Constacyclic Codes Over The Ring $F_p + vF_p + v^2F_p$

Mohammed M. Al-Ashker and Mariam I. Satariah

Communicated by Taher Abualrub

MSC 2010 Classifications: Primary 94B05; Secondary 51E22.

Keywords and phrases: Constacyclic codes, Polynomial generator, Generator set in standard form.

Abstract. In this paper, we study constacyclic codes over the ring $R = F_p + vF_p + v^2F_p$, where p is an odd prime and $v^3 = v$. The polynomial generators of all constacyclic codes over R are characterised and their dual codes are also determined.

1 Introduction

Since the discovery that many good non-linear codes over finite fields are ac- tually closely related to linear codes over Z_4 via the Gray map (see [1]), codes over finite rings have received a great deal of attention (e.g. see [11]-[7], [9]). In these studies, most of them are concentrated on the case that the ground rings associated with codes are finite chain rings. However, it turns out that optimal codes over non-chain rings exist. In [2], Yildiz and Karadeniz considered linear codes over the ring $R_1 = F_2 + uF_2 + vF_2 + uvF_2$ with $u^2 = v^2 = 0$ and uv = vu; some good binary codes were obtained as the images of cyclic codes over R_1 under two Gray maps. In [10], Zhu, Wang and Shi studied the structure and properties of cyclic codes over $F_2 + vF_2$, where $v^2 = v$; the authors showed that cyclic codes over the ring are principally generated. In the subsequent paper [8], Zhu and Wang investigated a class of constacyclic codes over $F_p + vF_p$ with p being an odd prime and $v^2 = v$. It was proved that the image of a (1 - 2v)-constacyclic code of length n over $F_p + vF_p$ under the Gray map is a distance-invariant cyclic code of length 2n over F_p and (1 - 2v)-constacyclic codes over the ring are principally generated. In [13] constacyclic codes over $F_p + vF_p$ where studied by Guanghui and Bocong. These rings in the mentioned papers are finite not chain rings.

In this paper, we mainly study the structure of constacyclic codes over $R = F_p + vF_p + v^2F_p$ of arbitrary length and also discuss the dual of these codes.

2 Breliminaries

Let F_p be the finite field of order p and F_p^* the multiplicative group of F_p , where p is an odd prime. It is known that $F_p[x]/\langle x^n - \lambda \rangle$ is a principal ideal ring for any element λ in F_p^* . If $p(x) + \langle x^n - \lambda \rangle \in F_p[x]/\langle x^n - \lambda \rangle$, then the ideal generated by $p(x) + \langle x^n - \lambda \rangle$, denoted by $\langle p(x) \rangle$, is the smallest ideal in $F_p[x]/\langle x^n - \lambda \rangle$ containing $p(x) + \langle x^n - \lambda \rangle$. In addition, we adopt the notation [g(x)] to denote the ideal in $F_p[x]/\langle x^n - \lambda \rangle$ generated by $g(x) + \langle x^n - \lambda \rangle$ with g(x) being a monic divisor of $x^n - \lambda$; in that case, g(x) is called a generator polynomial. Throughout this paper, R denotes the commutative ring $F_p + vF_p + v^2F_p = \{a + vb + v^2c|a, b, c \in F_p\}$ with $v^3 = v$. Recall that R is a principal ideal ring and has six non-trivial ideals, namely $\langle v \rangle = \{va : a \in F_p\}, \langle 1 + v \rangle = \{(1 + v)b : b \in F_p\}, \langle -1 + v \rangle = \{(-1 + v)c : c \in F_p\}, \langle 1 - v^2 \rangle = \{(1 - v^2)d : d \in F_p\}, \langle v + v^2 \rangle = \{(v + v^2)e : e \in F_p\}$ and $\langle -v + v^2 \rangle = \{(-v + v^2)f : f \in F_p\}$, and the maximal ideals in R are $\langle v \rangle, \langle 1 + v \rangle$ and $\langle -1 + v \rangle$, hence R is not a chain ring. Let R^n be R-module of n-tuples over R. A linear code C of length n over R is an R-submodule of R^n . For any linear code C of length n over R, the dual C^{\perp} is defined as $C^{\perp} = \{u \in R^n | u.w = 0 \text{ for any } w \in C\}$, where u.w denotes the standard Euclidean inner product of u and w in R^n . Note that C^{\perp} is linear whether or not C is linear. The Gray map ψ from R to $F_p \oplus F_p \oplus F_p$ given by $\psi(c) = (a + b, b + c, 2a + c)$, is a ring isomorphism, which means that

R is isomorphic to the ring $F_p \oplus F_p \oplus F_p$. Therefore *R* is a finite Frobenius ring. If *C* is linear, then $|C||C^{\perp}| = |R|^n$ (See [6]).

Let θ be a unit in R. A linear code C of length n over R is called θ -constacyclic if for every $(c_0, c_1, ..., c_{n-1}) \in C$, we have $(\theta c_{n-1}, c_0, c_1, ..., c_{n-2}) \in C$. It is well known that a θ -constacyclic code of length n over R can be identified with an ideal in the quotient ring $R[x]/\langle x^n - \theta \rangle$ via the R-module isomorphism as follows:

$$R^n \to R[x]/\langle x^n - \theta \rangle$$

$$(c_0, c_1, ..., c_{n-1}) \mapsto (c_0 + c_1 x + ... + c_{n-1} x^{n-1}) (mod \langle x^n - \theta \rangle).$$

If $\theta = 1$, θ -constacyclic codes are just cyclic codes and while $\theta = -1$, θ -constacyclic codes are known as negacyclic codes.

Let A, B and C be codes over R. We denote $A \oplus B \oplus C = \{a+b+c | a \in A, b \in B, c \in C\}$. Note that any element d of \mathbb{R}^n can be expressed as $d = a + vb + v^2c = v(a+b+c) + (-v+v^2)(a+c) + (1-v^2)a$, where $a, b, c \in F_p^n$. Let C be a linear code of length n over R. Define $C_v = \{b \in F_p^n | va + (-v+v^2)b + (1-v^2)c \in C \text{ for some } a, c \in F_p^n\}, C_{-v+v^2} = \{c \in F_p^n | va + (-v+v^2)b + (1-v^2)c \in C \text{ for some } a, b \in F_p^n\}, C_{1-v^2} = \{a \in F_p^n | va + (-v+v^2)b + (1-v^2)c \in C \text{ for some } b, c \in F_p^n\}.$ Obviously, C_v, C_{-v+v^2} and C_{1-v^2} are linear codes over F_p . By definition of C_v, C_{-v+v^2} and C_{1-v^2} , we have that C can be uniquely expressed as $C = vC_{1-v^2} \oplus (-v+v^2)C_v \oplus (1-v^2)C_{-v+v^2}.$ It can be routine to check that for any elements $a \in C_{1-v^2}, b \in C_v$ and $c \in C_{-v+v^2}$, we get

 $va + (-v + v^2)b + (1 - v^2)c \in C$; in particular, $|C| = |C_{-v+v^2}||C_v||C_{1-v^2}|$.

