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Abstract In recent years the generalized differential transform method is introduced and
applied to solve various fractional differential equations involving two variables. In these works,
we observe that a basic result giving the law of exponents for Caputo fractional derivatives has
been used, which does not hold true. In the present paper, we provide corrected form of the said
result as Theorem 3.1. We, next develop three-dimensional generalized differential transform
method and apply this method to solve some space-fractional, time-fractional and space-time
fractional diffusion equations in two space variables with variable coefficients.

1 Introduction

Fractional calculus is now considered as a practical technique in many branches of science,
particularly physics [11, 22]. A growing number of works in science and engineering deal with
dynamical systems described by fractional order equations that involve derivatives and integrals
of non-integer order [4, 16, 27]. These new models are more adequate than the previously used
integer order models, because fractional order derivatives and integrals describe the memory
and hereditary properties of different substances [22]. This is the most significant advantage
of the fractional order models in comparison with integer order models, in which such effects
are neglected. In the context of flow in porous media, fractional space derivatives exhibit large
motions through highly conductive layers or fractures, while fractional time derivatives describe
particles that remain motionless for extended period of time [12].

Recent applications of fractional differential equations to a number of systems have given
opportunity for physicists to study even more complicated systems. For example, the fractional
diffusion equation allows describing complex systems with anomalous behavior in much the
same way as simpler systems.

Various fractional partial differential equations with constant coefficients have been studied
and the solutions are obtained by Laplace-Fourier transform methods [2, 9, 12, 13], Adomian
decomposition method [24], matrix method [10, 23]. However, many practical problems require
model with variable coefficients [3, 5, 8, 15].

In the present paper we consider the following type of space-time fractional diffusion equa-
tion in two space variables with variable coefficients

0D
α
t u (t, x, y) = d (t, x, y) 0D

β
xu (t, x, y) + e (t, x, y) 0D

γ
yu (t, x, y) + q (t, x, y) , (1.1)

on a finite rectangular domain xL < x < xH ,yL < y < yH and t > 0 with 0 < α ≤ 1 and
1 < β ≤ 2, 1 < γ ≤ 2 where the diffusion coefficients d (t, x, y) > 0 and e (t, x, y) > 0,
the forcing function q (t, x, y) can be used to represent the sources and sinks, 0D

α
x ,0D

β
t are

Caputo fractional derivatives defined by equation (2.1). It is assumed that the fractional diffusion
equations under consideration have unique and sufficiently smooth solution under suitable initial
conditions.

The fractional diffusion equation (1.1) has been considered earlier by many researchers, for
example, Ray [25] presented analytical solutions of the space fractional diffusion equations by
two-step Adomian Decomposition Method, Abrashina-Zhadaeva and Romanova [1] discussed
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unconditional stability of numerical vector decomposition model for the fractional diffusion
equation, Zhuang and Liu [29] examined an implicit difference approximation for space-time
fractional diffusion equation and discussed stability and convergence of the method, Tadjeran
and Meerschaert [26] presented a numerical method combining the alternating directions im-
plicit approach with a Crank–Nicolson discretization and a Richardson extrapolation to obtain
an unconditionally stable second-order accurate finite difference method to solve a fractional
super diffusive differential equation, Meerschaert et al. [14] discussed a practical alternating
directions implicit method to solve a class of two-dimensional initial-boundary value fractional
partial differential equations with variable coefficients on a finite domain.

The method which we shall develop to solve equation (1.1) is based on the generalized dif-
ferential transform method [18, 19, 20], which is a generalization of the differential transform
method introduced by Zhou [28] who applied this method to solve linear and nonlinear initial
value problems in electric circuit analysis. This method constructs an analytical solution in the
form of a series. It is different from the traditional higher order Taylor series method, which
requires symbolic computation of the necessary derivatives of the data functions. The Taylor
series method computationally takes long time for large orders. The differential transform is an
iterative procedure for obtaining analytic Taylor series solution of ordinary or partial differential
equations.

