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Abstract The purpose of this paper is to establish some coupled fixed point theorems for
mappings having a strict mixed monotone property and satisfying a generalized contractive con-
dition of rational type in the framework of partially ordered metric spaces. Also, we present a
result on the existence and uniqueness of coupled fixed points. The results presented in the paper
generalize and extend several well-known results in the literature.

1 Introduction and Preliminaries

Fixed point theory is one of the famous and traditional theories in mathematics and has a large
number of applications. The Banach contraction mapping is one of the most important results
of analysis. It is a popular tool for solving existence problems in different fields of mathemat-
ics. There are a lot of generalizations of the Banach contraction principle in the literature. Ran
and Reurings [17] extended the Banach contraction principle in partially ordered sets with some
applications to linear and nonlinear matrix equations. While Nieto and Rodŕiguez-López [16]
extended the result of Ran and Reurings and applied their main theorems to obtain a unique so-
lution for a first order ordinary differential equation with periodic boundary conditions. Bhaskar
and Lakshmikantham [2] introduced the concept of mixed monotone mappings and obtained
some coupled fixed point results. Also, they applied their results on a first order differential
equation with periodic boundary conditions. Many researchers have obtained fixed point, com-
mon fixed point, coupled fixed point and coupled common fixed point results in cone metric
spaces, partially ordered metric spaces and others (see [1]-[18]).

The purpose of this paper is to establish some coupled fixed point results in partially ordered
metric spaces for a pair of mappings having strict mixed monotone property and satisfying a
generalized contractive condition of rational type. Also, we present a result on the existence and
uniqueness of coupled fixed points.

Definition 1.1. Let (X,≤) be a partially ordered set and F : X → X . The mapping F is said to
be strictly increasing if for x, y ∈ X , x < y implies F (x) < F (y) and strictly decreasing if for
x, y ∈ X , x < y implies F (x) > F (y).

Definition 1.2. Let (X,≤) be a partially ordered set and F : X × X → X . The mapping F is
said to have the strict mixed monotone property if F (x, y) is strictly increasing in x and strictly
decreasing in y, that is, for any x, y ∈ X ,

x1, x2 ∈ X,x1 < x2 ⇒ F (x1, y) < F (x2, y),

and
y1, y2 ∈ X, y1 < y2 ⇒ F (x, y1) > F (x, y2).

Definition 1.3. An element (x, y) ∈ X × X is called a coupled fixed point of the mapping
F : X ×X → X if F (x, y) = x, and F (y, x) = y.

2 Main Results

2.1 Coupled fixed point theorems

In this section, we prove some coupled fixed point theorems in the context of ordered metric
spaces.
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Theorem 2.1. Let (X,≤) be a partially ordered set and suppose that there exists a metric d
on X such that (X, d) is a complete metric space. Suppose that F : X × X → X is a self
mapping on X such that F has the strict mixed monotone property on X . Suppose that there
exists α, β, γ, δ ∈ [0, 1) with α+ β + 2γ + 2δ < 1 such that

d(F (x, y), F (u, v))

≤ α

(
d(x, F (x, y))d(u, F (u, v))

d(x, u)

)
+ β(d(x, u)) + γ[d(x, F (x, y)) + d(u, F (u, v))]

+δ[d(x, F (u, v)) + d(u, F (x, y))], (2.1)

for all x, y, u, v ∈ X with x ≥ u and y ≤ v.
Also suppose that either
a) F is continuous or
b) X has the following properties:
(i) if a sequence {xn} ⊂ X is a non-decreasing sequence with xn → x in X , then x =

sup{xn}, for every n;
(ii) if a sequence {yn} ⊂ X is a non-increasing sequence with yn → y in X , then y =

inf{yn}, for every n.
If there exists two elements x0, y0 ∈ X with x0 < F (x0, y0) and y0 > F (y0, x0), then there

exists x, y ∈ X such that F (x, y) = x and y = F (y, x), that is, F has a coupled fixed point
(x, y) ∈ X ×X .

