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Abstract. In this paper, we study constacyclic codes over the ring R = Fp + vFp + v2Fp,
where p is an odd prime and v3 = v. The polynomial generators of all constacyclic codes over
R are characterised and their dual codes are also determined.

1 Introduction

Since the discovery that many good non-linear codes over finite fields are ac- tually closely
related to linear codes over Z4 via the Gray map (see [1]), codes over finite rings have received
a great deal of attention (e.g. see [11]-[7], [9]). In these studies, most of them are concentrated
on the case that the ground rings associated with codes are finite chain rings. However, it turns
out that optimal codes over non-chain rings exist. In [2], Yildiz and Karadeniz considered linear
codes over the ring R1 = F2 + uF2 + vF2 + uvF2 with u2 = v2 = 0 and uv = vu; some good
binary codes were obtained as the images of cyclic codes over R1 under two Gray maps. In [10],
Zhu, Wang and Shi studied the structure and properties of cyclic codes over F2 + vF2, where
v2 = v; the authors showed that cyclic codes over the ring are principally generated. In the
subsequent paper [8], Zhu and Wang investigated a class of constacyclic codes over Fp + vFp
with p being an odd prime and v2 = v. It was proved that the image of a (1 − 2v)-constacyclic
code of length n over Fp + vFp under the Gray map is a distance-invariant cyclic code of length
2n over Fp and (1 − 2v)-constacyclic codes over the ring are principally generated. In [13]
constacyclic codes over Fp + vFp where studied by Guanghui and Bocong. These rings in the
mentioned papers are finite not chain rings.

In this paper, we mainly study the structure of constacyclic codes over R = Fp+ vFp+ v2Fp
of arbitrary length and also discuss the dual of these codes.

2 Breliminaries

Let Fp be the finite field of order p and Fp∗ the multiplicative group of Fp, where p is an odd
prime. It is known that Fp[x]/ 〈xn − λ〉 is a principal ideal ring for any element λ in Fp∗. If
p(x) + 〈xn − λ〉 ∈ Fp[x]/ 〈xn − λ〉, then the ideal generated by p(x) + 〈xn − λ〉, denoted by
〈p(x)〉, is the smallest ideal in Fp[x]/ 〈xn − λ〉 containing p(x)+〈xn − λ〉. In addition, we adopt
the notation [g(x)] to denote the ideal in Fp[x]/ 〈xn − λ〉 generated by g(x)+〈xn − λ〉 with g(x)
being a monic divisor of xn − λ; in that case, g(x) is called a generator polynomial. Throughout
this paper, R denotes the commutative ring Fp + vFp + v2Fp = {a + vb + v2c|a, b, c ∈ Fp}
with v3 = v. Recall that R is a principal ideal ring and has six non-trivial ideals, namely 〈v〉
= {va : a ∈ Fp}, 〈1 + v〉 = {(1 + v)b : b ∈ Fp}, 〈−1 + v〉 = {(−1 + v)c : c ∈ Fp},

〈
1− v2

〉
= {(1 − v2)d : d ∈ Fp},

〈
v + v2

〉
= {(v + v2)e : e ∈ Fp} and

〈
−v + v2

〉
= {(−v + v2)f :

f ∈ Fp}, and the maximal ideals in R are 〈v〉 , 〈1 + v〉 and 〈−1 + v〉 , hence R is not a chain
ring. Let Rn be R-module of n-tuples over R. A linear code C of length n over R is an R-
submodule of Rn. For any linear code C of length n over R, the dual C⊥ is defined as C⊥ =
{u ∈ Rn|u.w = 0 for any w ∈ C}, where u.w denotes the standard Euclidean inner product of
u and w in Rn. Note that C⊥ is linear whether or not C is linear. The Gray map ψ from R to
Fp ⊕ Fp ⊕ Fp given by ψ(c) = (a+ b, b+ c, 2a+ c), is a ring isomorphism, which means that
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R is isomorphic to the ring Fp ⊕ Fp ⊕ Fp. Therefore R is a finite Frobenius ring. If C is linear,
then |C||C⊥| = |R|n (See [6]).

Let θ be a unit in R. A linear code C of length n over R is called θ-constacyclic if for
every (c0, c1, ..., cn−1) ∈ C, we have (θcn−1, c0, c1, ..., cn−2) ∈ C. It is well known that a
θ-constacyclic code of length n over R can be identified with an ideal in the quotient ring
R[x]/ 〈xn − θ〉 via the R-module isomorphism as follows:

Rn → R[x]/ 〈xn − θ〉

(c0, c1, ..., cn−1) 7→ (c0 + c1x+ ...+ cn−1x
n−1)(mod 〈xn − θ〉).

