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Abstract Necessary and sufficient conditions for a GADL to become an ADL are obtained
interms of congruence relations and proved that every associative GADL is an ADL.

1 Introduction

The concept of a Generalized Almost Distributive Lattice(GADL) was introduced by Rao, Ravi
Kumar and Rafi[3] as a generalization of an Almost Distributive Lattice(ADL)[6]. The class of
GADLs inherit almost all the properties of a distributive lattice except possibly the commutativ-
ity of ∧,∨, the right distributivity of either of the operations ∨ or ∧ over the other. The class
of GADLs include the class of ADLs properly and retain many important properties of ADLs.
In section 3, we give equivalent conditions for a GADL to become an ADL in terms of ideals,
filters and congruences. Finally we proved that every associative GADL is an ADL.

2 Preliminaries

First, we recall certain definitions and properties of ADLs and GADLs from [3, 5] and [6] that
are required in the paper.

Definition 2.1. An Almost Distributive Lattice (ADL) is an algebra (L,∨,∧) of type (2, 2)
satisfying
1) (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z)
2) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
3) (x ∨ y) ∧ y = y

4) (x ∨ y) ∧ x = x

5) x ∨ (x ∧ y) = x

If there is an element 0 ∈ L such that 0 ∧ a = 0 for all a ∈ L, then (L,∨,∧, 0) is called an
ADL with 0.

Definition 2.2. Let X be a non-empty set. Fix some element x0 ∈ X. Then, for any x, y ∈ X
define ∨ and ∧ on X by,

x ∨ y =

{
x, if x 6= x0

y, if x = x0.
x ∧ y =

{
y, if x 6= x0

x0, if x = x0.

Then (X,∨,∧, x0) is an ADL, with x0 as its zero element. This ADL is called a Discrete ADL.

Definition 2.3. An algebra (L,∨,∧) of type (2, 2) is called a Generalized Almost Distributive
Lattice if it satisfies the following axioms:
( As ∧) (x ∧ y) ∧ z = x ∧ (y ∧ z)
( LD ∧) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
( LD ∨) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)
( A1) x ∧ (x ∨ y) = x
( A2) (x ∨ y) ∧ x = x
( A3) (x ∧ y) ∨ y = y.
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Example 2.4. Let L = {a, b, c}. Define two binary operations ∨ and ∧ on L as follows:

∨ a b c
a a b a
b b b b
c c c c

∧ a b c
a a a c
b a b c
c a a c

Hence the algebra (L,∨,∧) is a Generalized Almost Distributive Lattice.

Example 2.5. Let L = {a, b, c}. Define two binary operations ∨ and ∧ on L as follows:

∨ a b c
a a a a
b a b b
c c c c

∧ a b c
a a b c
b b b c
c b b c

Hence the algebra (L,∨,∧) is a Generalized Almost Distributive Lattice.

For brevity, we will refer to this Generalized Almost Distributive Lattice as GADL. The
GADL (L,∨,∧) in example 2.4 is not an ADL for (c ∨ b) ∧ b 6= b.
Let (L,∨,∧) be a GADL. For any a, b ∈ L define a ≤ b if and only if a ∧ b = a or, equivalently,
a∨b = b. Then≤ is a partial ordering on L. In this section, L stands for a GADL unless otherwise
mentioned.

Lemma 2.6. For any a, b ∈ L, we have the following:
(1) a ∨ a = a
(2) a ∧ a = a
(3) a ∨ (a ∧ b) = a
(4) a ∨ (b ∧ a) = a
(5) a ∧ b = b⇒ a ∨ b = a
(6) a ∨ b = b⇔ a ∧ b = a
(7) a ∨ (a ∨ b) = a ∨ b
(8) b ∧ (a ∧ b) = a ∧ b
(9) a ∧ (b ∧ a) = b ∧ a.
(10) a ≤ c, b ≤ c if and only if a ∧ b = b ∧ a and a ∨ b = b ∨ a.

Regarding the remaining absorption laws we have the following theorem:

Theorem 2.7. For any a, b ∈ L, the following are equivalent:
(1) (a ∧ b) ∨ a = a
(2) a ∧ (b ∨ a) = a
(3) (b ∧ a) ∨ b = b
(4) b ∧ (a ∨ b) = b
(5) a ∧ b = b ∧ a
(6) a ∨ b = b ∨ a.

The following lemma is very useful in the GADL.

Lemma 2.8. For any a, b, c ∈ L, a ∧ b ∧ c = b ∧ a ∧ c.

In the following, we give the equivalent conditions for a GADL to become an ADL.