Proof. Let x0, y0 ∈ X be such that x0 < F (x0, y0) and y0 > F (y0, x0). We can construct
sequences {xn} and {yn} in X such that

xn+1 = F (xn, yn) and yn+1 = F (yn, xn),∀n ≥ 0. (2.2)

We claim that for all n ≥ 0,
xn < xn+1, (2.3)

and
yn > yn+1. (2.4)

We shall use the mathematical induction. Let n = 0. Since x0 < F (x0, y0) and y0 > F (y0, x0),
in view of x1 = F (x0, y0) and y1 = F (y0, x0), we have x0 < x1 and y0 > y1, that is, (2.3) and
(2.4) hold for n = 0. Suppose that (2.3) and (2.4) hold for some n > 0. As F has the strict
mixed monotone property and xn < xn+1 and yn > yn+1, from (2.2), we get

xn+1 = F (xn, yn) < F (xn+1, yn) < F (xn+1, yn+1) = xn+2, (2.5)

and
yn+1 = F (yn, xn) > F (yn+1, xn) > F (yn+1, xn+1) = yn+2. (2.6)

Now from (2.5) and (2.6), we obtain that xn+1 < xn+2 and yn+1 > yn+2. Thus by the
mathematical induction, we conclude that (2.3) and (2.4) hold for all n ≥ 0. Therefore

x0 < x1 < x2 < . . . < xn < xn+1 < . . . , (2.7)

and
y0 > y1 > y2 > . . . > yn > yn+1 > . . . . (2.8)

Since xn > xn−1 and yn < yn−1, from (2.1) and (2.2), we have

d(xn+1, xn) = d(F (xn, yn), F (xn−1, yn−1))

≤ α

(
d(xn, F (xn, yn))d(xn−1, F (xn−1, yn−1))

d(xn, xn−1)

)
+ β(d(xn, xn−1)) +

γ[d(xn, F (xn, yn)) + d(xn−1, F (xn−1, yn−1))] +

δ[d(xn, F (xn−1, yn−1)) + d(xn−1, F (xn, yn))]

= α

(
d(xn, xn+1)d(xn−1, xn)

d(xn, xn−1)

)
+ β(d(xn, xn−1)) +

γ[d(xn, xn+1) + d(xn−1, xn)] + δ[d(xn, xn) + d(xn−1, xn+1)]

≤ α (d(xn, xn+1)) + β(d(xn, xn−1)) + γ[d(xn, xn+1) + d(xn−1, xn)] +

δ[d(xn, xn+1) + d(xn−1, xn)]

= [α+ γ + δ]d(xn, xn+1) + [β + γ + δ]d(xn, xn−1), (2.9)
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which implies that d(xn+1, xn) ≤ β+γ+δ
1−[α+γ+δ]d(xn, xn−1).

Similarly, we have d(yn+1, yn) ≤ β+γ+δ
1−[α+γ+δ]d(yn, yn−1).

Hence d(xn+1, xn) + d(yn+1, yn) ≤ β+γ+δ
1−[α+γ+δ](d(xn, xn−1) + d(yn, yn−1)). Set {%n :=

d(xn+1, xn) + d(yn+1, yn)} and k = β+γ+δ
1−[α+γ+δ] < 1, we have

0 ≤ %n ≤ k%n−1 ≤ k2%n−2 ≤ . . . ≤ kn%0

which implies that

lim
n→∞

%n = lim
n→∞

[d(xn+1, xn) + d(yn+1, yn)] = 0. (2.10)

Thus limn→∞ d(xn+1, xn) = 0 and limn→∞ d(yn+1, yn) = 0.
Now, we shall prove that {xn} and {yn} are Cauchy sequences. For each m ≥ n, we have

d(xm, xn) ≤ d(xm, xm−1) + d(xm−1, xm−2) + . . .+ d(xn+1, xn)

and

d(ym, yn) ≤ d(ym, ym−1) + d(ym−1, ym−2) + . . .+ d(yn+1, yn).

Therefore

d(xm, xn) + d(ym, yn) ≤ %m−1 + %m−2 + . . .+ %n

≤ (km−1 + km−2 + . . .+ kn)%0

≤ kn

1− k
%0

which implies that limm,n→∞[d(xm, xn)+d(ym, yn)] = 0. Therefore, {xn} and {yn} are Cauchy
sequences in a complete metric spaceX . Therefore, there exists (x, y) ∈ X×X such that xn → x
and yn → y.

First, suppose that F is continuous, we have

x = lim
n→∞

xn+1 = lim
n→∞

F (xn, yn) = F ( lim
n→∞

xn, lim
n→∞

yn) = F (x, y)

and
y = lim

n→∞
yn+1 = lim

n→∞
F (yn, xn) = F ( lim

n→∞
yn, lim

n→∞
xn) = F (y, x).

