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Abstract. On page 393 of his third notebook Ramanujan defined two functions tn and Jn
closely connected to the modular j-invariant and listed some explicit values or simple polynomi-
als satisfied by them. In order to establish Ramanujan’s assertions, Berndt and Chan established
a connection between the modular j−invariant and Ramanujan’s cubic theory of elliptic func-
tions to alternative bases. They also established that for certain values of n, tn generates the
Hilbert class field of Q(

√
−n). In this paper, we establish a connection between the modular

j-invariant and the Ramanujan’s cubic continued fraction.

1 Introduction

On page 393 of his third notebook [11] (also see [4, p. 313, Entry 11.17]) Ramanujan defined
the parameter tn as

tn =

√
3q1/18f(q1/3)f(q3)

f2(q)
, q = e−π

√
n, (1.1)

where, for q = e2πiz and Im(z) > 0,

f(−q) := (q; q)∞ =
∞∏
n=1

(1− qn). (1.2)

Ramanujan then asserted that

tn =

(
2
√

64J2
n − 24Jn + 9− (16Jn − 3)

)1/6

, (1.3)

where

Jn =
1− 16αn(1− αn)
8(4αn(1− αn))1/3 , (1.4)

is defined by Ramanujan [11, p. 392] for any natural number n and
√
αn :=

√
α(e−π

√
n),

0 <
√
αn < 1, is the singular modulus in the usual theory of elliptic functions. Ramanujan also

considered some extremely simple polynomials satisfied by tn for n =11, 35, 59, 83, and 107
from which the explicit values of tn can be easily computed. From [5], we also note that

Jn = − 1
32

3

√
j

(
3 +
√
−n

2

)
, (1.5)

where j(τ), for τ ∈ H = {τ : Im(τ) > 0}, is the modular j-invariant. From (1.3) and (1.5) it is
easily seen that the parameter tn, Jn, and the modular j-invariant are closely connected. For 15
values of n, n ≡ 3(mod 4), Ramanujan indicated the values of Jn, although not all values are
given explicitly by him. There are 13 cases when the class number of the order in an imaginary
quadratic fields equals 1 and the value of j− invariant is known to be an integer. See [8, p. 260]
for details. In these cases, Ramanujan explicitly recorded the values of Jn for n =3, 27, 11, 19,



128 Nipen Saikia

35, 43, 67, 163, 51, 75, 91, 99, and 115. An account of these can be found in [4, p. 310-312].
Yi [12] also evaluated Jn for n =1, 2, 3, 4, 5, 6, 7, 8, 9 , and 10. More recently, Paek and Yi [9]
evaluated new values of Jn for n =16, 32, 64, 128, and 256.

The motivation behind the study of modular j−invariant by Ramanujan is not clear. In order
to establish Ramanujan’s assertions, Berndt and Chan [5] established a connection between the
modular j−invariant and Ramanujan’s cubic theory of elliptic functions to alternative bases.
They also established that for certain values of n, tn generates the Hilbert class field of Q(

√
−n).

In this paper, we establish a connection between the modular j−invariant and Ramanujan’s cubic
continued fraction G(q), where G(q) is defined by

G(q) :=
q1/3

1 +

q + q2

1 +

q2 + q4

1 +

q3 + q6

1 +···
, |q| < 1. (1.6)

We prove general theorems for the explicit evaluation of G(q) in terms of the functions tn and
Jn in Theorems 2.1 and 2.3, respectively and give examples. Over the years, many authors con-
tributed to Ramanujan’s cubic continued fraction G(q) and its explicit evaluations (for example,
see [1, 2, 6, 7, 10]).

2 Explicit Evaluations of G(q)

In this section we prove new general theorems for the explicit evaluation of Ramanujan’s cubic
continued fraction G(q) in terms of the parameters tn and Jn and give examples.

Theorem 2.1. For any positive real number n, we have

1
G(−e−π

√
n)

+ 4G2(−e−π
√
n) =

3
(
−9− t6n −

√
3
√

27 + 18t6n − t12
n

)
2t6n

.

Proof. From [3, p. 345, Entry 1(iv)], we note that

3 +
f3(−q1/3)

q1/3f3(−q3)
=

(
27 +

f12(−q)
qf12(−q3)

)1/3

=
1

G(q)
+ 4G2(q). (2.1)

From (2.1) it is obvious that

1
G(q)

+ 4G2(q)− 3 =
f3(−q1/3)

q1/3f3(−q3)
(2.2)

and (
1

G(q)
+ 4G2(q)

)3

− 27 =
f12(−q)
qf12(−q3)

. (2.3)

Replacing q1/3 by −q1/3 in (2.2) and simplifying, we obtain

3−
(

1
G(−q)

+ 4G2(−q)
)
=

f3(q1/3)

q1/3f3(q3)
. (2.4)

Again, replacing q by −q in (2.3), we obtain

27−
(

1
G(−q)

+ 4G2(−q)
)3

=
f12(q)

qf12(q3)
. (2.5)

Set
X :=

1
G(−q)

+ 4G2(−q). (2.6)

Then combining (2.4) and (2.5), we obtain

(3−X)
2

27−X3 =
q1/3f6(q1/3)f6(q3)

f12(q)
. (2.7)
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Equivalently,
3−X

X2 + 3X + 9
=

(
q1/18f(q1/3)f(q3)

f2(q)

)6

. (2.8)

Setting q = e−π
√
n in (2.8), employing the definition of tn from (1.1), and simplifying, we obtain

t6nX
2 +

(
3t6n + 27

)
X +

(
9t6n − 81

)
= 0. (2.9)

Solving (2.9) and noting the fact that X < 0, we obtain

X =
3
(
−9− t6n −

√
3
√

27 + 18t6n − t12
n

)
2t6n

. (2.10)

This completes the proof.

Remark 2.2. From Theorem 2.1 it is obvious that the explicit value of G(−e−π
√
n) can be eval-

uated if the explicit value of the function tn is known for the corresponding value of n. For
example, setting n = 1 in Theorem 2.1, employing the value t11 = 1 from [4, p. 314] and
solving the resulting equation, we obtain

G(−e−π
√

11) =

−5−
√

33 +

(
−1 + 3

√
3(23 + 4

√
33)
)2/3

2
(
−1 +

√
621 + 108

√
33
) .

Theorem 2.3. For any positive real number n, we have

1
G(−e−π

√
n)

+ 4G2(−e−π
√
n) =

−3
(

6− 8Jn +M +
√

3
√
(3 + 8Jn) (3− 16Jn + 2M)

)
3− 16Jn + 2M

,

where M =
√

9− 24Jn + 64J2
n.

Proof. Follows easily from (1.3) and Theorem 2.1.

Remark 2.4. From Theorem 2.3 it is clear that if we know the explicit values of Jn thenG(−e−π
√
n)

can be evaluated for the corresponding values of n. For example, setting n = 3 in Theorem 2.3,
employing the value J3 = 0 from [4, p. 310, Entry 11.1] and solving the resulting equation, we
obtain

G(−e−π
√

3) =
1− 21/3

22/3 .

Similarly, other values of Jn can be used to evaluate the explicit values of G(−e−π
√
n).
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