The paper is organized as follows. In Section 2, we provide definitions which shall be used
in the subsequent sections. In Section 3, we establish the law of exponents for Caputo fractional
derivative. In Section 4, we develop three-dimensional generalized differential transform method
to solve fractional partial differential equations with three variables. In Section 5, we give three
examples showing application of the method developed in Section 4, to solve space-fractional,
time-fractional and space-time fractional diffusion equations in two space variables with variable
coefficients.

2 Definitions

Caputo fractional derivative of order α, is defined as [7]:

aD
α
xf (x) =

1
Γ (m− α)

∫ x

a

f (m) (ξ)

(x− ξ)α−m+1 dξ, (m− 1 < α ≤ m) ,m ∈ N

= aI
m−α
x Dmf (x) , (2.1)

where Dm = dm

dxm , aI
α
x stands for the Riemann-Liouville fractional integral operator of order

α > 0given by [17]

aI
α
x f (x) =

1
Γ (α)

∫ x

a

(x− t)α−1
f (t) dt. (2.2)

Clearly

aI
α
x (x− a)µ =

Γ (µ+ 1)
Γ (µ+ α+ 1)

(x− a)µ+α , µ > −1. (2.3)

Caputo generalized Taylor’s Formula [21] is as given below:
Suppose that (aDα

x )
k
f (x) ∈ C[a, b] for k = 0, 1, ..., n+ 1, where 0 < α ≤ 1, then we have

f (x) =
n∑
i=0

(x− a)iα

γ (iα+ 1)

(
(aD

α
x )
i
f
)
(a+) +

(
(aDα

x )
n+1

f
)
(ξ)

γ ((n+ 1)α+ 1)
. (x− a)(n+1)α

, (2.4)

with a ≤ ξ ≤ x, ∀x ∈ (a, b]. The radius of convergence ρ, for the generalized Taylor’s series

∞∑
i=0

(x− a)iα

γ (iα+ 1)

(
(aD

α
x )
i
f
)
(a+) , |x− a| < ρ,

depends on f (x) and a, and is given by:

ρ = lim
n→∞

∣∣∣∣∣∣ Γ (nα+ 1)
Γ ((n+ 1)α+ 1)

.

(
(aDα

x )
n+1

f
)
(a+)

((aDα
x )
n
f) (a+)

∣∣∣∣∣∣
1/ρ

. (2.5)

In case α = 1, the Caputo generalized Taylor’s formula (2.4) reduces to the classical Taylor’s
formula.
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Two-dimensional Generalized differential transform [18, 19, 20] is as given below:
Consider a function of two variables u (x, y) and suppose that it is analytic and differentiated

continuously then its two-dimensional generalized differential transform is given by

Uα,β (k, h) =
1

Γ (αk + 1)Γ (βh+ 1)

[
(aD

α
x )
k (

bD
β
y

)h
u (x, y)

]
(a,b)

, (2.6)

where 0 < α, β ≤ 1, (aDα
x )
k ≡ aD

α
x .aD

α
x ...aD

α
x (k times) and Uα,β (k, h) is the transformed

function.
The inverse generalized differential transform of Uα,β (k, h) is given by:

u (x, y) =
∞∑
k=0

∞∑
h=0

Uα,β (k, h) (x− a)kα (y − b)hβ . (2.7)

Three-dimensional differential transform [6] is as given below:
Consider a function of three variables u (x, y, z) which is analytic and differentiated continu-

ously then its three-dimensional differential transform is given by

U (k, h,m) =
1

k!h!m!

[
∂k+h+mu (x, y, z)

∂xk∂yh∂zm

]
(a,b,c)

, (2.8)

where U (k, h,m) is the transformed function.
The inverse differential transform of U (k, h,m) is given by

u (x, y, z) =
∞∑
k=0

∞∑
h=0

∞∑
m=0

Uα,β,γ (k, h,m) (x− a)k (y − b)h (z − c)m . (2.9)

3 Law of exponents for Caputo fractional derivative

Here, we obtain a theorem which gives the precise conditions under which the law of exponents
holds for Caputo fractional derivatives. Similar result for law of exponents of Riemann-Liouville
fractional derivatives is given in the book by Miller and Ross [17, p 105].