Theorem 2.9. Let (L,∨,∧) be a GADL. Then the following are equivalent:
(1) L is an Almost Distributive Lattice
(2) (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c) for all a, b, c ∈ L.
(3) (a ∨ b) ∧ b = b for all a, b ∈ L.
(4) (a ∨ b) ∧ c = (b ∨ a) ∧ c for all a, b, c ∈ L.

Definition 2.10. Let (L,∨,∧) be a GADL. An element 0 ∈ L is called a zero element of L if
(01) 0 ∧ a = 0 for all a ∈ L.

We always denote the zero element of L, if it exists, by ‘0’. If L has 0, then the algebra
(L,∨,∧, 0) is called a GADL with 0. Now we have the following
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Lemma 2.11. Let (L,∨,∧, 0) be a GADL with 0. Then, for any a ∈ L, the following hold:
(02) a ∨ 0 = a

(03) 0 ∨ a = a

(04) a ∧ 0 = 0.

Definition 2.12. A GADL (L,∨,∧) is said to be associative if the operation ∨ inL is associative.

Proposition 2.13. For any m ∈ L, the following are equivalent:
(1)m is maximal
(2)m ∨ x = m for all x ∈ L.

Definition 2.14. Let (L,∨,∧) be a GADL. An element e ∈ L is said to be left identity element
in L if e ∧ x = x for all x ∈ L.

Note that every left identity element is maximal element but converse need not be true. In
Example 2.4, we observe that c is maximal but not left identity element.

3 On Ideals and Congruences

In this section, we give necessary and sufficient conditions for a GADL L to become an ADL
interms of ideals and congruence relations on L.

Definition 3.1. [4] A non-empty subset I of L is said to be an ideal of L, if it satisfies the
following:

(i) a, b ∈ I ⇒ a ∨ b ∈ I
(ii) a ∈ I, x ∈ L⇒ a ∧ x ∈ I.

Lemma 3.2. If I is an ideal of L, then x ∧ a ∈ I for any a ∈ I and x ∈ L.

Proof. Let I be an ideal of L, a ∈ I and x ∈ L. Then x ∧ a = x ∧ a ∧ a = a ∧ (x ∧ a) ∈ I.

Therefore, in this case, any right ideal in the usual sense is a left ideal too and hence a two
sided ideal in the usual sense. However, a left ideal may not be a right ideal; for, consider the
following

Example 3.3. Let D be a discrete ADL. For any x 6= 0, the set {0, x} is a left ideal but not a
right ideal of D.

Definition 3.4. A non-empty subset F of L is said to be anR−filter (L−filter) of L, if it satisfies
the following:

(i) a, b ∈ F ⇒ a ∧ b ∈ F
(ii) a ∈ F, x ∈ L⇒ a ∨ x ∈ F (x ∨ a ∈ F ).

A non-empty subset F of L is said to be a filter of L if it is both L−filter and R−filter. It
can be easily seen that, if L is an associative GADL then every L−filter is an R−filter but an
R−filter need not be an L− filter. For consider the following example.

Example 3.5. LetD be a discrete ADL. For any x 6= 0, the set {x} isR−filter but not an L−filter
of D.

Theorem 3.6. Let L be a GADL and a ∈ L. Define S = {a∧ x | x ∈ L}. Then S is the smallest
ideal of L containing a.

This smallest ideal S of L containing a is denoted by (a]. Note that {x ∧ a | x ∈ L} is not
an ideal of L. Similarly, we can prove that [a) = {a ∨ x | x ∈ L} is the smallest R−filter of
L containing a. But {x ∨ a | x ∈ L} need not be an L−filter of L. For, from example 2.4, we
observe that {x ∨ b | x ∈ L} = {b, c} is not an L−filter.
Note that if L is a GADL with 0 then the intersection of any family of ideals of L is again an
ideal of L.Also the set of all ideals of L forms a complete lattice under the ordering set inclusion.
Now we discuss some important properties of the principal ideals (R−filters) of L.

Lemma 3.7. Let L be a GADL and a, b ∈ L. Then
(i) a ∈ (b] if and only if b ∧ a = a.
(ii) a ∈ [b) if and only if b ∨ a = a.
(iii) a ≤ b⇒ (a] ⊆ (b]
(iv) a ∈ (b]⇒ (a] ⊆ (b]
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Proof. (i) Suppose a ∈ (b]. Then a = b∧x for some x ∈ L. Now, b∧ a = b∧ b∧x = b∧x = a.
Therefore b ∧ a = a. Conversely assume that b ∧ a = a. Then a ∈ (b]. Therefore a ∈ (b] if and
only if b ∧ a = a.
Similarly, we can prove (ii).
(iii) Let a ≤ b and x ≤ (a]. Then b∧ a = a and a∧ x = x. Now, b∧ x = b∧ a∧ x = a∧ x = x.
Therefore x ∈ (b]. Hence (a] ⊆ (b].
(iv) Let a ∈ (b] and x ∈ (a]. Then b∧ a = a and a∧x = x. Now, b∧x = b∧ a∧x = a∧x = x.
Therefore x ∈ (b]. Hence (a] ⊆ (b].