If θ = 1, θ-constacyclic codes are just cyclic codes and while θ = −1, θ-constacyclic codes are
known as negacyclic codes.
Let A, B and C be codes over R. We denote A ⊕ B ⊕ C = {a+ b+ c|a ∈ A, b ∈ B, c ∈ C}.
Note that any element d of Rn can be expressed as d = a+ vb+ v2c = v(a+ b+ c) + (−v +
v2)(a+ c) + (1− v2)a, where a, b, c ∈ Fnp . Let C be a linear code of length n over R. Define
Cv =

{
b ∈ Fnp |va+ (−v + v2)b+ (1− v2)c ∈ C for some a, c ∈ Fnp

}
,

C−v+v2 =
{
c ∈ Fnp |va+ (−v + v2)b+ (1− v2)c ∈ C for some a, b ∈ Fnp

}
,

C1−v2 =
{
a ∈ Fnp |va+ (−v + v2)b+ (1− v2)c ∈ C for some b, c ∈ Fnp

}
.

Obviously, Cv, C−v+v2 and C1−v2 are linear codes over Fp. By definition of Cv, C−v+v2 and
C1−v2 , we have thatC can be uniquely expressed asC = vC1−v2⊕(−v+v2)Cv⊕(1−v2)C−v+v2 .
It can be routine to check that for any elements a ∈ C1−v2 , b ∈ Cv and c ∈ C−v+v2 , we get
va+ (−v + v2)b+ (1− v2)c ∈ C; in particular, |C| = |C−v+v2 ||Cv||C1−v2 |.

3 Constacyclic Codes Over The Ring R = Fp + vFp + v2Fp

In this subsection, we let Rp,n = Rp[x]/ 〈xn − θ〉 with θ = λ + vµ + v2κ being a unit in Rp,
where λ, µ and κ are elements in Fp. As usual, we identify Rn with the set of all polynomi-
als over Rp of degree less than n. Let f1(x), f2(x), ..., fs(x) ∈ Rn. The ideal generated by
f1(x), f2(x), ..., fs(x) will be denoted by 〈f1(x), f2(x), ..., fs(x)〉.
The following lemma characterizes the units in Rp.

Lemma 3.1. Let θ = λ + vµ + v2κ be an element in Rp, where λ, µ and κ are elements in Fp.
Then if θ = λ+ vµ+ v2κ is a unit of Rp, then λ 6= 0 and λ− µ+ κ 6= 0.

Proof. Suppose that θ = λ + vµ + v2κ is a unit of Rp. Then there exists elements a, b, c ∈ Fp
and θ′ = a+ vb+ v2c such that θθ′ = 1, that is; (λ+ vµ+ v2κ)(a+ vb+ v2c) = λa+ v(λb+
µa+ µc+ κb) + v2(λc+ µb+ κa+ κc) = 1. So we have the following:
λa = 1 (1),
(λ+ κ)b+ µa+ µc = 0 (2) and
(λ+ κ)c+ µb+ κa = 0 (3)
from (1) we have λ 6= 0 and a 6= 0, in (3) if λ+ κ = 0, µ = 0 we have κa = 0 and since a 6= 0,
so κ = 0, which implies that λ = 0 which is contradiction. Hence λ+ κ 6= 0 or µ 6= 0. So we
have three cases:

Case(1) : if λ+ κ 6= 0 and µ = 0, we have λ− µ+ κ 6= 0.
Case(2) : if λ+ κ = 0 and µ 6= 0, we have λ− µ+ κ 6= 0.
Case(3) : if λ + κ 6= 0 and µ 6= 0, we want to prove that λ − µ + κ 6= 0. Let for contrary that
λ− µ+ κ = 0, then λ+ κ = µ, by substituting in (2), we have µ(a+ b+ c) = 0, since µ 6= 0,
then a+ b+ c = 0, that is b+ c = −a, but by substituting in (3), we have µ(c+ b)+κa = 0, then
−µa + κa = 0, hence a(κ − µ) = 0, and since a 6= 0, then κ − µ = 0, and by the assumption
that λ− µ+ κ = 0, we have λ = 0 which make a contradiction. Therefore λ− µ+ κ 6= 0.

Note that the converse of the last Lemma is not true. For example 2 + v + 2v2 is unit in R3
but λ− µ+ κ = 2− 1 + 2 = 0.
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Theorem 3.2. Let C = vC1−v2 ⊕ (−v + v2)Cv ⊕ (1 − v2)C−v+v2 be a linear code of length n
over R. Then C is θ-constacyclic code of length n over R if and only if C1−v2 is the zero code,
Cv is (λ− µ+ κ)-constacyclic code and C−v+v2 is λ-constacyclic code of length n over Fp.