Theorem 3.1. Suppose that f (x) = (x− a)λ g (x), where a, λ > 0 and g (x) has the generalized
power series expansion g (x) =

∑∞
n=0 an (x− a)

nα with radius of convergence R > 0, 0 < α ≤
1. Then

aD
γ
xaD

β
xf (x) = aD

γ+β
x f (x) , (3.1)

for all (x− a) ∈ (0, R), the coefficients an = 0 for n given by nα+ λ− β = 0 and either
(a) λ > µ, µ = max (β + [γ] , [β + γ])
or
(b) λ ≤ µ, ak = 0, for k = 0, 1, ...,

[
µ−λ
α

]
,

here [x] denotes the greatest integer less than or equal to x .

Proof. For part (a), we have by definition (2.1),

aD
β
xf (x) = aI

[β]+1−β
x aD

[β]+1
x

∞∑
n=0

an (x− a)nα+λ .

Performing term by term differentiation which is justified since the series involving deriva-
tives upto the order [β] + 1 of the term (x− a)nα+λ are uniformly convergent for (x− a) ∈
(0, R), we obtain

aD
β
xf (x) = aI

[β]+1−β
x

∞∑
n=0

an
Γ (nα+ λ+ 1)

Γ (nα+ λ− [β])
(x− a)nα+λ−[β]−1

.

Using definition (2.2) and the fact that the infinite series is uniformly convergent for (x− a) ∈
(0, R), we change the order of integration and summation and arrive at the following with the
help of known result (2.3)
aD

β
xf (x) =

∑∞
n=0 an

Γ(nα+λ+1)
Γ(nα+λ−β+1) (x− a)

nα+λ−β
, for λ > [β].
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Applying the same argument as above, we now have

aD
γ
xaD

β
xf (x) = aD

γ
x

∑∞
n=0 an

Γ(nα+λ+1)
Γ(nα+λ−β+1) (x− a)

nα+λ−β

= aI
[γ]+1−γ

x aD
[γ]+1
x

∑∞
n=0 an

Γ(nα+λ+1)
Γ(nα+λ−β+1) (x− a)

nα+λ−β

= aI
[γ]+1−γ

x

∑∞
n=0 an

Γ(nα+λ+1)
Γ(nα+λ−β−[γ]) (x− a)

nα+λ−β−[γ]−1

=
∑∞
n=0 an

Γ(nα+λ+1)
Γ(nα+λ−β−γ+1) (x− a)

nα+λ−β−γ
, for λ− β − [γ] > 0.

(3.2)

Next

aD
γ+β
x f (x) = aD

γ+β
x

∑∞
n=0 an (x− a)

nα+λ

= aI
[γ+β]+1−γ−β
x aD

[γ+β]+1
x

∑∞
n=0 an (x− a)

nα+λ

= aI
[γ+β]+1−γ−β
x

∑∞
n=0 an

Γ(nα+λ+1)
Γ(nα+λ−[γ+β]) (x− a)

nα+λ−[γ+β]−1

=
∑∞
n=0 an

Γ(nα+λ+1)
Γ(nα+λ−γ−β+1) (x− a)

nα+λ−γ−β
, for λ− [γ + β] > 0.

(3.3)

Which is precisely aD
γ
xaD

β
xf (x), as given by (3.2).

The conditions mentioned with (3), (3.2) and (3.3) can be combined and written as condition
given in part (a).

For part (b), i.e. when λ ≤ µ, we take ak = 0 for k = 0, 1, ..., l− 1, where l− 1 =
[
µ−λ
α

]
we

have due to the uniform convergence of derived series upto the order [β] + 1,

aD
β
xf (x) = aD

β
x

∑∞
n=0 an (x− a)

nα+λ

=
∑∞
n=l an

Γ(nα+λ+1)
Γ(nα+λ−β+1) (x− a)

nα+λ−β

=
∑∞
r=0 ar+l

Γ((r+l)α+λ+1)
Γ((r+l)α+λ−β+1) (x− a)

(r+l)α+λ−β
.

