A Connection Between the Modular j-Invariant and the Ramanujan's Cubic Continued Fraction

Nipen Saikia
Communicated by Ayman Badawi

MSC 2010 Classifications: 30B70; 33D15; 33D90; 11F20.

Keywords and phrases: Modular j-invariant; Ramanujan's cubic continued fraction.

Abstract

On page 393 of his third notebook Ramanujan defined two functions t_{n} and J_{n} closely connected to the modular j-invariant and listed some explicit values or simple polynomials satisfied by them. In order to establish Ramanujan's assertions, Berndt and Chan established a connection between the modular j-invariant and Ramanujan's cubic theory of elliptic functions to alternative bases. They also established that for certain values of n, t_{n} generates the Hilbert class field of $\mathbb{Q}(\sqrt{-n})$. In this paper, we establish a connection between the modular j-invariant and the Ramanujan's cubic continued fraction.

1 Introduction

On page 393 of his third notebook [11] (also see [4, p. 313, Entry 11.17]) Ramanujan defined the parameter t_{n} as

$$
\begin{equation*}
t_{n}=\frac{\sqrt{3} q^{1 / 18} f\left(q^{1 / 3}\right) f\left(q^{3}\right)}{f^{2}(q)}, \quad q=e^{-\pi \sqrt{n}} \tag{1.1}
\end{equation*}
$$

where, for $q=e^{2 \pi i z}$ and $\operatorname{Im}(z)>0$,

$$
\begin{equation*}
f(-q):=(q ; q)_{\infty}=\prod_{n=1}^{\infty}\left(1-q^{n}\right) \tag{1.2}
\end{equation*}
$$

Ramanujan then asserted that

$$
\begin{equation*}
t_{n}=\left(2 \sqrt{64 J_{n}^{2}-24 J_{n}+9}-\left(16 J_{n}-3\right)\right)^{1 / 6} \tag{1.3}
\end{equation*}
$$

where

$$
\begin{equation*}
J_{n}=\frac{1-16 \alpha_{n}\left(1-\alpha_{n}\right)}{8\left(4 \alpha_{n}\left(1-\alpha_{n}\right)\right)^{1 / 3}}, \tag{1.4}
\end{equation*}
$$

is defined by Ramanujan [11, p. 392] for any natural number n and $\sqrt{\alpha_{n}}:=\sqrt{\alpha\left(e^{-\pi \sqrt{n}}\right)}$, $0<\sqrt{\alpha_{n}}<1$, is the singular modulus in the usual theory of elliptic functions. Ramanujan also considered some extremely simple polynomials satisfied by t_{n} for $n=11,35,59,83$, and 107 from which the explicit values of t_{n} can be easily computed. From [5], we also note that

$$
\begin{equation*}
J_{n}=-\frac{1}{32} \sqrt[3]{j\left(\frac{3+\sqrt{-n}}{2}\right)} \tag{1.5}
\end{equation*}
$$

where $j(\tau)$, for $\tau \in \mathbb{H}=\{\tau: \operatorname{Im}(\tau)>0\}$, is the modular j-invariant. From (1.3) and (1.5) it is easily seen that the parameter t_{n}, J_{n}, and the modular j-invariant are closely connected. For 15 values of $n, n \equiv 3(\bmod 4)$, Ramanujan indicated the values of J_{n}, although not all values are given explicitly by him. There are 13 cases when the class number of the order in an imaginary quadratic fields equals 1 and the value of j - invariant is known to be an integer. See [8, p. 260] for details. In these cases, Ramanujan explicitly recorded the values of J_{n} for $n=3,27,11,19$,
$35,43,67,163,51,75,91,99$, and 115. An account of these can be found in [4, p. 310-312]. Yi [12] also evaluated J_{n} for $n=1,2,3,4,5,6,7,8,9$, and 10. More recently, Paek and Yi [9] evaluated new values of J_{n} for $n=16,32,64,128$, and 256.