Proof. ⇒) Let (r0, r1, ..., rn−1) be an arbitrary element in C1−v2 , (q0, q1, ..., qn−1) be an arbi-
trary element in Cv and (s0, s1, ..., sn−1) be an arbitrary element in C−v+v2 . We assume that
ci = vri+(−v+v2)qi+(1−v2)si, i = 0, 1, ..., n−1; hence we get (c0, c1, ..., cn−1) ∈ C. Since
C is a θ-constacyclic code of length n over R, then (θcn−1, c0, ..., cn−2) ∈ C. Note that:
θcn−1 = (λ + vµ + v2ν)[vrn−1 + (−v + v2)qn−1 + (1 − v2)sn−1] = vλrn−1 + v2µrn−1 +
vκrn−1 + (−v + v2)λqn−1 + (−v + v2)(−µ)qn−1 + (−v + v2)κqn−1 + (1 − v2)λsn−1 =
v(λ+ κ)rn−1 + v2µrn−1 + (−v + v2)[(λ− µ+ κ)qn−1] + (1− v2)[λsn−1] ∈ C (since C is lin-
ear), then rn−1 = 0 and (θcn−1, c0, c1, ..., cn−2) = (−v+v2)((λ−µ+κ)qn−1, q0, ..., qn−2)+(1−
v2)(λsn−1, s0, ..., sn−2) ∈ C. Therefore ((λ−µ+κ)qn−1, q0, ..., qn−2) ∈ Cv and (λsn−1, s0, ..., sn−2) ∈
C−v+v2 , which implies that C1−v2 is zero code, Cv and C−v+v2 are (λ−µ+κ)-constacyclic and
λ-constacyclic codes of length n over Fp, respectively.
⇐ Suppose that C1−v2 is zero code, Cv and C−v+v2 are (λ − µ + κ)-constacyclic and λ-
constacyclic codes of length n over Fp, respectively. Let (c0, c1, ..., cn−1) ∈ C, where ci =
vri + (−v + v2)qi + (1 − v2)si, i = 0, 1, ..., n − 1. It follows that (q0, q1, ..., qn−1) ∈ Cv and
(s0, s1, ..., sn−1) ∈ C−v+v2 . Note that (θcn−1, c0, ..., cn−2) = (−v+v2)((λ−µ+κ)qn−1, q0, ..., qn−2)+
(1− v2)(λsn−1, s0, ..., sn−2) ∈ (−v+ v2)Cv ⊕ (1− v2)C−v+v2 = C. Hence C is θ-constacyclic
code of length n over R.

Theorem 3.3. Let C = vC1−v2 ⊕ (−v + v2)Cv ⊕ (1 − v2)C−v+v2 be a θ-constacyclic code of
length n over R. Then C =

〈
(−v + v2)gv(x), (1− v2)g−v+v2(x)

〉
, where gv(x) and g−v+v2(x)

are the generator polynomials of Cv and C−v+v2 , respectively.

Proof. Since Cv and C−v+v2 are (λ− µ+ κ)-constacyclic and λ-constacyclic codes of length n
over Fp, respectively, we will assume that the generator polynomials of Cv and C−v+v2 are gv(x)
and g−v+v2(x), respectively. Then (−v + v2)gv(x) ∈ (−v + v2)Cv ⊆ C and (1 − v2)g−v+v2 ∈
(1− v2)C−v+v2 ⊆ C, hence

〈
(−v + v2)gv(x), (1− v2)g−v+v2(x)

〉
⊆ C.

Let f(x) ∈ C. Since C = (−v+v2)Cv⊕(1−v2)C−v+v2 , then there are s′(x) = gv(x)s(x) ∈ Cv
and u′(x) = g−v+v2(x)u(x) ∈ C−v+v2 such that f(x) = (−v + v2)s′(x) + (1 − v2)u′(x) =
(−v + v2)gv(x)s(x) + (1 − v2)g−v+v2u(x), where s(x), u(x) ∈ Fp[x] ⊆ Rp[x]. Hence f(x) ∈〈
(−v + v2)gv(x), (1− v2)g−v+v2(x)

〉
. Therefore C ⊆

〈
(−v + v2)gv(x), (1− v2)g−v+v2(x)

〉
.

This gives that C =
〈
(−v + v2)gv(x), (1− v2)g−v+v2(x)

〉
.

Proposition 3.4. Let C = vC1−v2 ⊕ (−v + v2)Cv ⊕ (1 − v2)C−v+v2 be a θ-constacyclic code
of length n over Rp and gv(x), g−v+v2(x) are generator polynomials of Cv and C−v+v2 , respec-
tively. Then |C| = p3n − deg(gv(x)) − deg(g−v+v2 (x)).

Proof. Since |C| = |Cv||C−v+v2 ||C1−v2 |.Then, |C| = p3n − deg(gv(x)) − deg(g−v+v2 (x)).

Here we have three canonical projections defined as follows:

σ : Rp = Fp + vFp + v2Fp → Fp

va+ (−v + v2)b+ (1− v2)c 7−→ a;

ρ : Rp = Fp + vFp + v2Fp → Fp

va+ (−v + v2)b+ (1− v2)c 7−→ b;

and
τ : Rp = Fp + vFp + v2Fp → Fp

va+ (−v + v2)b+ (1− v2)c 7−→ c.

Denote by rσ, rρ and rτ the images of an element r ∈ Rp under these three projections, re-
spectively. These three projections can be extended naturally from Rnp to Fnp and from Rp[x] to
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Fp[x].
Let f(x) = a0 + a1x+ a2x

2 + ...+ an−1x
n−1, where ai ∈ Rp for 0 ≤ i ≤ n− 1, and we denote

f(x)σ = aσ0 + aσ1 x+ ...+ aσn−1x
n−1; f(x)ρ = aρ0 + aρ1x+ ...+ aρn−1x

n−1; f(x)τ = aτ0 + aτ1x+

...+ aτn−1x
n−1.