Lemma 3.8. Let L be a GADL and a, b ∈ L. Then (a] ∩ (b] = (a ∧ b].

But regarding R−filters, we donot get that [a) ∧ [b) = [a ∨ b). For, in example 2.4, [a) =
{a, b}, [c) = {c} and [a) ∩ [c) 6= [a ∨ c).

Theorem 3.9. Let L be a GADL and I be an ideal of L. Then, for any a, b ∈ L, the following
hold:
(i) a ∧ b ∈ I if and only if b ∧ a ∈ I
(ii) (a ∧ b] = (b ∧ a]
(iii) if a ∈ I and x ∈ L such that x ≤ a then x ∈ I.

If L is an ADL and a, b ∈ L, then (a] ∨ (b] = (a ∨ b]. But if this condition holds in a GADL
then the GADL becomes an ADL. We prove this in the following:

Theorem 3.10. Let L be a GADL with 0. Then the following are equivalent:

(i) L is an Almost Distributive Lattice

(ii) For any a, b ∈ L, (a ∨ b] is the supremum of (a] and (b] in (I(L),⊆), where I(L) is the set
of all ideals of L

(iii) (a ∨ b] = (b ∨ a] for all a, b ∈ L.

Proof. (1)⇒ (2) : Assume (1). Let a, b ∈ L. Then
a ≤ a ∨ b⇒ (a] ⊆ (a ∨ b] and b ≤ b ∨ a⇒ (b] ⊆ (b ∨ a] = (a ∨ b] since L is an ADL. Therefore
(a ∨ b] is an upperbound of (a] and (b].
Let J be any ideal of L such that (a] ⊆ J and (b] ⊆ J.
Clearly a ∈ J and b ∈ J . Therefore a ∨ b ∈ J and hence (a ∨ b] ⊆ J.
Thus (a ∨ b] is the supremum of (a] and (b] in (I(L),⊆).
(2)⇒ (3) : Assume (2). Then (a ∨ b] and (b ∨ a] both are supremums of (a] and (b] in the poset
(I(L),⊆). Therefore (a ∨ b] = (b ∨ a].
(3) ⇒ (1) : Assume (3). Let a, b ∈ L. Since (b ∨ a) ∧ b = b, we have b ∈ (b ∨ a] = (a ∨ b].
Therefore (a ∨ b) ∧ b = b and hence, by Theorem 2.9, L is an Almost Distributive Lattice.

Theorem 3.11. Let F be an R−filter of a GADL L. Then the relation
ϕF = {(x, y) ∈ L× L | a ∧ x = a ∧ y, for some a ∈ F} is a congruence relation on L.

Proof. Clearly ϕF is an equivalence relation on L. Let (x, y), (u, v) ∈ ϕF . Then a ∧ x = a ∧ y
and b ∧ u = b ∧ v for some a, b ∈ F. Now a, b ∈ F implies that a ∧ b ∈ F and a ∧ b ∧ x ∧ u =
a ∧ x ∧ b ∧ u = a ∧ y ∧ b ∧ v = a ∧ b ∧ y ∧ v. Therefore (x ∧ u, y ∧ v) ∈ ϕF . Also

a ∧ b ∧ (x ∨ u) = a ∧ b ∧ (x ∨ u)
= (a ∧ b ∧ x) ∨ (a ∧ b ∧ u)
= (b ∧ a ∧ x) ∨ (a ∧ b ∧ u)
= (b ∧ a ∧ y) ∨ (a ∧ b ∧ v)
= (a ∧ b ∧ y) ∨ (a ∧ b ∧ v)
= (a ∧ b) ∧ (y ∨ v)

Therefore (x ∨ u, y ∨ v) ∈ ϕF and hence ϕF is a congruence relation on L.

Lemma 3.12. Let L be a GADL. Then for any a ∈ L. ϕ[a) = ϕa.