Therefore, x = F (x, y). Similarly, we can show that y = F (y, x). Therefore, x = F (x, y)
and y = F (y, x).

Second, suppose that (b) holds. Since {xn} is an increasing sequence in X such that xn → x,
then x = sup{xn}. Particularly, xn ≤ x for all n ∈ N. We claim that xn < x for all n. If it is not
the case, there is a n0 such that xn0 = x. So, x = xn0 < xn0+1 ≤ x which is impossible. Thus,
xn < x for all n. Now, F is a strict monotone increasing mapping for the first variable implies

F (xn, yn) < F (x, yn). (2.11)

Further, {yn} is a decreasing sequence in X such that y → yn, then y = sup{yn}. Particu-
larly, y ≤ yn for all n ∈ N. Similar reasoning as above yields y < yn for all n. Since F is a strict
monotone decreasing mapping for the second variable then

F (x, yn) < F (x, y). (2.12)

Linking (2.11) and (2.12) we get

F (xn, yn) < F (x, y), (2.13)

for all n ∈ N or, equivalently,
xn+1 < F (x, y), (2.14)

for all n ∈ N. Moreover, as xn < xn+1 < F (x, y) and x = sup{xn}, we get x ≤ F (x, y).
Construct a sequence {zn} as z0 = x, zn+1 = F (zn, yn), for all n ≥ 0. Since z0 ≤ F (z0, y0),

arguing as above, we obtain that {zn} is a non-decreasing sequence and limn→∞ zn = z for
certain z ∈ X , so we have z = sup{zn}. Since xn ≤ x = z0 ≤ F (z0, y0) ≤ zn ≤ z, for all n,
using (2.1), we have
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d(xn+1, zn+1) = d(F (xn, yn), F (zn, yn))

≤ α

(
d(xn, F (xn, yn))d(zn, F (zn, yn))

d(xn, zn)

)
+ β(d(xn, zn)) +

γ (d(xn, F (xn, yn)) + d(zn, F (zn, yn))) + δ (d(xn, F (zn, yn)) + d(zn, F (xn, yn)))

= α

(
d(xn, xn+1)d(zn, zn+1)

d(xn, zn)

)
+ β(d(xn, zn)) + (2.15)

γ (d(xn, xn+1) + d(zn, zn+1)) + δ (d(xn, zn+1) + d(zn, xn+1)) ,

letting n → ∞, we have d(x, z) ≤ (β + 2δ)d(x, z). As (β + 2δ) < 1, we have d(x, z) = 0.
Particularly, x = z = sup{xn}, and consequently, x ≤ F (x, y) ≤ x i.e. x = F (x, y).

Similarly, we can prove that y = F (y, x).

Now, we shall prove the existence and uniqueness of a coupled common fixed point. Note
that, if (X,≤) is a partially ordered set, then we endow the product space X × X with the
following partial order relation:

for (x, y), (u, v) ∈ X ×X, (u, v) ≤ (x, y)⇔ x ≤ u, y ≥ v.

Theorem 2.2. In addition to hypotheses of Theorem 2.1, suppose that for every (x, y), (z, t) ∈
X×X , there exists (u, v) ∈ X×X such that (F (u, v), F (v, u)) is comparable to (F (x, y), F (y, x))
and (F (z, t), F (t, z)). Then F has a unique coupled fixed point, that is, there exists a unique
(x, y) ∈ X ×X such that x = F (x, y) and y = F (y, x).

Proof. From Theorem 2.1, the set of coupled fixed points of F is non-empty. Suppose that (x, y)
and (z, t) are coupled fixed points of F , that is, x = F (x, y), y = F (y, x), z = F (z, t) and t =
F (t, z). We shall show that x = z and y = t. By the assumption, there exists (u, v) ∈ X×X such
that (F (u, v), F (v, u)) is comparable with (F (x, y), F (y, x)) and (F (z, t), F (t, z)). Put u0 = u,
v0 = v and choose u1, v1 ∈ X so that u1 = F (u0, v0) and v1 = F (v0, u0). Then similarly as in
the proof of Theorem 2.1, we can inductively define sequences {un}, {vn} as un+1 = F (un, vn)
and vn+1 = F (vn, un) for all n. Further, set x0 = x, y0 = y, z0 = z, t0 = t and on the same way
define the sequences {xn}, {yn}, and {zn}, {tn}. Then as in Theorem 2.1, we can show that
xn → x = F (x, y), yn → y = F (y, x), zn → z = F (z, t), tn → t = F (t, z), for all n ≥ 1. Since
(F (x, y), F (y, x)) = (x, y) and (F (u, v), F (v, u)) = (u1, v1) are comparable, then x ≥ u1 and
y ≤ v1. Now, we shall show that (x, y) and (un, vn) are comparable, that is, x ≥ un and y ≤ vn
for all n. Suppose that it holds for some n ≥ 0, then by the strict strict mixed monotone property
of F , we have un+1 = F (un, vn) ≤ F (x, y) = x and vn+1 = F (vn, un) ≥ F (y, x) = y. Hence
x ≥ un and y ≤ vn hold for all n. Thus from (2.1), we have