Hence f(x) has a unique expression as f(x) = vf(x)σ + (−v + v2)f(x)ρ + (1− v2)f(x)τ

For a code C of length n over Rp, a ∈ Rp. The submodule quotiont is a linear code of length n
over Rp, defined as follows:

(C : a) =
{
r ∈ Rnp |ar ∈ C

}
.

Theorem 3.5. LetC = vC1−v2⊕(−v+v2)Cv⊕(1−v2)C−v+v2 be a θ-constacyclic code of length
n overRp. If C =

〈
(−v + v2)h1(x), (1− v2)h2(x)

〉
, where h1(x), h2(x) ∈ Fp[x] are monic with

h1(x)/(xn − (λ − µ+ κ)) and h2(x)/(xn − λ), then Cv = [h1(x)] and C−v+v2 = [h2(x)], that
is, h1(x) and h2(x) are the generator polynomials of constacyclic codes of Cv and C−v+v2 ,
respectively.

Proof. We shall prove the theorem by carrying out of the following steps:
Step(1) :If C = (−v+v2)Cv⊕(1−v2)C−v+v2 , then (C : (−v+v2))ρ = Cv and (C : (1−v2))τ =
C−v+v2 .
Let a ∈ (C : (−v+v2)), then (−v+v2)a ∈ C. Setting a = vaρ+(−v+v2)aρ+(1−v2)b, where
b ∈ Fnp . Hence (−v + v2)aρ = (−v + v2)[vaρ + (−v + v2)aρ + (1− v2)b] = (−v + v2)a ∈ C.
Therefore aρ ∈ Cv, which implies that (C : (−v + v2))ρ ⊆ Cv. Let y ∈ Cv, C1−v2 , then
there exists z ∈ Fnp such that vy + (−v + v2)y + (1 − v2)z ∈ C. Note that (−v + v2)y =

(−v+v2)[vy+(−v+v2)y+(1−v2)z] ∈ (−v+v2)C ⊆ C and y = vy+(−v+v2)y+(1−v2)y,
so y ∈ (C : (−v+v2)) and yρ = y. Hence Cv ⊆ (C : (−v+v2))ρ. Therefore (C : (−v+v2))ρ =
Cv.
Let c ∈ (C : (1− v2)), then (1− v2)c ∈ C. Setting c = va′(x) + (−v + v2)b′(x) + (1− v2)cτ ,
where a′(x), b′(x) ∈ Fnp . Hence (1−v2)[va′(x)+(−v+v2)b′(x)+(1−v2)cτ ] = (1−v2)c ∈ C.
Therefore cτ ∈ C−v+v2 , which implies that (C : (1 − v2))τ ⊆ C−v+v2 . Let y ∈ C−v+v2 , then
there exists w, z ∈ Fnp such that vw + (−v + v2)z + (1 − v2)y ∈ C. Note that (1 − v2)y =

(1−v2)[vw+(−v+v2)z+(1−v2)y] ∈ (1−v2)C ⊆ C and y = vy+(−v+v2)y+(1−v2)y, so
y ∈ (C : (1− v2)) and y = yτ . Hence C−v+v2 ⊆ (C : (1− v2))τ . Therefore (C : (1− v2))τ =
C−v+v2 .

Step(2) :If C =
〈
(−v + v2)h1(x), (1− v2)h2(x)

〉
,then (C : (−v + v2))ρ = [h1(x)] and (C :

(1− v2))τ = [h2(x)].
Let f(x) ∈ (C : (−v + v2)), then (−v + v2)f(x) ∈ C. So we have that (−v + v2)f(x) =
(−v + v2)h1(x)s1(x) + (1− v2)h2(x)t1(x), for some s1(x), t1(x) ∈ Rp,n. Write
f(x) = (−v+v2)f(x)ρ+(1−v2)f(x)τ , s1(x) = (−v+v2)s1(x)ρ+(1−v2)s1(x)τ and t1(x) =
(−v + v2)t1(x)ρ + (1 − v2)t1(x)τ , where f(x)ρ, f(x)τ , s1(x)ρ, s1(x)τ , t1(x)ρ, t1(x)τ ∈ Fp[x].
Thus (−v + v2)[(−v + v2)f(x)ρ + (1− v2)f(x)τ ] = (−v + v2)h1(x)[(−v + v2)s1(x)ρ + (1−
v2)s1(x)τ ]+(1−v2)h2(x)[(−v+v2)t1(x)ρ+(1−v2)t1(x)τ ]. Thus 2(−v+v2)f(x)ρ = 2(−v+
v2)h1(x)s1(x)ρ+(1− v2)h2(x)t1(x)τ , which forces that f(x)ρ = h1(x)s1(x)ρ. This shows that
f(x)ρ ∈ [h1(x)]. Therefor (C : (−v + v2))ρ ⊆ [h1(x)]. Conversely; if f(x) ∈ [h1(x)], then
f(x) = h1(x)r1(x), for some r1(x) ∈ Fp[x]. Hence (−v + v2)f(x) = (−v + v2)h1(x)r1(x) ∈〈
(−v + v2)h1(x), (1− v2)h2(x)