3 Constacyclic Codes Over The Ring $R = F_p + vF_p + v^2F_p$

In this subsection, we let $R_{p,n} = R_p[x]/\langle x^n - \theta \rangle$ with $\theta = \lambda + v\mu + v^2\kappa$ being a unit in R_p , where λ , μ and κ are elements in F_p . As usual, we identify R_n with the set of all polynomials over R_p of degree less than n. Let $f_1(x), f_2(x), ..., f_s(x) \in R_n$. The ideal generated by $f_1(x), f_2(x), ..., f_s(x)$ will be denoted by $\langle f_1(x), f_2(x), ..., f_s(x) \rangle$. The following lemma characterizes the units in R_p .

Lemma 3.1. Let $\theta = \lambda + v\mu + v^2\kappa$ be an element in R_p , where λ , μ and κ are elements in F_p . Then if $\theta = \lambda + v\mu + v^2\kappa$ is a unit of R_p , then $\lambda \neq 0$ and $\lambda - \mu + \kappa \neq 0$.

Proof. Suppose that $\theta = \lambda + v\mu + v^2\kappa$ is a unit of R_p . Then there exists elements $a, b, c \in F_p$ and $\theta' = a + vb + v^2c$ such that $\theta\theta' = 1$, that is; $(\lambda + v\mu + v^2\kappa)(a + vb + v^2c) = \lambda a + v(\lambda b + \mu a + \mu c + \kappa b) + v^2(\lambda c + \mu b + \kappa a + \kappa c) = 1$. So we have the following:

 $\lambda a = 1$ (1), ($\lambda + \kappa$) $b + \mu a + \mu c = 0$ (2) and

 $(\lambda + \kappa)c + \mu b + \kappa a = 0 \quad (3)$

from (1) we have $\lambda \neq 0$ and $a \neq 0$, in (3) if $\lambda + \kappa = 0$, $\mu = 0$ we have $\kappa a = 0$ and since $a \neq 0$, so $\kappa = 0$, which implies that $\lambda = 0$ which is contradiction. Hence $\lambda + \kappa \neq 0$ or $\mu \neq 0$. So we have three cases:

Case(1) : if $\lambda + \kappa \neq 0$ and $\mu = 0$, we have $\lambda - \mu + \kappa \neq 0$.

Case(2) : if $\lambda + \kappa = 0$ and $\mu \neq 0$, we have $\lambda - \mu + \kappa \neq 0$.

Case(3) : if $\lambda + \kappa \neq 0$ and $\mu \neq 0$, we want to prove that $\lambda - \mu + \kappa \neq 0$. Let for contrary that $\lambda - \mu + \kappa = 0$, then $\lambda + \kappa = \mu$, by substituting in (2), we have $\mu(a + b + c) = 0$, since $\mu \neq 0$, then a + b + c = 0, that is b + c = -a, but by substituting in (3), we have $\mu(c+b) + \kappa a = 0$, then $-\mu a + \kappa a = 0$, hence $a(\kappa - \mu) = 0$, and since $a \neq 0$, then $\kappa - \mu = 0$, and by the assumption that $\lambda - \mu + \kappa = 0$, we have $\lambda = 0$ which make a contradiction. Therefore $\lambda - \mu + \kappa \neq 0$. \Box

Note that the converse of the last Lemma is not true. For example $2 + v + 2v^2$ is unit in R_3 but $\lambda - \mu + \kappa = 2 - 1 + 2 = 0$.

Theorem 3.2. Let $C = vC_{1-v^2} \oplus (-v+v^2)C_v \oplus (1-v^2)C_{-v+v^2}$ be a linear code of length n over R. Then C is θ -constacyclic code of length n over R if and only if C_{1-v^2} is the zero code, C_v is $(\lambda - \mu + \kappa)$ -constacyclic code and C_{-v+v^2} is λ -constacyclic code of length n over F_p .

Proof. ⇒) Let $(r_0, r_1, ..., r_{n-1})$ be an arbitrary element in C_{1-v^2} , $(q_0, q_1, ..., q_{n-1})$ be an arbitrary element in C_{v+v^2} . We assume that $c_i = vr_i + (-v+v^2)q_i + (1-v^2)s_i$, i = 0, 1, ..., n-1; hence we get $(c_0, c_1, ..., c_{n-1}) \in C$. Since C is a θ-constacyclic code of length n over R, then $(\theta c_{n-1}, c_0, ..., c_{n-2}) \in C$. Note that: $\theta c_{n-1} = (\lambda + v\mu + v^2\nu)[vr_{n-1} + (-v + v^2)q_{n-1} + (1 - v^2)s_{n-1}] = v\lambda r_{n-1} + v^2\mu r_{n-1} + v\kappa r_{n-1} + (-v + v^2)\lambda q_{n-1} + (-v + v^2)(-\mu)q_{n-1} + (-v + v^2)\kappa q_{n-1} + (1 - v^2)\lambda s_{n-1} = v(\lambda + \kappa)r_{n-1} + v^2\mu r_{n-1} + (-v + v^2)[(\lambda - \mu + \kappa)q_{n-1}] + (1 - v^2)[\lambda s_{n-1}] \in C$ (since C is linear), then $r_{n-1} = 0$ and $(\theta c_{n-1}, c_0, c_1, ..., c_{n-2}) = (-v + v^2)((\lambda - \mu + \kappa)q_{n-1}, q_0, ..., q_{n-2}) + (1 - v^2)(\lambda s_{n-1}, s_0, ..., s_{n-2}) \in C$. Therefore $((\lambda - \mu + \kappa)q_{n-1}, q_0, ..., q_{n-2}) + (1 - v^2)(\lambda s_{n-1}, s_0, ..., s_{n-2}) \in C$. Therefore $(\lambda - \mu + \kappa)q_{n-1}, q_0, ..., q_{n-2}) + (1 - v^2)(\lambda s_{n-1}, s_0, ..., s_{n-2}) \in C$. Therefore $(\lambda - \mu + \kappa)q_{n-1}, q_0, ..., q_{n-2}) + (1 - v^2)(\lambda s_{n-1}, s_0, ..., s_{n-2}) \in C$. Therefore $(\lambda - \mu + \kappa)q_{n-1}, q_0, ..., q_{n-2}) + (1 - v^2)(\lambda s_{n-1}, s_0, ..., s_{n-2}) \in C$. Therefore $(\lambda - \mu + \kappa)q_{n-1}, q_0, ..., q_{n-2}) + (1 - v^2)(\lambda s_{n-1}, s_0, ..., s_{n-2}) \in C$. Therefore $(\lambda - \mu + \kappa)q_{n-1}, q_0, ..., q_{n-2}) + (1 - v^2)(\lambda s_{n-1}, s_0, ..., s_{n-2}) \in C$. Therefore $(\lambda - \mu + \kappa)q_{n-1}, q_0, ..., q_{n-2}) \in C_v$ and $(\lambda s_{n-1}, s_0, ..., s_{n-2}) \in C_{-v+v^2}$, which implies that C_{1-v^2} is zero code, C_v and C_{-v+v^2} are $(\lambda - \mu + \kappa)$ -constacyclic and λ -constacyclic codes of length n over F_p , respectively.

