=\sum_{k=1}^{n} b^{e_{k}} \equiv b^{0}+b^{1}+b^{2}+\cdots+b^{n-1}=R_{n}(b) \equiv 0 \quad\left(\bmod R_{n}(b)\right)
$$

This establishes the sufficiency in the theorem.

To prove necessity, we will now assume without loss of generality, in view of Congruence (2.2), that $e_{k} \leq n-1$ for all k in the range $1 \leq k \leq n$. Furthermore, let us agree that by the notation $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ we mean the quantity given by

$$
\left(a_{1}, a_{2}, \ldots, a_{n}\right)=a_{1}+a_{2} b+\cdots+a_{n} b^{n-1}
$$

So by collecting identical terms among the n powers $b^{e_{1}}, b^{e_{2}}, \ldots, b^{e_{n}}$, we will be able to write $m=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ with non-negative integers $a_{1}, a_{2}, \ldots, a_{n}$, where each a_{k} is determined by the number of exponents among $e_{1}, e_{2}, \ldots, e_{n}$, which are equal to $k-1$. Note that $a_{1}+a_{2}+$ $\cdots+a_{n}=n$.

Because of Congruence (2.1), we now have

$$
\begin{aligned}
\left(a_{1}, a_{2}, \ldots, a_{n}\right) & \equiv b\left(a_{2}, a_{3}, \ldots, a_{n}, a_{1}\right) \\
& \equiv b^{2}\left(a_{3}, a_{4}, \ldots, a_{n}, a_{1}, a_{2}\right) \\
& \equiv \ldots \\
& \equiv b^{n-1}\left(a_{n}, a_{1}, a_{2}, \ldots, a_{n-1}\right) \quad\left(\bmod R_{n}(b)\right) .
\end{aligned}
$$

This chain of congruences, together with the fact that $\operatorname{gcd}\left(R_{n}(b), b\right)=1$, implies that the number $R_{n}(b)$ divides $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ if and only if $R_{n}(b)$ also divides each one of the quantities

$$
\left(a_{2}, a_{3}, \ldots, a_{n}, a_{1}\right),\left(a_{3}, a_{4}, \ldots, a_{n}, a_{1}, a_{2}\right), \ldots,\left(a_{n}, a_{1}, a_{2}, \ldots, a_{n-1}\right)
$$

However, we observe that since $a_{1}+a_{2}+\cdots+a_{n}=n$,

$$
\left(a_{1}, a_{2}, \ldots, a_{n}\right)+\left(a_{2}, a_{3}, \ldots, a_{n}, a_{1}\right)+\cdots+\left(a_{n}, a_{1}, a_{2}, \ldots, a_{n-1}\right)=n R_{n}(b)
$$

And the only way we can have n positive multiples of $R_{n}(b)$ that add up to $n R_{n}(b)$ is when each multiple actually equals $R_{n}(b)$. In particular, we cannot have $a_{k} \geq 2$ for any of $k=1,2, \ldots, n$; otherwise we would have a contradiction:

$$
R_{n}(b)=\left(a_{(k \bmod n)+1}, \ldots, a_{n}, a_{1}, \ldots, a_{k}\right) \geq 2 b^{n-1}>R_{n}(b)
$$

So we must have $a_{1}, a_{2}, \ldots a_{n} \leq 1$, and to have their sum equals n, we conclude that $a_{1}=a_{2}=$ $\cdots=a_{n}=1$.

Thus we have proved that the number m is a multiple of $R_{n}(b)$ if and only if $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}=$ $\{0,1,2, \ldots n-1\}$. That is, if we omit the assumption that $e_{k} \leq n-1$, then we have in general that $R_{n}(b)$ divides m if and only if $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ is a complete residue system modulo n.

3 Remarks

(i) Congruence (2.2) gives a divisibility test by $R_{n}(b)$ for any number m, where we are allowed to replace m by the sum of successive digital strings of length n truncated from m, when written in base b. For example, consider the decimal number 9959585640719, which is supposedly a multiple of $R_{4}(10)$. We may state that $m=9,9595,8564,0719$ is divisible by 1111 if and only if the sum

$$
9+9595+8564+0719=18887
$$

is also divisible by 1111. In turn, 18887 is divisible by 1111 if and only if $1+8887=8888$ is too. At this point it is clear that 8888 is a multiple of 1111 , so we conclude that m is in fact divisible by R_{4}.
(ii) Another fact concerning multiples of $R_{n}(b)$ which is already known states that if $R_{n}(b)$ divides a positive number m, then at least n of the base- b digits in m must be non-zero. Theorem 1.1 supplements this result by dealing with numbers m which are composed of n ones as the only non-zero digits. However, the theorem does not generalize to any number m having exactly n non-zero digits. For example, in base 10 the number $m=3060805$ is a multiple of R_{4}, since $306+0805=1111$. Nevertheless, note that m has exactly 4 non-zero digits and that

$$
3060805=3 \cdot 10^{6}+6 \cdot 10^{4}+8 \cdot 10^{2}+5 \cdot 10^{0}
$$

where the four exponents $6,4,2,0$, do not form a complete residue system modulo 4 .

References

[1] W. M. Snyder, Factoring repunits, Amer. Math. Monthly 89 (1982), 462-466.
[2] A. Witno, Multiples of repunits as sum of powers of ten, Arab J. Math. Sci. 20 (2014), 246-249.

Author information

Amin Witno, Department of Basic Sciences and Mathematics, Philadelphia University, Jordan 19392, Jordan. E-mail: awitno@gmail.com

Received: June 7, 2015
Accepted: October 18, 2015

