Vol. 5(Special Issue: 1) (2016), 159-161

A criterion on multiples of generalized repunits

Amin Witno

Communicated by Ayman Badawi

MSC 2010 Classifications: 11A07, 11A63.

Keywords and phrases: generalized repunits.

Abstract. We prove that the sum of n powers of b is divisible by $(b^n - 1)/(b - 1)$ if and only if the n exponents are all distinct modulo n. If b = 10, this result is already known, and we present an alternate proof with this generalization.

1 Introduction

The generalized repunit $R_n(b)$ was introduced by Snyder [1] and is given by

$$R_n(b) = \frac{b^n - 1}{b - 1},$$

where $n \ge 1$ and $b \ge 2$, both integers. The name repunit refers to the fact that $R_n(b)$ is represented by a string of n ones when the base-b number system is considered. In particular, when b = 10, the number $R_n = R_n(10)$ is called the n-th repunit.

This article is a short note on a criterion involving multiples of $R_n(b)$ which has been given recently for the case b = 10 as part of a construction of Smith numbers [2, Theorem 2.3]. We state the result as follows.

Theorem 1.1. Let $m = b^{e_1} + b^{e_2} + \dots + b^{e_n}$ with non-negative integers e_1, e_2, \dots, e_n , not assumed distinct. Then m is divisible by $R_n(b)$ if and only if the set $\{e_1, e_2, \dots, e_n\}$ is a complete residue system modulo n.

For example with n = 2, we have that b + 1 divides $b^{e_1} + b^{e_2}$ if and only if $e_1 + e_2$ is an odd number. This special case is obvious if we observe that

$$b^{e_1} + b^{e_2} \equiv (-1)^{e_1} + (-1)^{e_2} \pmod{b+1},$$

which is congruent to zero if and only if e_1 and e_2 are of opposite parity.

2 Proof

Let $m = b^{e_1} + b^{e_2} + \cdots + b^{e_n}$. By the definition of $R_n(b)$, the following congruence holds:

$$b^n \equiv 1 \pmod{R_n(b)},\tag{2.1}$$

which then implies the congruence

$$b^{e_k} \equiv b^{e_k \mod n} \pmod{R_n(b)}.$$
(2.2)

Hence, if $\{e_1, e_2, \ldots, e_n\}$ is a complete residue system modulo n, then

$$m = \sum_{k=1}^{n} b^{e_k} \equiv b^0 + b^1 + b^2 + \dots + b^{n-1} = R_n(b) \equiv 0 \pmod{R_n(b)}$$

This establishes the sufficiency in the theorem.

To prove necessity, we will now assume without loss of generality, in view of Congruence (2.2), that $e_k \leq n - 1$ for all k in the range $1 \leq k \leq n$. Furthermore, let us agree that by the notation (a_1, a_2, \ldots, a_n) we mean the quantity given by

$$(a_1, a_2, \dots, a_n) = a_1 + a_2 b + \dots + a_n b^{n-1}.$$

So by collecting identical terms among the *n* powers $b^{e_1}, b^{e_2}, \ldots, b^{e_n}$, we will be able to write $m = (a_1, a_2, \ldots, a_n)$ with non-negative integers a_1, a_2, \ldots, a_n , where each a_k is determined by the number of exponents among e_1, e_2, \ldots, e_n , which are equal to k - 1. Note that $a_1 + a_2 + \cdots + a_n = n$.

Because of Congruence (2.1), we now have

$$(a_1, a_2, \dots, a_n) \equiv b(a_2, a_3, \dots, a_n, a_1)$$

 $\equiv b^2(a_3, a_4, \dots, a_n, a_1, a_2)$
 $\equiv \dots$
 $\equiv b^{n-1}(a_n, a_1, a_2, \dots, a_{n-1}) \pmod{R_n(b)}.$

This chain of congruences, together with the fact that $gcd(R_n(b), b) = 1$, implies that the number $R_n(b)$ divides (a_1, a_2, \ldots, a_n) if and only if $R_n(b)$ also divides each one of the quantities

$$(a_2, a_3, \ldots, a_n, a_1), (a_3, a_4, \ldots, a_n, a_1, a_2), \ldots, (a_n, a_1, a_2, \ldots, a_{n-1}).$$

However, we observe that since $a_1 + a_2 + \cdots + a_n = n$,

$$(a_1, a_2, \dots, a_n) + (a_2, a_3, \dots, a_n, a_1) + \dots + (a_n, a_1, a_2, \dots, a_{n-1}) = nR_n(b).$$

And the only way we can have n positive multiples of $R_n(b)$ that add up to $nR_n(b)$ is when each multiple actually equals $R_n(b)$. In particular, we cannot have $a_k \ge 2$ for any of k = 1, 2, ..., n; otherwise we would have a contradiction:

$$R_n(b) = (a_{(k \mod n)+1}, \dots, a_n, a_1, \dots, a_k) \ge 2b^{n-1} > R_n(b).$$

So we must have $a_1, a_2, \ldots, a_n \le 1$, and to have their sum equals n, we conclude that $a_1 = a_2 = \cdots = a_n = 1$.

Thus we have proved that the number m is a multiple of $R_n(b)$ if and only if $\{e_1, e_2, \ldots, e_n\} = \{0, 1, 2, \ldots, n-1\}$. That is, if we omit the assumption that $e_k \le n-1$, then we have in general that $R_n(b)$ divides m if and only if $\{e_1, e_2, \ldots, e_n\}$ is a complete residue system modulo n.

3 Remarks

(i) Congruence (2.2) gives a divisibility test by $R_n(b)$ for any number m, where we are allowed to replace m by the sum of successive digital strings of length n truncated from m, when written in base b. For example, consider the decimal number 9959585640719, which is supposedly a multiple of $R_4(10)$. We may state that m = 9,9595,8564,0719 is divisible by 1111 if and only if the sum

$$9 + 9595 + 8564 + 0719 = 18887$$

is also divisible by 1111. In turn, 18887 is divisible by 1111 if and only if 1+8887=8888 is too. At this point it is clear that 8888 is a multiple of 1111, so we conclude that *m* is in fact divisible by R_4 .

(ii) Another fact concerning multiples of $R_n(b)$ which is already known states that if $R_n(b)$ divides a positive number m, then at least n of the base-b digits in m must be non-zero. Theorem 1.1 supplements this result by dealing with numbers m which are composed of n ones as the only non-zero digits. However, the theorem does not generalize to any number m having exactly n non-zero digits. For example, in base 10 the number m = 3060805 is a multiple of R_4 , since 306 + 0805 = 1111. Nevertheless, note that m has exactly 4 non-zero digits and that

 $3060805 = 3 \cdot 10^6 + 6 \cdot 10^4 + 8 \cdot 10^2 + 5 \cdot 10^0,$

where the four exponents 6, 4, 2, 0, do not form a complete residue system modulo 4.

References

- [1] W. M. Snyder, Factoring repunits, Amer. Math. Monthly 89 (1982), 462-466.
- [2] A. Witno, Multiples of repunits as sum of powers of ten, Arab J. Math. Sci. 20 (2014), 246–249.

Author information

Amin Witno, Department of Basic Sciences and Mathematics, Philadelphia University, Jordan 19392, Jordan. E-mail: awitno@gmail.com

Received: June 7, 2015.

Accepted: October 18, 2015