 $\begin{array}{l} \Leftarrow \text{ Suppose that } C_{1-v^2} \text{ is zero code, } C_v \text{ and } C_{-v+v^2} \text{ are } (\lambda - \mu + \kappa) \text{-constacyclic and } \lambda \text{-constacyclic codes of length } n \text{ over } F_p, \text{ respectively. Let } (c_0, c_1, \ldots, c_{n-1}) \in C, \text{ where } c_i = vr_i + (-v + v^2)q_i + (1 - v^2)s_i, i = 0, 1, \ldots, n-1. \text{ It follows that } (q_0, q_1, \ldots, q_{n-1}) \in C_v \text{ and } (s_0, s_1, \ldots, s_{n-1}) \in C_{-v+v^2}. \text{ Note that } (\theta c_{n-1}, c_0, \ldots, c_{n-2}) = (-v+v^2)((\lambda - \mu + \kappa)q_{n-1}, q_0, \ldots, q_{n-2}) + (1 - v^2)(\lambda s_{n-1}, s_0, \ldots, s_{n-2}) \in (-v + v^2)C_v \oplus (1 - v^2)C_{-v+v^2} = C. \text{ Hence } C \text{ is } \theta \text{-constacyclic code of length } n \text{ over } R. \end{array}$

Theorem 3.3. Let $C = vC_{1-v^2} \oplus (-v+v^2)C_v \oplus (1-v^2)C_{-v+v^2}$ be a θ -constacyclic code of length n over R. Then $C = \langle (-v+v^2)g_v(x), (1-v^2)g_{-v+v^2}(x) \rangle$, where $g_v(x)$ and $g_{-v+v^2}(x)$ are the generator polynomials of C_v and C_{-v+v^2} , respectively.

Proof. Since C_v and C_{-v+v^2} are $(\lambda - \mu + \kappa)$ -constacyclic and λ -constacyclic codes of length n over F_p , respectively, we will assume that the generator polynomials of C_v and C_{-v+v^2} are $g_v(x)$ and $g_{-v+v^2}(x)$, respectively. Then $(-v + v^2)g_v(x) \in (-v + v^2)C_v \subseteq C$ and $(1 - v^2)g_{-v+v^2} \in (1 - v^2)C_{-v+v^2} \subseteq C$, hence $\langle (-v + v^2)g_v(x), (1 - v^2)g_{-v+v^2}(x) \rangle \subseteq C$. Let $f(x) \in C$. Since $C = (-v+v^2)C_v \oplus (1 - v^2)C_{-v+v^2}$, then there are $s'(x) = g_v(x)s(x) \in C_v$ and $u'(x) = g_{-v+v^2}(x)u(x) \in C_{-v+v^2}$ such that $f(x) = (-v + v^2)s'(x) + (1 - v^2)u'(x) = (-v + v^2)g_v(x)s(x) + (1 - v^2)g_{-v+v^2}u(x)$, where $s(x), u(x) \in F_p[x] \subseteq R_p[x]$. Hence $f(x) \in \langle (-v + v^2)g_v(x), (1 - v^2)g_{-v+v^2}(x) \rangle$. This gives that $C = \langle (-v + v^2)g_v(x), (1 - v^2)g_{-v+v^2}(x) \rangle$.

Proposition 3.4. Let $C = vC_{1-v^2} \oplus (-v+v^2)C_v \oplus (1-v^2)C_{-v+v^2}$ be a θ -constacyclic code of length n over R_p and $g_v(x)$, $g_{-v+v^2}(x)$ are generator polynomials of C_v and C_{-v+v^2} , respectively. Then $|C| = p^{3n - \deg(g_v(x)) - \deg(g_{-v+v^2}(x))}$.

Proof. Since
$$|C| = |C_v||C_{-v+v^2}||C_{1-v^2}|$$
. Then, $|C| = p^{3n - \deg(g_v(x)) - \deg(g_{-v+v^2}(x))}$.

Here we have three canonical projections defined as follows:

$$\sigma: R_p = F_p + vF_p + v^2F_p \to F_p$$
$$va + (-v + v^2)b + (1 - v^2)c \longmapsto a;$$
$$\rho: R_p = F_p + vF_p + v^2F_p \to F_p$$
$$va + (-v + v^2)b + (1 - v^2)c \longmapsto b;$$

and

$$\tau: R_p = F_p + vF_p + v^2F_p \to F_p$$
$$va + (-v + v^2)b + (1 - v^2)c \longmapsto c$$

Denote by r^{σ} , r^{ρ} and r^{τ} the images of an element $r \in R_p$ under these three projections, respectively. These three projections can be extended naturally from R_p^n to F_p^n and from $R_p[x]$ to