〉
= C, which shows that f(x) ∈ (C : (−v + v2)); note that

f(x) = vf(x)+(−v+v2)f(x)+(1−v2)f(x), so f(x) = f(x)ρ. Hence f(x) ∈ (C : (−v+v2))ρ.
We obtain that [h1(x)] ⊆ (C : (−v + v2))ρ. Then we have (C : (−v + v2))ρ = [h1(x)].
Now we prove the second equality in this step.
Let f(x) ∈ (C : (1 − v2)), then (1 − v2)f(x) ∈ C. So we have that (1 − v2)f(x) = (−v +
v2)h1(x)s2(x) + (1− v2)h2(x)t2(x), for some s2(x), t2(x) ∈ Rnp . Write
f(x) = (−v + v2)f(x)ρ + (1 − v2)f(x)τ , s2(x) = (−v + v2)s2(x)ρ + (1 − v2)s2(x)τ and
t2(x) = (−v+ v2)t2(x)ρ + (1− v2)t2(x)τ , where f(x)ρ, f(x)τ , s2(x)ρ, s2(x)τ , t2(x)ρ, t2(x)τ ∈
Fp[x]. Thus (1 − v2)[(−v + v2)f(x)ρ + (1 − v2)f(x)τ ] = (−v + v2)h1(x)[(−v + v2)s2(x)ρ +
(1 − v2)s2(x)τ ] + (1 − v2)h2(x)[(−v + v2)t2(x)ρ + (1 − v2)t2(x)τ ]. Thus (1 − v2)f(x)τ =
2(−v + v2)h1(x)s2(x)ρ + (1 − v2)h2(x)t2(x)τ , which forces that f(x)τ = h2(x)t2(x)τ . This
shows that f(x)τ ∈ [h2(x)]. Therefore (C : (1− v2))τ ⊆ [h2(x)]. Conversely; if f(x) ∈ [h2(x)],
then f(x) = h2(x)r2(x), for some r2(x) ∈ Fp[x]. Hence (1− v2)f(x) = (1− v2)h2(x)r2(x) ∈
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〈
(−v + v2)h1(x), (1− v2)h2(x)

〉
= C, which shows that f(x) ∈ (C : (1 − v2)); note that

f(x) = vf(x)+(−v+v2)f(x)+(1−v2)f(x), so f(x) = f(x)τ . Hence f(x) ∈ (C : (1−v2))τ .
We obtain that [h2(x)] ⊆ (C : (1− v2))τ . Then we have (C : (1− v2))τ = [h2(x)].
By the above tow steps, we can obtain our desired results. Specially, h1(x) and h2(x) are the
generator polynomials of constacyclic codes Cv and C−v+v2 , respectively.

Definition 3.1. Let C = vC1−v2 ⊕ (−v + v2)Cv ⊕ (1 − v2)C−v+v2 be a θ-constacyclic code of
length n over R. We say that the set S =

{
(−v + v2)g1(x), (1− v2)g2(x)

}
is generating set

in standard form for the θ-constacyclic code C = 〈S〉 if both the following two conditions are
satisfied:

(1) for each i ∈ {1, 2}, gi(x) is either monic in Fp[x] or equals to 0;
(2) if g1(x) 6= 0, then g1(x)|(xn − (λ− µ+ κ)); if g2(x) 6= 0, then g2(x)|(xn − λ).

Now combining Theorem 3.3 and 3.5, the following result is obtained.

Theorem 3.6. Any nonzero constacyclic code C = (−v + v2)Cv ⊕ (1 − v2)C−v+v2 over R has
a unique generating set in standard form.

Corollary 3.7. Let C be an ideal in Rn, then there exists a unique polynomial g(x) = (−v +
v2)g(x)ρ+(1− v2)g(x)τ ∈ C such that C = 〈g(x)〉 with g(x)ρ and g(x)τ being monic in Fp[x].
In particular, Rn is a principal ideal ring.

Proof. According to Theorem 3.6 we have C =
〈
(−v + v2)gv(x), (1− v2)g−v+v2(x)

〉
, where{

(−v + v2)gv(x), (1− v2)g−v+v2(x)
}

is a generating set in standard form for C. Let g(x) =

(−v + v2)gv(x) + (1− v2)g−v+v2(x). Note that

2(−v + v2)gv(x) = (−v + v2)g(x) = (−v + v2)[(−v + v2)gv(x) + (1− v2)g−v+v2(x)] ∈ C

and

(1− v2)g−v+v2 = (1− v2)g(x) = (1− v2)[(−v + v2)gv(x) + (1− v2)g−v+v2(x)] ∈ C.