(3.4)

If we let λ′ = lα + λ, then (3.4) becomes same as (3) (with λ replaced by λ′) and the proof
proceeds as in part (a).

The following result for the law of exponents for Caputo fractional derivatives has been
obtained earlier by Odibat, Momani and Erturk in their papers [18, 19, 20].

Suppose that f (x) = xλg (x) , where λ > −1 and g (x) has the generalized power series
expansion g (x) =

∑∞
n=0 an (x− a)

nα with radius of convergence R > 0, 0 < α ≤ 1.Then

aD
γ
xaD

β
xf (x) = aD

γ+β
x f (x) ,

for all x ∈ (0, R) if:
β < λ+ 1 and α arbitrary
or
β ≥ λ+ 1, γ arbitrary and ak = 0 for k = 0, 1, ...,m− 1 where m− 1 < β ≤ m.

But the above result is erroneous as evident from the following example:
For 0 < α ≤ 1, we have

0D
2α
x xα = 0I

[2α]+1−2α
x 0D

[2α]+1
x xα = 0I

[2α]+1−2α
x

Γ (α+ 1)
Γ (α− [2α])

xα−[2α]−1 =
Γ (α+ 1)
Γ (1− α)

x−α

(3.5)
and

0D
α
x 0D

α
xx

α = 0D
α
x (Γ (α+ 1)) = 0. (Since Caputo fractional derivative of constant is zero.)

Clearly
0D

2α
x xα 6= 0D

α
x 0D

α
xx

α. (3.6)

But according to the above result given by Odibat, Momani and Erturk [18, 19, 20], the
condition given in (a) is satisfied so we must have 0D

2α
x xα = 0D

α
x 0D

α
xx

α.
It may be observed that in accordance with our Theorem 3.1, here λ = β = γ = α, a0 =

1, a1, a2, a3, .... = 0, nα+ λ− β = 0 for n = 0 showing that the conditions of Theorem 3.1 are
not satisfied therefore 0D

2α
x xα 6= 0D

α
x 0D

α
xx

α is justified.
The Theorem 3.1 given above may be treated as corrected form of the above result.

4 Three-dimensional generalized differential transform method

In this section we shall develop three-dimensional generalized differential transform method for
fractional partial differential equations in three variables. Consider a function of three vari-
ables u (x, y, z) then we define three-dimensional generalized differential transform of function
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u (x, y, z) as

Uα,β,γ (k, h,m) =
1

Γ (αk + 1)Γ (βh+ 1)Γ (γm+ 1)

[
(aD

α
x )
k (

bD
β
y

)h
(cD

γ
z )
m
u (x, y, z)

]
(a,b,c)

(4.1)
where 0 < α, β, γ ≤ 1, (aDα

x )
k
= aD

α
x .aD

α
x ...aD

α
x (k times), Uα,β,γ (k, h,m) stands for the

transformed function. The inverse differential transform of Uα,β,γ (k, h,m) is given by:

u (x, y, z) =
∞∑
k=0

∞∑
h=0

∞∑
m=0

Uα,β,γ (k, h,m) (x− a)kα (y − b)hβ (z − c)mγ . (4.2)

In case α = β = γ = 1, the three-dimensional generalized differential transform (4.1) and
its inverse (4.2) reduces to the three-dimensional differential transform and its inverse given by
(2.8) and (2.9) respectively.

Some fundamental properties for three-dimensional generalized differential transform are
given below.

Theorem 4.1. Let Uα,β,γ (k, h,m) , Vα,β,γ (k, h,m) and Wα,β,γ (k, h,m) be three-dimensional
generalized differential transforms of the functions u (x, y, z) , v (x, y, z) and w (x, y, z) respec-
tively, then we can easily arrive at the following results on the lines of properties of three-
dimensional differential transform [6] and generalized differential transform method [18]

(i) If u (x, y, z) = v (x, y, z)± w (x, y, z), then
Uα,β,γ (k, h,m) = Vα,β,γ (k, h,m)±Wα,β,γ (k, h,m).