 $F_p[x].$ Let $f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1}$, where $a_i \in R_p$ for $0 \le i \le n-1$, and we denote $f(x)^{\sigma} = a_0^{\sigma} + a_1^{\sigma} x + \dots + a_{n-1}^{\sigma} x^{n-1}$; $f(x)^{\rho} = a_0^{\rho} + a_1^{\rho} x + \dots + a_{n-1}^{\rho} x^{n-1}$; $f(x)^{\tau} = a_0^{\tau} + a_1^{\tau} x + \dots + a_{n-1}^{\sigma} x^{n-1}$; $f(x)^{\sigma} = a_0^{\tau} + a_1^{\tau} x + \dots + a_{n-1}^{\sigma} x^{n-1}$; $f(x)^{\sigma} = a_0^{\tau} + a_1^{\tau} x + \dots + a_{n-1}^{\sigma} x^{n-1}$; $f(x)^{\sigma} = a_0^{\tau} + a_1^{\tau} x + \dots + a_{n-1}^{\sigma} x^{n-1}$; $f(x)^{\sigma} = a_0^{\tau} + a_1^{\tau} x + \dots + a_{n-1}^{\sigma} x^{n-1}$; $f(x)^{\sigma} = a_0^{\tau} + a_1^{\tau} x + \dots + a_{n-1}^{\sigma} x^{n-1}$; $f(x)^{\sigma} = a_0^{\tau} + a_1^{\tau} x + \dots + a_{n-1}^{\sigma} x^{n-1}$; $f(x)^{\sigma} = a_0^{\tau} + a_1^{\tau} x + \dots + a_{n-1}^{\sigma} x^{n-1}$; $f(x)^{\sigma} = a_0^{\tau} + a_1^{\tau} x + \dots + a_{n-1}^{\tau} x^{n-1}$; $f(x)^{\sigma} = a_0^{\tau} + a_1^{\tau} x + \dots + a_{n-1}^{\tau} x^{n-1}$; $f(x)^{\sigma} = a_0^{\tau} + a_1^{\tau} x + \dots + a_{n-1}^{\tau} x^{n-1}$; $f(x)^{\sigma} = a_0^{\tau} + a_1^{\tau} x + \dots + a_{n-1}^{\tau} x^{n-1}$; $f(x)^{\sigma} = a_0^{\tau} + a_1^{\tau} x + \dots + a_{n-1}^{\tau} x^{n-1}$; $f(x)^{\sigma} = a_0^{\tau} + a_1^{\tau} x^{n-1}$; $f(x)^{\sigma} = a_0^{\tau} + a_1^{\tau} x + \dots + a_{n-1}^{\tau} x^{n-1}$; $f(x)^{\sigma} = a_0^{\tau} + a_1^{\tau} x + \dots + a_{n-1}^{\tau} x^{n-1}$; $f(x)^{\sigma} = a_0^{\tau} + a_1^{\tau} x + \dots + a_{n-1}^{\tau} x^{n-1}$; $f(x)^{\sigma} = a_0^{\tau} + a_1^{\tau} + a_1^{\tau} x^{n-1}$; $f(x)^{\sigma} = a_0^{\tau} + a_1^{\tau} x^{n-1}$; $f(x)^$ $\dots + a_{n-1}^{\tau} x^{n-1}.$

Hence f(x) has a unique expression as $f(x) = vf(x)^{\sigma} + (-v + v^2)f(x)^{\rho} + (1 - v^2)f(x)^{\tau}$ For a code C of length n over R_p , $a \in R_p$. The submodule quotiont is a linear code of length n over R_p , defined as follows:

$$(C:a) = \left\{ r \in \mathbb{R}_p^n | ar \in C \right\}.$$

Theorem 3.5. Let $C = vC_{1-v^2} \oplus (-v+v^2)C_v \oplus (1-v^2)C_{-v+v^2}$ be a θ -constacyclic code of length n over R_p . If $C = \langle (-v + v^2)h_1(x), (1 - v^2)h_2(x) \rangle$, where $h_1(x), h_2(x) \in F_p[x]$ are monic with $h_1(x)/(x^n - (\lambda - \mu + \kappa))$ and $h_2(x)/(x^n - \lambda)$, then $C_v = [h_1(x)]$ and $C_{-v+v^2} = [h_2(x)]$, that is, $h_1(x)$ and $h_2(x)$ are the generator polynomials of constacyclic codes of C_v and C_{-v+v^2} , respectively.

Proof. We shall prove the theorem by carrying out of the following steps: Step(1) : If $C = (-v+v^2)C_v \oplus (1-v^2)C_{-v+v^2}$, then $(C:(-v+v^2))^{\rho} = C_v$ and $(C:(1-v^2))^{\tau} =$ $C_{-v+v^2}.$ Let $a \in (C : (-v+v^2))$, then $(-v+v^2)a \in C$. Setting $a = va^{\rho} + (-v+v^2)a^{\rho} + (1-v^2)b$, where

 $b \in F_p^n$. Hence $(-v+v^2)a^{\rho} = (-v+v^2)[va^{\rho}+(-v+v^2)a^{\rho}+(1-v^2)b] = (-v+v^2)a \in C$. Therefore $a^{\rho} \in C_v$, which implies that $(C : (-v + v^2))^{\rho} \subseteq C_v$. Let $y \in C_v, C_{1-v^2}$, then there exists $z \in F_p^n$ such that $vy + (-v + v^2)y + (1 - v^2)z \in C$. Note that $(-v + v^2)y =$ $(-v+v^2)[vy+(-v+v^2)y+(1-v^2)z] \in (-v+v^2)C \subseteq C \text{ and } y = vy+(-v+v^2)y+(1-v^2)y,$ so $y \in (C: (-v+v^2))$ and $y^{\rho} = y$. Hence $C_v \subseteq (C: (-v+v^2))^{\rho}$. Therefore $(C: (-v+v^2))^{\rho} =$ C_v .

Let $c \in (C: (1-v^2))$, then $(1-v^2)c \in C$. Setting $c = va'(x) + (-v+v^2)b'(x) + (1-v^2)c^{\tau}$, where $a'(x), b'(x) \in F_p^n$. Hence $(1-v^2)[va'(x) + (-v+v^2)b'(x) + (1-v^2)c^{\tau}] = (1-v^2)c \in C$. Therefore $c^{\tau} \in C_{-v+v^2}$, which implies that $(C:(1-v^2))^{\tau} \subseteq C_{-v+v^2}$. Let $y \in C_{-v+v^2}$, then there exists $w, z \in F_p^n$ such that $vw + (-v+v^2)z + (1-v^2)y \in C$. Note that $(1-v^2)y = (1-v^2)y \in C$. $(1-v^2)[vw+(-v+v^2)z+(1-v^2)y] \in (1-v^2)C \subseteq C$ and $y=vy+(-v+v^2)y+(1-v^2)y$, so $y \in (C:(1-v^2))$ and $y = y^{\tau}$. Hence $C_{-v+v^2} \subseteq (C:(1-v^2))^{\tau}$. Therefore $(C:(1-v^2))^{\tau} = (C(1-v^2))^{\tau}$. $C_{-v+v^2}.$

Step(2) : If $C = \langle (-v + v^2)h_1(x), (1 - v^2)h_2(x) \rangle$, then $(C : (-v + v^2))^{\rho} = [h_1(x)]$ and $(C : (-v + v^2)h_1(x), (1 - v^2)h_2(x))$. $(1-v^2))^{\tau} = [h_2(x)].$

Let $f(x) \in (C : (-v + v^2))$, then $(-v + v^2)f(x) \in C$. So we have that $(-v + v^2)f(x) = (-v + v^2)f(x)$ $(-v+v^2)h_1(x)s_1(x) + (1-v^2)h_2(x)t_1(x)$, for some $s_1(x), t_1(x) \in R_{p,n}$. Write