Hence 2(−v + v2)gv(x) + (1 − v2)g−v+v2(x) = (−v + v2)g(x) + (1 − v2)g(x) ∈ C, then
v2g(x)− vg(x)+ g(x)− v2g(x) = g(x)(1− v) ∈ C and it is belong to 〈g(x)〉. Thus C ⊆ 〈g(x)〉
and since g(x) = (−v + v2)gv(x) + (1 − v2)g−v+v2(x) ∈ C. So 〈g(x)〉 ⊆ C. Therefore
C = 〈g(x)〉.
Finally, we prove the uniqueness of such a polynomial. Suppose that C = 〈h(x)〉. Write h(x) =
(−v+v2)h(x)ρ+(1−v2)h(x)τ , where h(x)ρ and h(x)τ are monic in Fp[x]. In the following we
shall prove that h(x)ρ = gv(x) and h(x)τ = g−v+v2(x). Since C = 〈h(x)〉 and (−v+ v2)h(x) ∈
C, so h(x) ∈ (C : (−v+ v2)), that is, h(x)ρ ∈ (C : (−v+ v2))ρ = Cv. Then gv(x)|h(x)ρ, simi-
larly we have that g−v+v2(x)|h(x)τ . On the other hand, there exists some polynomial s(x) ∈ Rn
such that (−v+v2)gv(x)+(1−v2)g−v+v2(x) = [(−v+v2)sv(x)ρ+(1−v2)s−v+v2(x)τ ][(−v+
v2)h(x)ρ + (1 − v2)h(x)τ ] = 2(−v + v2)sv(x)ρh(x)ρ + (1 − v2)s−v+v2(x)τh(x)τ , it fol-
lows that 2sv(x)ρh(x)ρ = gv(x) and s−v+v2(x)τh(x)τ = g−v+v2(x). Hence h(x)ρ|gv(x) and
h(x)τ |g−v+v2(x). Therefore we obtain that h(x)ρ = gv(x) and h(x)τ = g−v+v2(x), which is the
required results.

Now we give the definition of polynomial Gray map overRn. Let f(x) ∈ Rn with degree less
than n, then f(x) can be expressed as f(x) = r(x) + vq(x) + v2s(x), where r(x), q(x), s(x) ∈
Fp[x] and their degrees are less than n. Let θ = λ+ vµ+ v2κ ∈ R∗.
Define the polynomial Gray map as follows:

Φθ : Rn → Fp[x]/(x
2n − 1).

f(x) = r(x) + vq(x) + v2s(x) 7−→ λ(λ− µ+ κ)s(x) + xn[µr(x)− κr(x)− (λ− µ+ κ)s(x)].

Obviously the above polynomial Gray map Φθ is well-defined. If µ, κ 6= 0, then the map Φθ is
bijection.

Theorem 3.8. LetC be a θ-constacyclic code of length n overRwith a generating set in standard
form

{
(−v + v2)gv(x), (1− v2)g−v+v2(x)

}
. Then Φθ(C) ⊆ 〈gv(x)g−v+v2(x)〉.
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Proof. Since gv(x)|(xn − (λ− µ+ κ)) and g−v+v2(x)|(xn − λ), then there exist q1(x), q2(x) ∈
Fp[x] such that:
xn − (λ − µ + ν) = gv(x)q1(x) and xn − λ = g−v+v2(x)q2(x). By the proof of Corollary
3.7, we have that

〈
(−v + v2)gv(x) + (1− v2)g−v+v2(x)

〉
. Let f(x) be an element in C. Then

f(x) = [(−v+v2)gv(x)+(1−v2)g−v+v2(x)]h(x), for some h(x) ∈ Rn. Since h(x) can be writ-
ten as h(x) = vh(x)σ+(−v+v2)h(x)ρ+(1−v2)h(x)τ , where h(x)σ, h(x)ρ and h(x)τ ∈ Fp[x],
it follows that
f(x) = [(−v + v2)gv(x) + (1 − v2)g−v+v2(x)][vh(x)σ + (−v + v2)h(x)ρ + (1 − v2)h(x)τ ] =
(−v2 +v)gv(x)h(x)σ+(−2v+2v2)gv(x)h(x)ρ+(1−v2)g−v+v2(x)h(x)τ = g−v+v2(x)h(x)τ+
v(gv(x)h(x)σ − 2gv(x)h(x)ρ) + v2(−gv(x)h(x)σ+ 2gv(x)h(x)ρ − g−v+v2(x)h(x)τ ). Then we
have that:
Φθ(f(x)) = λ(λ−µ+κ)[−gv(x)h(x)σ+ 2gv(x)h(x)ρ−g−v+v2(x)h(x)τ ]+ xn[µg−v+v2(x)h(x)τ−
κg−v+v2(x)h(x)τ− (λ− µ+ κ)(−gv(x)h(x)σ + 2gv(x)h(x)ρ− g−v+v2(x)h(x)τ )] =
λg−v+v2(x)h(x)τ (xn− (λ − µ + κ))− (λ − µ + κ)[−gv(x)h(x)σ+ 2gv(x)h(x)ρ](xn − λ) =
λg−v+v2(x)h(x)τgv(x)q1(x)− (λ− µ+ κ)[−gv(x)h(x)σ+ 2gv(x)h(x)ρ]g−v+v2(x)q2(x) =
λg−v+v2(x)h(x)τgv(x)q1(x)− (λ− µ+ κ)gv(x)[−h(x)σ+ 2h(x)ρ]g−v+v2q2(x) =
gv(x)g−v+v2(x)[λh(x)τq1(x)− (λ−µ+κ)(−h(x)σ+ 2h(x)ρ)q2(x)] ∈ 〈gv(x)g−v+v2(x)〉. Hence
Φθ(C) ⊆ 〈gv(x)g−v+v2(x)〉.