d(x, un+1) = d(F (x, y), F (un, vn))

≤ α

(
d(x, F (x, y))d(un, F (un, vn))

d(x, un)

)
+ β(d(x, un)) +

γ[d(x, F (x, y)) + d(un, F (un, vn))] + δ[d(x, F (un, vn)) + d(un, F (x, y))]

≤ α

(
d(x, F (x, y))d(un, F (un, vn))

d(x, un)

)
+ β(d(x, un)) +

γ[d(x, un) + d(un+1, x))] + δ[d(x, un+1) + d(un, x)]

= (β + γ + δ)d(x, un) + (γ + δ)d(x, un+1), (2.16)

which implies that d(x, un+1) ≤ β+γ+δ
1−(γ+δ)d(x, un). Similarly, we can prove that d(y, vn+1) ≤

β+γ+δ
1−(γ+δ)d(y, vn). Assume L = β+γ+δ

1−(γ+δ) < 1. Hence

d(x, un+1) + d(y, vn+1) ≤ L[d(x, un) + d(y, vn)]

≤ (L)2[d(x, un−1) + d(y, vn−1)]

. . .

≤ (L)n+1[d(x, u0) + d(y, v0)].

On taking limit, n→∞, we get limn→∞[d(x, un+1)+d(y, vn+1)] = 0. Thus limn→∞ d(x, un+1) =
0 and limn→∞ d(y, vn+1) = 0.
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Similarly, we can prove that lim d(z, un) = 0 = lim d(t, vn). Finally, we have d(x, z) ≤
d(x, un) + d(un, z) and d(y, t) ≤ d(y, vn) + d(vn, t). Taking n → ∞ in these inequalities, we
get d(x, z) = 0 = d(y, t), that is x = z and y = t. Hence we get the result.

Theorem 2.3. In addition to hypotheses of Theorem 2.1, if x0 and y0 are comparable. Then F has
a coupled fixed point, that is, there exists a (x, y) ∈ X×X such that x = F (x, y) = F (y, x) = y.

Proof. By Theorem 2.1, we can construct two sequences {xn} and {yn} in X such that xn → x
and yn → y, where (x, y) is a coupled fixed point of F . Suppose x0 ≤ y0. We shall show
that xn ≤ yn, where xn = F (xn−1, yn−1), yn = F (yn−1, xn−1), for all n. Suppose it holds
for some n ≥ 0. Then by strict mixed monotone property of F , we have xn+1 = F (xn, yn) ≤
F (yn, xn) = yn+1. From (2.1), we have

d(xn+1, yn+1) = d(F (xn, yn), F (yn, xn))

≤ α

(
d(xn, F (xn, yn))d(yn, F (yn, xn))

d(xn, yn)

)
+ β(d(xn, yn)) +

γ[d(xn, F (xn, yn)) + d(yn, F (yn, xn))] + δ[d(xn, F (yn, xn)) + d(yn, F (xn, yn))]

= α

(
d(xn, xn+1)d(yn, yn+1)

d(xn, yn)

)
+ β(d(xn, yn)) +

γ[d(xn, xn+1) + d(yn, yn+1)] + δ[d(xn, yn+1) + d(yn, xn+1)].

On taking n→∞, we obtain d(y, x) ≤ (β + 2δ)d(y, x). Since β + 2δ < 1, d(y, x) = 0. Hence
F (x, y) = x = y = F (y, x).

A similar arguments can be used if y0 ≤ x0.

Remark 2.4. If γ = 0 = δ in above Theorems, then we have Theorems 2.1 and 2.2 of Ciric,
Olatinwo, Gopal and Akinbo [12].