 $f(x) = (-v + v^2)f(x)^{\rho} + (1 - v^2)f(x)^{\tau}, s_1(x) = (-v + v^2)s_1(x)^{\rho} + (1 - v^2)s_1(x)^{\tau}$ and $t_1(x) = (-v + v^2)s_1(x)^{\rho} + (1 - v^2)s_1(x)^{\tau}$ $(-v+v^2)t_1(x)^{\rho} + (1-v^2)t_1(x)^{\tau}$, where $f(x)^{\rho}$, $f(x)^{\tau}$, $s_1(x)^{\rho}$, $s_1(x)^{\tau}$, $t_1(x)^{\rho}$, $t_1(x)^{\tau} \in F_p[x]$. Thus $(-v + v^2)[(-v + v^2)f(x)^{\rho} + (1 - v^2)f(x)^{\tau}] = (-v + v^2)h_1(x)[(-v + v^2)s_1(x)^{\rho} + (1 - v^2)s_1(x)^{\rho}]$ $v^{2}s_{1}(x)^{\tau}$] + $(1-v^{2})h_{2}(x)[(-v+v^{2})t_{1}(x)^{\rho}+(1-v^{2})t_{1}(x)^{\tau}]$. Thus $2(-v+v^{2})f(x)^{\rho}=2(-v+v^{2})f(x)^{\rho}$ $v^{2}h_{1}(x)s_{1}(x)^{\rho} + (1-v^{2})h_{2}(x)t_{1}(x)^{\tau}$, which forces that $f(x)^{\rho} = h_{1}(x)s_{1}(x)^{\rho}$. This shows that $f(x)^{\rho} \in [h_1(x)]$. Therefor $(C: (-v+v^2))^{\rho} \subseteq [h_1(x)]$. Conversely; if $f(x) \in [h_1(x)]$, then $f(x) = h_1(x)r_1(x)$, for some $r_1(x) \in F_p[x]$. Hence $(-v + v^2)f(x) = (-v + v^2)h_1(x)r_1(x) \in V_p[x]$ $\langle (-v+v^2)h_1(x), (1-v^2)h_2(x) \rangle = C$, which shows that $f(x) \in (C : (-v+v^2))$; note that $f(x) = vf(x) + (-v+v^2)f(x) + (1-v^2)f(x)$, so $f(x) = f(x)^{\rho}$. Hence $f(x) \in (C:(-v+v^2))^{\rho}$. We obtain that $[h_1(x)] \subseteq (C : (-v + v^2))^{\rho}$. Then we have $(C : (-v + v^2))^{\rho} = [h_1(x)]$. Now we prove the second equality in this step.

Let $f(x) \in (C: (1-v^2))$, then $(1-v^2)f(x) \in C$. So we have that $(1-v^2)f(x) = (-v + v^2)f(x)$

 $\begin{aligned} & h_{1}(x) = (-v + v^{2})f(x)^{\rho} + (1 - v^{2})f(x)^{\tau}, s_{2}(x) = (-v + v^{2})s_{2}(x)^{\rho} + (1 - v^{2})f(x)^{\tau}, \\ & f(x) = (-v + v^{2})f(x)^{\rho} + (1 - v^{2})f(x)^{\tau}, \\ & s_{2}(x) = (-v + v^{2})s_{2}(x)^{\rho} + (1 - v^{2})f(x)^{\tau}, \\ & s_{2}(x) = (-v + v^{2})t_{2}(x)^{\rho} + (1 - v^{2})t_{2}(x)^{\tau}, \\ & h_{2}(x) = (-v + v^{2})t_{2}(x)^{\rho} + (1 - v^{2})t_{2}(x)^{\tau}, \\ & h_{2}(x) = (-v + v^{2})t_{2}(x)^{\rho} + (1 - v^{2})t_{2}(x)^{\tau}, \\ & h_{2}(x) = (-v + v^{2})t_{2}(x)^{\rho} + (1 - v^{2})t_{2}(x)^{\tau}, \\ & h_{2}(x) = (-v + v^{2})t_{2}(x)^{\rho} + (1 - v^{2})t_{2}(x)^{\tau}, \\ & h_{2}(x) = (-v + v^{2})t_{2}(x)^{\rho} + (1 - v^{2})t_{2}(x)^{\tau}, \\ & h_{2}(x) = (-v + v^{2})t_{2}(x)^{\rho} + (1 - v^{2})t_{2}(x)^{\tau} \\ & h_{2}(x) = (-v + v^{2})t_{2}(x)^{\tau} + (1 - v^{2})t_{2}(x)^{\tau} \\ & h_{2}(x) = (-v + v^{2})t_{2}(x) \\$ $2(-v+v^2)h_1(x)s_2(x)^{\rho}+(1-v^2)h_2(x)t_2(x)^{\tau}$, which forces that $f(x)^{\tau}=h_2(x)t_2(x)^{\tau}$. This shows that $f(x)^{\tau} \in [h_2(x)]$. Therefore $(C:(1-v^2))^{\tau} \subseteq [h_2(x)]$. Conversely, if $f(x) \in [h_2(x)]$, then $f(x) = h_2(x)r_2(x)$, for some $r_2(x) \in F_p[x]$. Hence $(1 - v^2)f(x) = (1 - v^2)h_2(x)r_2(x) \in V_2(x)$

 $\langle (-v+v^2)h_1(x), (1-v^2)h_2(x) \rangle = C$, which shows that $f(x) \in (C : (1-v^2))$; note that $f(x) = vf(x) + (-v+v^2)f(x) + (1-v^2)f(x)$, so $f(x) = f(x)^{\tau}$. Hence $f(x) \in (C : (1-v^2))^{\tau}$. We obtain that $[h_2(x)] \subseteq (C : (1-v^2))^{\tau}$. Then we have $(C : (1-v^2))^{\tau} = [h_2(x)]$.

By the above tow steps, we can obtain our desired results. Specially, $h_1(x)$ and $h_2(x)$ are the generator polynomials of constacyclic codes C_v and C_{-v+v^2} , respectively.

Definition 3.1. Let $C = vC_{1-v^2} \oplus (-v + v^2)C_v \oplus (1 - v^2)C_{-v+v^2}$ be a θ -constacyclic code of length n over R. We say that the set $S = \{(-v + v^2)g_1(x), (1 - v^2)g_2(x)\}$ is generating set in standard form for the θ -constacyclic code $C = \langle S \rangle$ if both the following two conditions are satisfied:

(1) for each $i \in \{1, 2\}$, $g_i(x)$ is either monic in $F_p[x]$ or equals to 0;

(2) if $g_1(x) \neq 0$, then $g_1(x)|(x^n - (\lambda - \mu + \kappa));$ if $g_2(x) \neq 0$, then $g_2(x)|(x^n - \lambda).$

Now combining Theorem 3.3 and 3.5, the following result is obtained.