Corollary 3.9. Let θ = 1 + v − v2 or −1 − v + v2 and let C = vC1−v2 ⊕ (−v + v2)Cv ⊕ (1 −
v2)C−v+v2 be a θ-constacyclic code of length n over R with generating set in standard form{
(−v + v2)gv(x), (1− v2)g−v+v2(x)

}
. Then Φθ(C) = [gv(x)g−v+v2(x)].

Proof. Note that gv(x)|(xn−(λ−µ+κ)) and g−v+v2(x)|(xn−λ), where λ+vµ+v2κ = 1+v−v2

or−1−v+v2, then (xn−(λ−µ+κ))(xn−λ) = (x2n−1). Hence gv(x)g−v+v2(x)|(x2n−1), which
shows that gv(x)g−v+v2(x) is the generator polynomial for cyclic code 〈gv(x)g−v+v2(x)〉, that
is, 〈gv(x)g−v+v2(x)〉 = [gv(x)g−v+v2 ]. By Theorem 3.8, we have that Φθ(C) ⊆ [gv(x)g−v+v2 ].
On the other hand, |Φθ(C)| = |C| = p2n−deg(gv(x))−deg(g−v+v2 (x)) and |[gv(x)g−v+v2(x)]| =
p2n−deg(gv(x))−deg(g−v+v2 (x)). Hence, Φθ(C) = [gv(x)g−v+v2(x)].

For a unit θ of Rp, the θ-constacyclic shift τλ on Rp is the shift

τλ(x0, x1, ..., xn) = (λxn−1, x0, ..., xn−2)

.

Proposition 3.10. Let C be a θ-constacyclic code of length n over Rp. Then the dual code C⊥

for C is a θ-constacyclic code of length n over Rp.

Proof. Let C be a θ-constacyclic code of length n over Rp. Consider arbitrary elements x ∈ C⊥
and y ∈ C. Because C is θ-constacyclic, τn−1

θ (y) ∈ C. Thus, 0 = x.τn−1
θ (y) = λτλ−1(x).y =

τλ−1(x).y, which means that τ−1
θ (x) ∈ C⊥. Therefore, C⊥ is closed under the τ−1

θ -shift; i.e, C⊥
is a θ-constacyclic code.

Let gv(x)hv(x) = xn − (λ − µ + κ) and g−v+v2(x)h−v+v2(x) = xn − λ. Let h̃v(x) =

xdeg(hv(x))hv(
1
x) and h̃−v+v2(x) = xdeg(h−v+v2 (x))h−v+v2(x)( 1

x) be the reciprocal polynomi-
als of hv(x) and h−v+v2(x), respectively. We write h∗v(x) = 1

hv(0)
h̃v(x) and h∗−v+v2(x) =

1
h−v+v2 (0)

h̃−v+v2(x).

Theorem 3.11. Let C = vC1−v2 ⊕ (−v + v2)Cv ⊕ (1 − v2)C−v+v2 be a θ-constacyclic code of
length n over R. Then C⊥ = (−v + v2)C⊥v ⊕ (1− v2)C⊥−v+v2 .

Proof. From Theorem 3.2, Cv and C−v+v2 are constacyclic codes over Fp. Then C⊥v and C⊥−v+v2

are constacyclic code over Fp. Let gv(x) and g−v+v2(x) are generator polynomials for Cv and
C−v+v2 , respectively. Then C⊥v = [h∗v(x)] and C⊥−v+v2 = [h∗−v+v2(x)]. Thus we have that
|C⊥v | = pdeg(gv(x)) and |C⊥−v+v2 | = pdeg(g−v+v2 (x)).
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For any a ∈ C⊥v , b ∈ C⊥−v+v2 and c = (−v + v2)r + (1− v2)q ∈ C, where r ∈ Cv, q ∈ C−v+v2 ,
we have that

c.((−v + v2)a+ (1− v2)b) = ((−v + v2)r + (1− v2)q)((−v + v2)a+ (1− v2)b)

= 2(−v + v2)r.a+ (1− v2)q.b

= 0,

and hence (−v + v2)C⊥v ⊕ (1− v2)C⊥−v+v2 ⊆ C⊥.
Furthermore, suppose that (−v+v2)a+(1−v2)b = (−v+v2)a′+(1−v2)b′, where a, a′ ∈ C⊥v
and b, b′ ∈ C⊥−v+v2 , then (−v + v2)( a − a′ ) = (1 − v2)( b′ − b ), so (−v + v2)( a − a′ ) =

v2[(−v+v2)( a−a′ )] = v2[(1−v2)( b′−b )] = 0. Hence a = a′, which forces b = b′. Thus every
element c of (−v+ v2)C⊥v ⊕ (1− v2)C⊥−v+v2 has a unique expression as (−v+ v2)r+(1− v2)q,
where r ∈ C⊥v , q ∈ C⊥−v+v2 . This shows that

|(−v + v2)C⊥v ⊕ (1− v2)C⊥−v+v2 | = |C⊥v ||C⊥−v+v2 |

pdeg(gv(x))+deg(g−v+v2 (x)).