(ii) If u (x, y, z) = av (x, y, z), then Uα,β,γ (k, h,m) = aVα,β,γ (k, h,m).

(iii) If u (x, y, z) = v (x, y, z)w (x, y, z),
then Uα,β,γ (k, h,m) =

∑k
r=0
∑h
s=0
∑m
p=0 Vα,β,γ (r, h− s,m− p)Wα,β,γ (k − r, s, p).

(iv) If u (x, y, z) = aD
α
xv (x, y, z) and 0 < α ≤ 1,

then Uα,β,γ (k, h,m) = Γ(α(k+1)+1)
Γ(αk+1) Vα,β,γ (k + 1, h,m) .

(v) If u (x, y, z) = aD
α
x bD

β
y v (x, y, z) where 0 < α, β ≤ 1,

then Uα,β,γ (k, h,m) = Γ(α(k+1)+1)Γ(β(h+1)+1)
Γ(αk+1)Γ(βh+1) Vα,β,γ (k + 1, h+ 1,m) .

(vi) If u (x, y, z) = aD
α
x bD

β
y cD

γ
z v (x, y, z) where 0 < α, β, γ ≤ 1,

then Uα,β,γ (k, h,m) = Γ(α(k+1)+1)Γ(β(h+1)+1)Γ(γ(m+1)+1)
Γ(αk+1)Γ(βh+1)Γ(γm+1) Vα,β,γ (k + 1, h+ 1,m+ 1) .

(vii) If u (x, y, z) = (x− a)n1α (y − b)n2β (z − c)n3γ , n1, n2, n3 ∈ N,
then Uα,β,γ (k, h,m) = δ (k − n1) δ (h− n2) δ (m− n3)

where δ is defined as

δ (k) =

{
1, when k = 0
0, otherwise

.

5 Examples

In this section, we solve space-fractional, time-fractional and space-time fractional diffusion
equations in two space variables with variable coefficients using three-dimensional generalized
differential transform method developed in Section 4.

Example 5.1. Consider the space fractional diffusion equation

∂u (t, x, y)

∂t
= d (t, x, y)

(
0D

1/5
x

)9
u (t, x, y) + e (t, x, y)

(
0D

1/5
y

)8
u (t, x, y) + q (t, x, y) (5.1)

on a finite rectangular domain 0 < x < 1, 0 < y < 1, for 0 ≤ t ≤ Tend with the diffusion
coefficients d (t, x, y) = Γ (2.2)x2.8y/6, e (t, x, y) = 2xy2.6/Γ (4.6) and the forcing function
q (t, x, y) = − (1 + 2xy) e−tx3y3.6,
with the initial condition

u (0, x, y) = x3y3.6. (5.2)
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We apply the three-dimensional generalized differential transform (4.1) with a = 0 = b =
cand α = 1, β = 1

5 , γ = 1
5 to both sides of equation (5.1) and making use of Theorem 2(a), (c),

(d), obtain the transformed equation as

U1, 1
5 ,

1
5
(k + 1, h,m)

= 1
k+1

[
Γ(2.2)

6

k∑
r=0

h∑
s=0

m∑
p=0

δ (k − r) δ (s− 14) δ (p− 5)
Γ( (9+h−s)

5 +1)
Γ(h−s5 +1)

U1, 1
5 ,

1
5
(r, 9 + h− s,m− p)

+ 2
Γ(4.6)

k∑
r=0

h∑
s=0

m∑
p=0

δ (k − r) δ (s− 5) δ (p− 13)
Γ( (8+m−p)

5 +1)
Γ(m−p

5 +1)
U1, 1

5 ,
1
5
(r, h− s, 8 +m− p)

− (−1)k

k! δ (h− 15) δ (m− 18)− 2 (−1)k

k! δ (h− 20) δ(m− 23)
]
.