Theorem 3.6. Any nonzero constacyclic code $C = (-v + v^2)C_v \oplus (1 - v^2)C_{-v+v^2}$ over R has a unique generating set in standard form.

Corollary 3.7. Let C be an ideal in R_n , then there exists a unique polynomial $g(x) = (-v + v^2)g(x)^{\rho} + (1 - v^2)g(x)^{\tau} \in C$ such that $C = \langle g(x) \rangle$ with $g(x)^{\rho}$ and $g(x)^{\tau}$ being monic in $F_p[x]$. In particular, R_n is a principal ideal ring.

Proof. According to Theorem 3.6 we have $C = \langle (-v+v^2)g_v(x), (1-v^2)g_{-v+v^2}(x) \rangle$, where $\{(-v+v^2)g_v(x), (1-v^2)g_{-v+v^2}(x)\}$ is a generating set in standard form for C. Let $g(x) = (-v+v^2)g_v(x) + (1-v^2)g_{-v+v^2}(x)$. Note that

$$2(-v+v^2)g_v(x) = (-v+v^2)g(x) = (-v+v^2)[(-v+v^2)g_v(x) + (1-v^2)g_{-v+v^2}(x)] \in C$$

and

$$(1-v^2)g_{-v+v^2} = (1-v^2)g(x) = (1-v^2)[(-v+v^2)g_v(x) + (1-v^2)g_{-v+v^2}(x)] \in C.$$

Hence $2(-v + v^2)g_v(x) + (1 - v^2)g_{-v+v^2}(x) = (-v + v^2)g(x) + (1 - v^2)g(x) \in C$, then $v^2g(x) - vg(x) + g(x) - v^2g(x) = g(x)(1 - v) \in C$ and it is belong to $\langle g(x) \rangle$. Thus $C \subseteq \langle g(x) \rangle$ and since $g(x) = (-v + v^2)g_v(x) + (1 - v^2)g_{-v+v^2}(x) \in C$. So $\langle g(x) \rangle \subseteq C$. Therefore $C = \langle g(x) \rangle$.

Finally, we prove the uniqueness of such a polynomial. Suppose that $C = \langle h(x) \rangle$. Write $h(x) = (-v+v^2)h(x)^{\rho} + (1-v^2)h(x)^{\tau}$, where $h(x)^{\rho}$ and $h(x)^{\tau}$ are monic in $F_p[x]$. In the following we shall prove that $h(x)^{\rho} = g_v(x)$ and $h(x)^{\tau} = g_{-v+v^2}(x)$. Since $C = \langle h(x) \rangle$ and $(-v+v^2)h(x) \in C$, so $h(x) \in (C : (-v+v^2))$, that is, $h(x)^{\rho} \in (C : (-v+v^2))^{\rho} = C_v$. Then $g_v(x)|h(x)^{\rho}$, similarly we have that $g_{-v+v^2}(x)|h(x)^{\tau}$. On the other hand, there exists some polynomial $s(x) \in R_n$ such that $(-v+v^2)g_v(x)+(1-v^2)g_{-v+v^2}(x) = [(-v+v^2)s_v(x)^{\rho}+(1-v^2)s_{-v+v^2}(x)^{\tau}][(-v+v^2)h(x)^{\rho} + (1-v^2)h(x)^{\tau}] = 2(-v+v^2)s_v(x)^{\rho}h(x)^{\rho} + (1-v^2)s_{-v+v^2}(x)^{\tau}h(x)^{\tau}$, it follows that $2s_v(x)^{\rho}h(x)^{\rho} = g_v(x)$ and $s_{-v+v^2}(x)^{\tau}h(x)^{\tau} = g_{-v+v^2}(x)$. Hence $h(x)^{\rho}|g_v(x)$ and $h(x)^{\tau}|g_{-v+v^2}(x)$. Therefore we obtain that $h(x)^{\rho} = g_v(x)$ and $h(x)^{\tau} = g_{-v+v^2}(x)$, which is the required results.

Now we give the definition of polynomial Gray map over R_n . Let $f(x) \in R_n$ with degree less than n, then f(x) can be expressed as $f(x) = r(x) + vq(x) + v^2s(x)$, where $r(x), q(x), s(x) \in F_p[x]$ and their degrees are less than n. Let $\theta = \lambda + v\mu + v^2\kappa \in R^*$. Define the polynomial Gray map as follows:

$$\Phi_{\theta}: R_n \to F_p[x]/(x^{2n} - 1).$$

 $f(x) = r(x) + vq(x) + v^2 s(x) \longmapsto \lambda(\lambda - \mu + \kappa)s(x) + x^n [\mu r(x) - \kappa r(x) - (\lambda - \mu + \kappa)s(x)].$

Obviously the above polynomial Gray map Φ_{θ} is well-defined. If $\mu, \kappa \neq 0$, then the map Φ_{θ} is bijection.

Theorem 3.8. Let C be a θ -constacyclic code of length n over R with a generating set in standard form $\{(-v+v^2)g_v(x), (1-v^2)g_{-v+v^2}(x)\}$. Then $\Phi_{\theta}(C) \subseteq \langle g_v(x)g_{-v+v^2}(x)\rangle$.