Finally, by Proposition 3.4, |C| = p3n−deg(gv(x))−deg(g−v+v2 (x)). Since Rp is a Frobenius ring,
|C||C⊥| = |Rp|n, so

|C⊥| = |Rp|
n

|C|
=

p3n

p3n−deg(gv(x))−deg(g−v+v2 (x))

= pdeg(gv(x))+deg(g−v+v2 (x))

= |(−v + v2)C⊥v ⊕ (1− v2)C⊥−v+v2 |.

Note that (−v + v2)C⊥v ⊕ (1− v2)C⊥−v+v2 ⊆ C⊥ as above, we have that C⊥ = (−v + v2)C⊥v ⊕
(1− v2)C⊥−v+v2 , as required.

Theorem 3.12. With notations as above. Let C = vC1−v2 ⊕ (−v + v2)Cv ⊕ (1− v2)C−v+v2 be
a θ-constacyclic code of length n over R with generating set in standard form{
(−v + v2)gv(x), (1− v2)g−v+v2(x)

}
. Then

(1) C⊥ =
〈
(−v + v2)h∗v(x), (1− v2)h∗−v+v2(x)

〉
and |C⊥| = pdeg(gv(x))+deg(g−v+v2 (x));

(2) C⊥ =
〈
(−v + v2)h∗v(x)⊕ (1− v2)h∗−v+v2(x)

〉
;

(3) Φθ(C⊥ ⊆
〈
h∗v(x)h

∗
−v+v2(x)

〉
.

Proof. (1) By Proposition 3.10, C⊥ is a θ-constacyclic code over Rp; by Theorem 3.11, we have
that C⊥ = (−v+v2)C⊥v ⊕ (1−v2)C⊥−v+v2 , where according to Theorem 3.2 C⊥v and C⊥−v+v2 are
two constacyclic codes over Fp. Since h∗v(x) and h∗−v+v2(x) are generator polynomials for C⊥v
and C⊥−v+v2 , respectively, we have that

{
(−v + v2)h∗v(x), (1− v2)h∗−v+v2(x)

}
is the generating

set in standard form for C⊥. So C⊥ =
〈
(−v + v2)h∗v(x), (1− v2)h∗−v+v2(x)

〉
. In addition,

|C⊥| = |C⊥v ||C⊥−v+v2 | = pdeg(gv(x)).pdeg(g−v+v2 (x)) = pdeg(gv(x))+deg(g−v+v2 (x)).

(2) Since
{
(−v + v2)h∗v(x), (1− v2)h∗−v+v2(x)

}
is the generating set in standard form for C⊥,

according to the proof of Corollary 3.7 we have that

C⊥ =
〈
(−v + v2)h∗v(x)⊕ (1− v2)h∗−v+v2(x)

〉
.
(3) Similar to the proof of Theorem 3.9.

Theorem 3.13. Let θ = 1 + v − v2 or −1− v + v2 and let C = vC1−v2 ⊕ (−v + v2)Cv ⊕ (1−
v2)C−v+v2 be a θ-constacyclic code of length n over R with generating set in standard form{
(−v + v2)gv(x), (1− v2)g−v+v2(x)

}
. Then
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(1) Φθ(C⊥) = [h∗v(x)h
∗
−v+v2(x)].

(2) Φθ(C⊥) = (Φθ(C))⊥.

Proof. (1) According to the proof of Corollary 3.9, we can obtain the result.
(2) Note the facts that

Φθ(C) = [gv(x)g−v+v2(x)] , Φθ(C
⊥) = [h∗v(x)h

∗
−v+v2(x)],

we have
Φθ(C)

⊥ = [gv(x)g−v+v2(x)]⊥

= [h∗v(x)h
∗
−v+v2(x)]

= Φθ(C
⊥),

which is the required result.

Example 3.1. In F3[x]
x3 + 1 = (x+ 1)3;

x3 − 1 = (x+ 2)3.

Let C be the (−1− v+ v2)-constacyclic code of length 3 over F3 + vF3 + v2F3 with generating
polynomial:
g(x) = (−v + v2)(x + 1) + (1 − v2)(x + 2) = v2x − vx + v2 − v + x − v2x + 2 − 2v2 =
x(1− v)− (1 + v + v2).
The Gray image Φθ(C) is a [6, 4, 2] code over F3 with generator polynomial (x+ 1)(x+ 2).
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