3 Applications

The aim of the section is to apply our new results to mappings involving contractions of integral
type. For this purpose, denote by Λ the set of functions µ : [0,∞) → [0,∞) satisfying the
following hypotheses:

(h1) µ is a Lebesgue-integrable mapping on each compact subset of [0,∞);
(h2) for any ε > 0, we have

∫ ε
0 µ(t) > 0.

Theorem 3.1. Let (X,≤) be a partially ordered set and suppose that there exists a metric d
on X such that (X, d) is a complete metric space. Suppose that F : X × X → X is a self
mapping on X such that F has the strict mixed monotone property on X . Suppose that there
exists α, β, γ, δ ∈ [0, 1) with α+ β + 2γ + 2δ < 1 such that∫ d(F (x,y),F (u,v))

0
ψ(t)dt

≤ α

∫ d(x,F (x,y))d(u,F (u,v))
d(x,u)

0
ψ(t)dt+ β

∫ d(x,y)

0
ψ(t)dt

γ

∫ d(x,F (x,y))+d(u,F (u,v))

0
ψ(t)dt+ δ

∫ d(x,F (u,v))+d(u,F (x,y))

0
ψ(t)dt, (3.1)

for all x, y, u, v ∈ X , with x ≥ u and y ≤ v, where ψ ∈ Λ.
Also suppose that either
a) F is continuous or
b) X has the following properties:
(i) if a sequence {xn} ⊂ X is a non-decreasing sequence with xn → x in X , then x =

sup{xn}, for every n;
(ii) if a sequence {yn} ⊂ X is a non-increasing sequence with yn → y in X , then y =

inf{yn}, for every n.
If there exists two elements x0, y0 ∈ X with x0 < F (x0, y0) and y0 > F (y0, x0), then there

exists x, y ∈ X such that F (x, y) = x and y = F (y, x), that is, F has a coupled fixed point
(x, y) ∈ X ×X .

If γ = δ = 0, we have the following result.
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Theorem 3.2. Let (X,≤) be a partially ordered set and suppose that there exists a metric d
on X such that (X, d) is a complete metric space. Suppose that F : X × X → X is a self
mapping on X such that F has the strict mixed monotone property on X . Suppose that there
exists α, β ∈ [0, 1) with α+ β < 1 such that

∫ d(F (x,y),F (u,v))

0
ψ(t)dt ≤ α

∫ d(x,F (x,y))d(u,F (u,v))
d(x,u)

0
ψ(t)dt+ β

∫ d(x,y)

0
ψ(t)dt, (3.2)

for all x, y, u, v ∈ X , with x ≥ u and y ≤ v, where ψ ∈ Λ.
Also suppose that either
a) F is continuous or
b) X has the following properties:
(i) if a sequence {xn} ⊂ X is a non-decreasing sequence with xn → x in X , then x =

sup{xn}, for every n;
(ii) if a sequence {yn} ⊂ X is a non-increasing sequence with yn → y in X , then y =

inf{yn}, for every n.
If there exists two elements x0, y0 ∈ X with x0 < F (x0, y0) and y0 > F (y0, x0), then there

exists x, y ∈ X such that F (x, y) = x and y = F (y, x), that is, F has a coupled fixed point
(x, y) ∈ X ×X .

If α = γ = δ = 0, we have the following result.

Theorem 3.3. Let (X,≤) be a partially ordered set and suppose that there exists a metric d on
X such that (X, d) is a complete metric space. Suppose that F : X ×X → X is a self mapping
on X such that F has the mixed monotone property on X . Suppose that there exists β ∈ [0, 1)
such that ∫ d(F (x,y),F (u,v))

0
ψ(t)dt ≤ β

∫ d(x,y)

0
ψ(t)dt, (3.3)

for all x, y, u, v ∈ X , with x ≥ u and y ≤ v, where ψ ∈ Λ.
Also suppose that either
a) F is continuous or
b) X has the following properties:
(i) if a sequence {xn} ⊂ X is a non-decreasing sequence with xn → x in X , then xn ≤ x,

for every n;
(ii) if a sequence {yn} ⊂ X is a non-increasing sequence with yn → y in X , then yn ≥ y, for

every n.
If there exists two elements x0, y0 ∈ X with x0 ≤ F (x0, y0) and y0 ≥ F (y0, x0), then there

exists x, y ∈ X such that F (x, y) = x and y = F (y, x), that is, F has a coupled fixed point
(x, y) ∈ X ×X .
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