Proof. Clearly ϕa ⊆ ϕ[a). Let (x, y) ∈ ϕ[a). Then t ∧ x = t ∧ y for some t ∈ [a). Then a ∨ t = t
and hence a ∧ t = a. Now a ∧ x = a ∧ t ∧ x = a ∧ t ∧ y = a ∧ y. Therefore (x, y) ∈ ϕa. Thus
ϕ[a) ⊆ ϕa. Hence ϕa = ϕ[a).
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In general, for any a ∈ L, ψa = {(x, y) ∈ L × L | x ∧ a = y ∧ a} is an equivalence
relation but not a congruence relation on L. For, in example 2.4, ψb = ∆L ∪ {(a, c)(c, a)} is not
a congruence relation on L because (a ∨ b, c ∨ b) = (b, c) /∈ ψb. Also, for any R−filter F of L,
ψF = {(x, y) ∈ L × L | x ∧ a = y ∧ a for some a ∈ F} is an equivalence relation on L and
F × F ⊆ ψF . ψF is also not a congruence relation on L.

Lemma 3.13. Let L be a GADL. Then for any a ∈ L,
ψa = {(x, y) ∈ L× L | x ∧ a = y ∧ a} = ψ[a)

Proof. Clearly ψa ⊆ ψ[a). Let (x, y) ∈ ψ[a). Then x ∧ t = y ∧ t for some t ∈ [a). Now t ∈ [a)
implies that a ∨ t = t and hence a ∧ t = a. Also,
x ∧ a = x ∧ a ∧ t = a ∧ x ∧ t = a ∧ y ∧ t = y ∧ a ∧ t = y ∧ a. Therefore (x, y) ∈ ψa.
Thus ψ[a) ⊆ ψa. Hence ψa = ψ[a).

Theorem 3.14. [4] Let L be an associative GADL with 0. Then for any ideal I of L, the relation
θI = {(x, y) ∈ L× L | a ∨ x = a ∨ y for some a ∈ I} is the smallest congruence relation on L
containing I × I.

Theorem 3.15. Let L be an associative GADL. Then for any a ∈ L,
θa = {(x, y) ∈ L× L | a ∨ x = a ∨ y} = θ(a].

Proof. Clearly θa ⊆ θ(a].
Let (x, y) ∈ θ(a]. Then b ∨ x = b ∨ y for some b ∈ (a].
Then b = a ∧ c, for some c ∈ L. Now,
a ∨ x = [a ∨ (a ∧ c)] ∨ x

= a ∨ [(a ∧ c) ∨ x]
= a ∨ [(a ∧ c) ∨ y] ( since (a ∧ c) ∨ x = (a ∧ c) ∨ y)
= [a ∨ (a ∧ c)] ∨ y
= a ∨ y

Therefore (x, y) ∈ θa. Hence θ(a] = θa.

Lemma 3.16. For any a ∈ L, ϕa := {(x, y) ∈ L× L | a ∧ x = a ∧ y} is a congruence relation
on L. Further, ϕa = ∆L if and only if a is a left identity element of L and ϕa = L×L if and only
if a = 0.

Proof. Clearly ϕa is an equivalence relation on L. Let (u, v) ∈ ϕa and (c, d) ∈ ϕa. Then
a ∧ u = a ∧ v and a ∧ c = a ∧ d. Now a ∧ (u ∧ c) = (a ∧ u) ∧ c = (a ∧ v) ∧ c = a ∧ v ∧ c =
v ∧ a ∧ c = v ∧ a ∧ d = a ∧ v ∧ d = a ∧ (v ∧ d). Therefore (u ∧ c, v ∧ d) ∈ ϕa. Also,
a∧ (u∨ c) = (a∧ u)∨ (a∧ c) = (a∧ v)∨ (a∧ d) = a∧ (v ∨ d). Therefore (u∨ c, v ∨ d) ∈ ϕa.
Hence ϕa is a congruence relation on L. Suppose ϕa = ∆L. Let x ∈ L. Then a∧ (a∧x) = a∧x.
So that (a ∧ x, x) ∈ ϕa = ∆L and hence a ∧ x = x. Thus a is left identity element. Conversely
suppose a is left identity element and (x, y) ∈ ϕa. Then a ∧ x = a ∧ y; i.e., x = y. Hence
ϕa = ∆L. Also if ϕa = L× L, then (a, 0) ∈ ϕa and hence a = 0 and the converse is trivial.

Theorem 3.17. Let L be a GADL and a, b ∈ L. Then the following hold:
(1). ϕa∧b = ϕa ∨ ϕb = ϕb ◦ ϕa ◦ ϕb = ϕa ◦ ϕb ◦ ϕa

(2). ϕa∨b ⊆ ϕa.