Proof. Since $g_v(x)|(x^n - (\lambda - \mu + \kappa))$ and $g_{-\nu+\nu^2}(x)|(x^n - \lambda)$, then there exist $q_1(x), q_2(x) \in \mathbb{R}$ $F_p[x]$ such that: $x^n - (\lambda - \mu + \nu) = g_v(x)q_1(x)$ and $x^n - \lambda = g_{-v+v^2}(x)q_2(x)$. By the proof of Corollary 3.7, we have that $\langle (-v+v^2)g_v(x) + (1-v^2)g_{-v+v^2}(x) \rangle$. Let f(x) be an element in C. Then $f(x) = [(-v+v^2)g_v(x) + (1-v^2)g_{-v+v^2}(x)]h(x)$, for some $h(x) \in R_n$. Since h(x) can be written as $h(x) = vh(x)^{\sigma} + (-v+v^2)h(x)^{\rho} + (1-v^2)h(x)^{\tau}$, where $h(x)^{\sigma}$, $h(x)^{\rho}$ and $h(x)^{\tau} \in F_p[x]$, it follows that $f(x) = [(-v + v^2)g_v(x) + (1 - v^2)g_{-v + v^2}(x)][vh(x)^{\sigma} + (-v + v^2)h(x)^{\rho} + (1 - v^2)h(x)^{\tau}] = 0$ $v(g_v(x)h(x)^{\sigma} - 2g_v(x)h(x)^{\rho}) + v^2(-g_v(x)h(x)^{\sigma} + 2g_v(x)h(x)^{\rho} - g_{-v+v^2}(x)h(x)^{\tau}).$ Then we have that: $\kappa g_{-v+v^2}(x)h(x)^{\tau} - (\lambda - \mu + \kappa)(-g_v(x)h(x)^{\sigma} + 2g_v(x)h(x)^{\rho} - g_{-v+v^2}(x)h(x)^{\tau})] = 0$ $\lambda g_{-v+v^2}(x)h(x)^{\tau}(x^n - (\lambda - \mu + \kappa)) - (\lambda - \mu + \kappa)[-g_v(x)h(x)^{\sigma} + 2g_v(x)h(x)^{\rho}](x^n - \lambda) = 0$ $\lambda g_{-\nu+\nu^2}(x)h(x)^{\tau}g_{\nu}(x)q_1(x) - (\lambda - \mu + \kappa)[-g_{\nu}(x)h(x)^{\sigma} + 2g_{\nu}(x)h(x)^{\rho}]g_{-\nu+\nu^2}(x)q_2(x) = 0$ $\lambda g_{-v+v^2}(x)h(x)^{\tau}g_v(x)q_1(x) - (\lambda - \mu + \kappa)g_v(x)[-h(x)^{\sigma} + 2h(x)^{\rho}]g_{-v+v^2}q_2(x) = 0$ $g_v(x)g_{-v+v^2}(x)[\lambda h(x)^{\tau}q_1(x) - (\lambda - \mu + \kappa)(-h(x)^{\sigma} + 2h(x)^{\rho})q_2(x)] \in \langle g_v(x)g_{-v+v^2}(x) \rangle.$ Hence $\Phi_{\theta}(C) \subseteq \langle g_v(x)g_{-v+v^2}(x) \rangle.$

Corollary 3.9. Let $\theta = 1 + v - v^2$ or $-1 - v + v^2$ and let $C = vC_{1-v^2} \oplus (-v + v^2)C_v \oplus (1 - v^2)C_{-v+v^2}$ be a θ -constacyclic code of length n over R with generating set in standard form $\{(-v + v^2)g_v(x), (1 - v^2)g_{-v+v^2}(x)\}$. Then $\Phi_{\theta}(C) = [g_v(x)g_{-v+v^2}(x)]$.

Proof. Note that $g_v(x)|(x^n-(\lambda-\mu+\kappa))$ and $g_{-v+v^2}(x)|(x^n-\lambda)$, where $\lambda+v\mu+v^2\kappa=1+v-v^2$ or $-1-v+v^2$, then $(x^n-(\lambda-\mu+\kappa))(x^n-\lambda)=(x^{2n}-1)$. Hence $g_v(x)g_{-v+v^2}(x)|(x^{2n}-1)$, which shows that $g_v(x)g_{-v+v^2}(x)$ is the generator polynomial for cyclic code $\langle g_v(x)g_{-v+v^2}(x)\rangle$, that is, $\langle g_v(x)g_{-v+v^2}(x)\rangle = [g_v(x)g_{-v+v^2}]$. By Theorem 3.8, we have that $\Phi_{\theta}(C) \subseteq [g_v(x)g_{-v+v^2}]$. On the other hand, $|\Phi_{\theta}(C)| = |C| = p^{2n-deg(g_v(x))-deg(g_{-v+v^2}(x))}$ and $|[g_v(x)g_{-v+v^2}(x)]| = p^{2n-deg(g_v(x))-deg(g_{-v+v^2}(x))}$. Hence, $\Phi_{\theta}(C) = [g_v(x)g_{-v+v^2}(x)]$.

For a unit θ of R_p , the θ -constacyclic shift τ_{λ} on R_p is the shift

$$\tau_{\lambda}(x_0, x_1, \dots, x_n) = (\lambda x_{n-1}, x_0, \dots, x_{n-2})$$

Proposition 3.10. Let C be a θ -constacyclic code of length n over R_p . Then the dual code C^{\perp} for C is a θ -constacyclic code of length n over R_p .

Proof. Let C be a θ -constacyclic code of length n over R_p . Consider arbitrary elements $x \in C^{\perp}$ and $y \in C$. Because C is θ -constacyclic, $\tau_{\theta}^{n-1}(y) \in C$. Thus, $0 = x \cdot \tau_{\theta}^{n-1}(y) = \lambda \tau_{\lambda^{-1}}(x) \cdot y = \tau_{\lambda^{-1}}(x) \cdot y$, which means that $\tau_{\theta}^{-1}(x) \in C^{\perp}$. Therefore, C^{\perp} is closed under the τ_{θ}^{-1} -shift; i.e, C^{\perp} is a θ -constacyclic code.

Let $g_v(x)h_v(x) = x^n - (\lambda - \mu + \kappa)$ and $g_{-v+v^2}(x)h_{-v+v^2}(x) = x^n - \lambda$. Let $\tilde{h}_v(x) = x^{deg(h_v(x))}h_v(\frac{1}{x})$ and $\tilde{h}_{-v+v^2}(x) = x^{deg(h_{-v+v^2}(x))}h_{-v+v^2}(x)(\frac{1}{x})$ be the reciprocal polynomials of $h_v(x)$ and $h_{-v+v^2}(x)$, respectively. We write $h_v^*(x) = \frac{1}{h_v(0)}\tilde{h}_v(x)$ and $h_{-v+v^2}(x) = \frac{1}{h_{-v+v^2}(0)}\tilde{h}_{-v+v^2}(x)$.

Theorem 3.11. Let $C = vC_{1-v^2} \oplus (-v+v^2)C_v \oplus (1-v^2)C_{-v+v^2}$ be a θ -constacyclic code of length n over R. Then $C^{\perp} = (-v+v^2)C_v^{\perp} \oplus (1-v^2)C_{-v+v^2}^{\perp}$.

Proof. From Theorem 3.2, C_v and C_{-v+v^2} are constacyclic codes over F_p . Then C_v^{\perp} and $C_{-v+v^2}^{\perp}$ are constacyclic code over F_p . Let $g_v(x)$ and $g_{-v+v^2}(x)$ are generator polynomials for C_v and C_{-v+v^2} , respectively. Then $C_v^{\perp} = [h_v^*(x)]$ and $C_{-v+v^2}^{\perp} = [h_{-v+v^2}^*(x)]$. Thus we have that $|C_v^{\perp}| = p^{deg(g_v(x))}$ and $|C_{-v+v^2}^{\perp}| = p^{deg(g_{-v+v^2}(x))}$.