The motivation behind the study of modular j-invariant by Ramanujan is not clear. In order to establish Ramanujan's assertions, Berndt and Chan [5] established a connection between the modular j-invariant and Ramanujan's cubic theory of elliptic functions to alternative bases. They also established that for certain values of n, t_{n} generates the Hilbert class field of $\mathbb{Q}(\sqrt{-n})$. In this paper, we establish a connection between the modular j-invariant and Ramanujan's cubic continued fraction $G(q)$, where $G(q)$ is defined by

$$
\begin{equation*}
G(q):=\frac{q^{1 / 3}}{1}+\frac{q+q^{2}}{1}+\frac{q^{2}+q^{4}}{1}+\frac{q^{3}+q^{6}}{1}+\ldots, \quad|q|<1 . \tag{1.6}
\end{equation*}
$$

We prove general theorems for the explicit evaluation of $G(q)$ in terms of the functions t_{n} and J_{n} in Theorems 2.1 and 2.3, respectively and give examples. Over the years, many authors contributed to Ramanujan's cubic continued fraction $G(q)$ and its explicit evaluations (for example, see $[1,2,6,7,10])$.

2 Explicit Evaluations of $G(q)$

In this section we prove new general theorems for the explicit evaluation of Ramanujan's cubic continued fraction $G(q)$ in terms of the parameters t_{n} and J_{n} and give examples.

Theorem 2.1. For any positive real number n, we have

$$
\frac{1}{G\left(-e^{-\pi \sqrt{n}}\right)}+4 G^{2}\left(-e^{-\pi \sqrt{n}}\right)=\frac{3\left(-9-t_{n}^{6}-\sqrt{3} \sqrt{27+18 t_{n}^{6}-t_{n}^{12}}\right)}{2 t_{n}^{6}}
$$

Proof. From [3, p. 345, Entry 1(iv)], we note that

$$
\begin{equation*}
3+\frac{f^{3}\left(-q^{1 / 3}\right)}{q^{1 / 3} f^{3}\left(-q^{3}\right)}=\left(27+\frac{f^{12}(-q)}{q f^{12}\left(-q^{3}\right)}\right)^{1 / 3}=\frac{1}{G(q)}+4 G^{2}(q) \tag{2.1}
\end{equation*}
$$

From (2.1) it is obvious that

$$
\begin{equation*}
\frac{1}{G(q)}+4 G^{2}(q)-3=\frac{f^{3}\left(-q^{1 / 3}\right)}{q^{1 / 3} f^{3}\left(-q^{3}\right)} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{1}{G(q)}+4 G^{2}(q)\right)^{3}-27=\frac{f^{12}(-q)}{q f^{12}\left(-q^{3}\right)} \tag{2.3}
\end{equation*}
$$

Replacing $q^{1 / 3}$ by $-q^{1 / 3}$ in (2.2) and simplifying, we obtain

$$
\begin{equation*}
3-\left(\frac{1}{G(-q)}+4 G^{2}(-q)\right)=\frac{f^{3}\left(q^{1 / 3}\right)}{q^{1 / 3} f^{3}\left(q^{3}\right)} \tag{2.4}
\end{equation*}
$$

Again, replacing q by $-q$ in (2.3), we obtain

$$
\begin{equation*}
27-\left(\frac{1}{G(-q)}+4 G^{2}(-q)\right)^{3}=\frac{f^{12}(q)}{q f^{12}\left(q^{3}\right)} \tag{2.5}
\end{equation*}
$$

Set

$$
\begin{equation*}
X:=\frac{1}{G(-q)}+4 G^{2}(-q) \tag{2.6}
\end{equation*}
$$

Then combining (2.4) and (2.5), we obtain

$$
\begin{equation*}
\frac{(3-X)^{2}}{27-X^{3}}=\frac{q^{1 / 3} f^{6}\left(q^{1 / 3}\right) f^{6}\left(q^{3}\right)}{f^{12}(q)} \tag{2.7}
\end{equation*}
$$

Equivalently,

$$
\begin{equation*}
\frac{3-X}{X^{2}+3 X+9}=\left(\frac{q^{1 / 18} f\left(q^{1 / 3}\right) f\left(q^{3}\right)}{f^{2}(q)}\right)^{6} \tag{2.8}
\end{equation*}
$$

Setting $q=e^{-\pi \sqrt{n}}$ in (2.8), employing the definition of t_{n} from (1.1), and simplifying, we obtain

$$
\begin{equation*}
t_{n}^{6} X^{2}+\left(3 t_{n}^{6}+27\right) X+\left(9 t_{n}^{6}-81\right)=0 \tag{2.9}
\end{equation*}
$$