(5.3)
The three-dimensional generalized differential transform of initial condition (5.2) is given by

U1, 1
5 ,

1
5
(0, h,m) =

{
1 when h = 15,m = 18
0 otherwise

. (5.4)

Utilizing the recurrence relation (5.3) and the transformed initial condition (5.4), we obtain

U1, 1
5 ,

1
5
(k, h,m) =

{
(−1)k

k! when h = 15,m = 18
0 otherwise

. (5.5)

From the inverse transform given by equation (4.2) , we have

u (t, x, y) =
∞∑
k=0

∞∑
h=0

∞∑
m=0

U1, 1
5 ,

1
5
(k, h,m) tkxh/5ym/5. (5.6)

Using the values of U1, 1
5 ,

1
5
(k, h,m) from equation (5.5) in equation (5.6), the exact solution

of space fractional diffusion equation (5.1) is obtained as

u (t, x, y) = x3y3.6e−t. (5.7)

This may be verified by direct substitution in the equation (5.8).

Further in view of Theorem 3.1, we find that
(

0D
1/5
x

)9
u (t, x, y) = 0D

9/5
x u (t, x, y) and(

0D
1/5
y

)8
u (t, x, y) = 0D

8/5
y u (t, x, y). Thus the space fractional diffusion equation (5.1) can be

written as

∂u (t, x, y)

∂t
= d (t, x, y) 0D

9/5
x u (t, x, y) + e (t, x, y) 0D

8/5
y u (t, x, y) + q (t, x, y) . (5.8)

The above problem has been solved earlier by Ray [25] using two step Adomian decomposi-
tion method.

Example 5.2. Consider the time fractional diffusion equation [29]

0D
0.4
t u (t, x, y) =

2t1.6

π2Γ (0.6)
∂2u (t, x, y)

∂x2 +
12t1.6

π2Γ (0.6)
∂2u (t, x, y)

∂y2 +
25t1.6

12Γ (0.6)
(
t2 + 2

)
sinπx sinπy

(5.9)
on a finite rectangular domain 0 < x < 1, 0 < y < 1, for 0 ≤ t ≤ Tend with the initial condition

u (0, x, y) = sinπx sinπy. (5.10)

The above problem has been examined numerically by Zhuang and Liu [29].

We apply the three-dimensional generalized differential transform (4.1) with a = 0 = b =
cand α = 2

5 , β = 1, γ = 1 to both sides of equation (5.9) and making use of Theorem 2(a), (c),
(d) , obtain the transformed equation as

U 2
5 ,1,1

(k + 1, h,m)

=
Γ( 2

5k+1)
Γ( 2

5 (k+1)+1)

[
2

π2Γ(0.6)

∑k
r=0 δ (k − r − 4) (h+ 2) (h+ 1)U 2

5 ,1,1
(r, h+ 2,m)

+ 1
12π2Γ(0.6)

∑k
r=0 δ (k − r − 4) (m+ 2) (m+ 1)U 2

5 ,1,1
(r, h,m+ 2)

+
(
(−1)hm+1+1

2

)
25

12Γ(0.6)
πh+m

h!m! (−1)
h+m

2 −1 {δ (k − 9) + 2δ (k − 4)}
]
.

(5.11)
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The three-dimensional generalized differential transform of initial condition (5.10) is given
by

U 2
5 ,1,1

(0, h,m) =

{
πh+m

h!m! (−1)
h+m

2 −1 when h,m are odd
0 otherwise

. (5.12)

Utilizing the recurrence relation (5.11) and the transformed initial condition (5.12), we obtain

U 2
5 ,1,1

(k, h,m) =

{
πh+m

h!m! (−1)
h+m

2 −1 when h,m are odd and k = 0 or 5
0 otherwise

. (5.13)

From the inverse transform given by (4.2) , we have

u (t, x, y) =
∞∑
k=0

∞∑
h=0

∞∑
m=0

U 2
5 ,1,1

(k, h,m) t2k/5xhym. (5.14)

Using the values of U 2
5 ,1,1

(k, h,m)from (5.13) in (5.14), the exact solution of time-fractional
diffusion equation (5.9) is obtained as

u (t, x, y) =
(
1 + t2

)
sinπx sinπy. (5.15)

This may be verified by direct substitution in the equation (5.9).