Proof. Let (x, y) ∈ ϕa. Then a ∧ x = a ∧ y. Now
(a ∧ b) ∧ x = (b ∧ a) ∧ x = b ∧ a ∧ y = a ∧ b ∧ y.

Therefore (x, y) ∈ ϕa∧b. Hence ϕa ⊆ ϕa∨b. Clearly ϕb ⊆ ϕa∧b. Therefore ϕa ∨ ϕb = ϕa∧b.
Also

(x, y) ∈ ϕa∧b ⇒ a ∧ b ∧ x = a ∧ b ∧ y
⇒ (x, b ∧ x) ∈ ϕb, (b ∧ x, b ∧ y) ∈ ϕa, (b ∧ y, y) ∈ ϕb

⇒ (x, y) ∈ ϕb ◦ ϕa ◦ ϕb

Hence ϕa∧b ⊆ ϕb ◦ ϕa ◦ ϕb. Also clearly ϕb ◦ ϕa ◦ ϕb ⊆ ϕa ∨ ϕb.
Therefore ϕa ∨ϕb ⊆ ϕa∧b ⊆ ϕb ◦ϕa ◦ϕb ⊆ ϕa ∨ϕb and hence ϕa∧b = ϕa ∨ϕb = ϕb ◦ϕa ◦ϕb.
(2) Let (x, y) ∧ ϕa∨b. Then (a ∨ b) ∧ x = (a ∨ b) ∧ y. Now

a ∧ x = (a ∨ b) ∧ a ∧ x
= a ∧ (a ∨ b) ∧ x
= a ∧ (a ∨ b) ∧ y
= a ∧ y

Therefore (x, y) ∈ ϕa and hence ϕa∨b ⊆ ϕa.
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Note that, in general, ϕa∨b may not be contained in ϕb. For, in Example 2.5, we observe that
ϕc∨a = ϕc = ∆ ∪ {(a, b), (b, a)} and ϕa = ∆.

Theorem 3.18. Let L be a GADL. Then L is an Almost Distributive Lattice if and only if ϕa∨b ⊆
ϕb for all a, b ∈ L.

Proof. Suppose L is an Almost Distributive Lattice. Let a, b ∈ L and (x, y) ∈ ϕa∨b. Then
(a ∨ b) ∧ x = (a ∨ b) ∧ y. Now,
b ∧ x = (a ∨ b) ∧ b ∧ x = b ∧ (a ∨ b) ∧ x = b ∧ (a ∨ b) ∧ y = (a ∨ b) ∧ b ∧ y = b ∧ y.
Therefore (x, y) ∈ ϕb and hence ϕa∨b ⊆ ϕb.
Conversely, assume that ϕa∨b ⊆ ϕb for all a, b ∈ L. Let a, b ∈ L. Then ((a ∨ b) ∧ b, b) ∈ ϕa∨b

and hence ((a ∨ b) ∧ b, b) ∈ ϕb. Therefore b ∧ (a ∨ b) ∧ b = b ∧ b. Thus (a ∨ b) ∧ b = b. Hence,
by Theorem 2.9, L is an Almost Distributive Lattice.

The following result can be easily verified

Lemma 3.19. For any a ∈ L, θa = {(x, y) ∈ L× L | a ∨ x = a ∨ y} is an equivalence relation
on L.

In general, θa is not a congruence relation on L. For, in Example 2.4, θa = ∆L∪{(a, c), (c, a)}
is not a congruence relation on L because (a ∨ b, c ∨ b) /∈ θa. But, if ∨ is associative in L, then
θa is a congruence relation on L. In fact, we prove the following

Theorem 3.20. Let L be any GADL. Then θa is a congruence on L if and only if ∨ is associative.
Further, θa = ∆L if and only if a is the zero(least) element of L.

In the following theorem we characterize a subdirectly irreducible associative GADL.

Theorem 3.21. Let L be an associative GADL. Then L is subdirectly irreducible if and only if
every nonzero element of L is left identity and L contains atmost two nonzero elements.

The following can be obtained directly, using Birkhoff’s subdirect representation theorem[1]
and Theorem 3.21.

Theorem 3.22. The following are equivalent:
(1) L is associative
(2) θa is a congruence relation for all a ∈ L
(3) L is a subdirect product of GADLs in each of which there are atmost two

nonzero elements and every nonzero element is left identity element.

We conclude our paper with the following important result.

Corollary 3.23. Every associative GADL is an ADL.

Open Problem 1. Describe the nature of the supremum of the complete lattice (I(L),⊆) where
I(L) is the set of all ideals of a GADL L.
Open Problem 2. Describe the ideal generated by any nonempty subset S of a GADL L.
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