Solving (2.9) and noting the fact that $X<0$, we obtain

$$
\begin{equation*}
X=\frac{3\left(-9-t_{n}^{6}-\sqrt{3} \sqrt{27+18 t_{n}^{6}-t_{n}^{12}}\right)}{2 t_{n}^{6}} \tag{2.10}
\end{equation*}
$$

This completes the proof.
Remark 2.2. From Theorem 2.1 it is obvious that the explicit value of $G\left(-e^{-\pi \sqrt{n}}\right)$ can be evaluated if the explicit value of the function t_{n} is known for the corresponding value of n. For example, setting $n=1$ in Theorem 2.1, employing the value $t_{11}=1$ from [4, p. 314] and solving the resulting equation, we obtain

$$
G\left(-e^{-\pi \sqrt{11}}\right)=\frac{-5-\sqrt{33}+(-1+3 \sqrt{3(23+4 \sqrt{33}}))^{2 / 3}}{2(-1+\sqrt{621+108 \sqrt{33}})}
$$

Theorem 2.3. For any positive real number n, we have

$$
\frac{1}{G\left(-e^{-\pi \sqrt{n}}\right)}+4 G^{2}\left(-e^{-\pi \sqrt{n}}\right)=\frac{-3\left(6-8 J_{n}+M+\sqrt{3} \sqrt{\left(3+8 J_{n}\right)\left(3-16 J_{n}+2 M\right)}\right)}{3-16 J_{n}+2 M}
$$

where $M=\sqrt{9-24 J_{n}+64 J_{n}^{2}}$.
Proof. Follows easily from (1.3) and Theorem 2.1.
Remark 2.4. From Theorem 2.3 it is clear that if we know the explicit values of J_{n} then $G\left(-e^{-\pi \sqrt{n}}\right)$ can be evaluated for the corresponding values of n. For example, setting $n=3$ in Theorem 2.3, employing the value $J_{3}=0$ from [4, p. 310, Entry 11.1] and solving the resulting equation, we obtain

$$
G\left(-e^{-\pi \sqrt{3}}\right)=\frac{1-2^{1 / 3}}{2^{2 / 3}}
$$

Similarly, other values of J_{n} can be used to evaluate the explicit values of $G\left(-e^{-\pi \sqrt{n}}\right)$.

References

[1] C. Adiga, T. Kim, M. S. M. Naika, and H. S. Madhusudhan, On Ramanujan's cubic continued fraction and explicit evaluations of theta-functions, Indian J. Pure Appl. Math., 35(9)(2004), 1047-1062.
[2] N. D. Baruah and N. Saikia, Some general theorems on the explicit evaluations of Ramanujan's cubic continued fraction, J. Comput. Appl. Math., 160(1-2)(2003), 37-51.
[3] B. C. Berndt, Ramanujan's Notebooks, Part III, Springer-Verlag, New York, 1991.
[4] B. C. Berndt, Ramanujan's Notebooks, Part V, Springer-Verlag, New York, 1998.
[5] B. C. Berndt and H. H. Chan, Ramanujan and the modular j-invariant, Canad. Math. Bull., 42(4)(1999), 427-440.
[6] B. C. Berndt and H. H. Chan, and L.-C.Zhang, Ramanujan's class invariants and cubic continued fraction, Acta Arith. 73(1995), 67-85.
[7] H. H. Chan, On Ramanujan's cubic continued fraction, Acta Arith. 73(1995), 343-355.
[8] D. A. Cox, Primes of the Form $x^{2}+n y^{2}$, Wiley New York, 1989.
[9] D. H. Paek and J. Yi, On evaluations of the modular j - invariant by modular equations of degree 2, Bull. of Korean Math. Soc., 52(1)(2015), 263-273.
[10] N. Saikia, A product of theta-functions analogous to RamanujanŠs remarkable product of theta-functions and applications, J. Math., Vol. 2013(2013), Article ID 620756, 5 pages.
[11] S. Ramanujan, Notebooks (2 volumes), Tata Institute of Fundamental Research, Bombay, 1957.
[12] J. Yi, Construction and application of modular equation, Ph. D thesis, University of Illionis, 2001.

Author information

Nipen Saikia, Department of Mathematics, Rajiv Gandhi University, Rono Hills, Doimukh-791112, Arunachal Pradesh, India.
E-mail: nipennak@yahoo. com

Received: November 22, 2014.

Accepted: May 7, 2015