Example 5.3. Consider the space-time fractional diffusion equation

0D
1/2
t u (t, x, y) = Γ(2.8)

Γ(4) x
1.2
(

0D
1/5
x

)6
u (t, x, y) + Γ(2.2)

Γ(4) y
1.8
(

0D
1/5
y

)9
u (t, x, y)

+x3y3
(

8
3Γ(0.5) t

1.5 − 2t2 − 2
) (5.16)

on a finite rectangular domain 0 < x < 1, 0 < y < 1, for 0 ≤ t ≤ Tend with the initial condition

u (0, x, y) = x3y3. (5.17)

We apply the three-dimensional generalized differential transform (4.1) with a = 0 = b =
cand α = 1

2 , β = 1
5 , γ = 1

5 to both sides of equation (5.16) and making use of Theorem 4.1(a),
(c), (d), obtain the transformed equation as

U 1
2 ,

1
5 ,

1
5
(k + 1, h,m)

=
Γ( k2 +1)

Γ( k+1
2 +1)

[
Γ(2.8)
Γ(4)

k∑
r=0

h∑
s=0

m∑
p=0

δ (k − r) δ (s− 6) δ (p)
Γ( 6+h−s

5 +1)
Γ(h−s5 +1)

U 1
2 ,

1
5 ,

1
5
(r, 6 + h− s,m− p)

+ Γ(2.2)
Γ(4)

k∑
r=0

h∑
s=0

m∑
p=0

δ (k − r) δ (p− 9) δ (s)
Γ( 9+m−p

5 +1)
Γ(m−p

5 +1)
U 1

2 ,
1
5 ,

1
5
(r, h− s, 9 +m− p)

+δ (h− 15) δ (m− 15)
{

8
3Γ(1/2)δ (k − 3)− 2δ (k − 4)− 2δ (k)

}]
.

(5.18)
The three-dimensional generalized differential transform of initial condition (5.17) is given

by

U 1
2 ,

1
5 ,

1
5
(0, h,m) =

{
1 when h = 15,m = 15
0 otherwise

. (5.19)

Utilizing the recurrence relation (5.18) and the transformed initial condition (5.19), we obtain

U 1
2 ,

1
5 ,

1
5
(k, h,m) =

{
1 when h = m = 15 and k = 0 or 4
0 otherwise

. (5.20)

From the inverse transform given by equation (4.2), we have

u (t, x, y) =
∞∑
k=0

∞∑
h=0

∞∑
m=0

U 1
2 ,

1
5 ,

1
5
(k, h,m) tk/2xh/5ym/5. (5.21)

Using the values of U 1
2 ,

1
5 ,

1
5
(k, h,m) from (5.20) in (5.21), the exact solution of space-time

fractional diffusion equation (5.16) is obtained as

u (t, x, y) =
(
t2 + 1

)
x3y3. (5.22)
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This may be verified by direct substitution in the equation (5.16).

Further in view of Theorem 3.1, we find that
(

0D
1/5
x

)6
u (t, x, y) = 0D

6/5
x u (t, x, y) and(

0D
1/5
y

)9
u (t, x, y) = 0D

9/5
y u (t, x, y). Thus the space-time fractional diffusion equation (5.16)

can be written as

0D
1/2
t u (t, x, y) = Γ(2.8)

Γ(4) x
1.2

0D
6/5
x u (t, x, y) + Γ(2.2)

Γ(4) y
1.8

0D
9/5
y u (t, x, y)

+x3y3
(

8
3Γ(0.5) t

1.5 − 2t2 − 2
)
.

(5.23)

The above problem has been examined numerically by Zhuang and Liu [29].
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