For any $a \in C_v^{\perp}$, $b \in C_{-v+v^2}^{\perp}$ and $c = (-v+v^2)r + (1-v^2)q \in C$, where $r \in C_v$, $q \in C_{-v+v^2}$, we have that

$$c.((-v+v^2)a + (1-v^2)b) = ((-v+v^2)r + (1-v^2)q)((-v+v^2)a + (1-v^2)b)$$
$$= 2(-v+v^2)r.a + (1-v^2)q.b$$
$$= 0.$$

and hence $(-v + v^2)C_v^{\perp} \oplus (1 - v^2)C_{-v+v^2}^{\perp} \subseteq C^{\perp}$. Furthermore, suppose that $(-v + v^2)a + (1 - v^2)b = (-v + v^2)a' + (1 - v^2)b'$, where $a, a' \in C_v^{\perp}$ and $b, b' \in C_{-v+v^2}^{\perp}$, then $(-v + v^2)(a - a') = (1 - v^2)(b' - b)$, so $(-v + v^2)(a - a') = v^2[(-v + v^2)(a - a')] = v^2[(1 - v^2)(b' - b)] = 0$. Hence a = a', which forces b = b'. Thus every element c of $(-v + v^2)C_v^{\perp} \oplus (1 - v^2)C_{-v+v^2}^{\perp}$ has a unique expression as $(-v + v^2)r + (1 - v^2)q$, where $r \in C_v^{\perp}$, $q \in C_{-v+v^2}^{\perp}$. This shows that

$$\begin{split} |(-v+v^2)C_v^{\perp} \oplus (1-v^2)C_{-v+v^2}^{\perp}| &= |C_v^{\perp}||C_{-v+v^2}^{\perp}|\\ n^{deg(g_v(x))+deg(g_{-v+v^2}(x))} \end{split}$$

Finally, by Proposition 3.4, $|C| = p^{3n - deg(g_v(x)) - deg(g_{-v+v^2}(x))}$. Since R_p is a Frobenius ring, $|C||C^{\perp}| = |R_p|^n$, so

$$\begin{aligned} |C^{\perp}| &= \frac{|R_p|^n}{|C|} = \frac{p^{3n}}{p^{3n - \deg(g_v(x)) - \deg(g_{-v+v^2}(x))}} \\ &= p^{\deg(g_v(x)) + \deg(g_{-v+v^2}(x))} \\ &= |(-v+v^2)C_v^{\perp} \oplus (1-v^2)C_{-v+v^2}^{\perp}|. \end{aligned}$$

Note that $(-v+v^2)C_v^{\perp} \oplus (1-v^2)C_{-v+v^2}^{\perp} \subseteq C^{\perp}$ as above, we have that $C^{\perp} = (-v+v^2)C_v^{\perp} \oplus (1-v^2)C_{-v+v^2}^{\perp}$, as required.

Theorem 3.12. With notations as above. Let $C = vC_{1-v^2} \oplus (-v+v^2)C_v \oplus (1-v^2)C_{-v+v^2}$ be a θ -constacyclic code of length n over R with generating set in standard form $\{(-v+v^2)g_v(x), (1-v^2)g_{-v+v^2}(x)\}$. Then

$$(1) \ C^{\perp} = \left\langle (-v+v^2)h_v^*(x), (1-v^2)h_{-v+v^2}^*(x) \right\rangle \text{ and } |C^{\perp}| = p^{deg(g_v(x))+deg(g_{-v+v^2}(x))};$$

$$(2) \ C^{\perp} = \left\langle (-v+v^2)h_v^*(x) \oplus (1-v^2)h_{-v+v^2}^*(x) \right\rangle;$$

$$(3) \ \Phi_{\theta}(C^{\perp} \subseteq \left\langle h_v^*(x)h_{-v+v^2}^*(x) \right\rangle.$$

Proof. (1) By Proposition 3.10, C^{\perp} is a θ -constacyclic code over R_p ; by Theorem 3.11, we have that $C^{\perp} = (-v+v^2)C_v^{\perp} \oplus (1-v^2)C_{-v+v^2}^{\perp}$, where according to Theorem 3.2 C_v^{\perp} and $C_{-v+v^2}^{\perp}$ are two constacyclic codes over F_p . Since $h_v^*(x)$ and $h_{-v+v^2}^*(x)$ are generator polynomials for C_v^{\perp} and $C_{-v+v^2}^{\perp}$, respectively, we have that $\left\{ (-v+v^2)h_v^*(x), (1-v^2)h_{-v+v^2}^*(x) \right\}$ is the generating set in standard form for C^{\perp} . So $C^{\perp} = \left\langle (-v+v^2)h_v^*(x), (1-v^2)h_{-v+v^2}^*(x) \right\rangle$. In addition, $|C^{\perp}| = |C_v^{\perp}||C_{-v+v^2}^{\perp}| = p^{deg(g_v(x))}.p^{deg(g_{-v+v^2}(x))} = p^{deg(g_v(x))+deg(g_{-v+v^2}(x))}.$

(2) Since $\left\{ (-v+v^2)h_v^*(x), (1-v^2)h_{-v+v^2}^*(x) \right\}$ is the generating set in standard form for C^{\perp} , according to the proof of Corollary 3.7 we have that

$$C^{\perp} = \left\langle (-v + v^2) h_v^*(x) \oplus (1 - v^2) h_{-v + v^2}^*(x) \right\rangle$$

(3) Similar to the proof of Theorem 3.9.

Theorem 3.13. Let $\theta = 1 + v - v^2$ or $-1 - v + v^2$ and let $C = vC_{1-v^2} \oplus (-v + v^2)C_v \oplus (1 - v^2)C_{-v+v^2}$ be a θ -constacyclic code of length n over R with generating set in standard form $\{(-v + v^2)g_v(x), (1 - v^2)g_{-v+v^2}(x)\}$. Then

(1) $\Phi_{\theta}(C^{\perp}) = [h_v^*(x)h_{-v+v^2}^*(x)].$ (2) $\Phi_{\theta}(C^{\perp}) = (\Phi_{\theta}(C))^{\perp}.$

Proof. (1) According to the proof of Corollary 3.9, we can obtain the result. (2) Note the facts that

$$\Phi_{\theta}(C) = [g_v(x)g_{-v+v^2}(x)], \ \Phi_{\theta}(C^{\perp}) = [h_v^*(x)h_{-v+v^2}^*(x)],$$

we have

$$\Phi_{\theta}(C)^{\perp} = [g_{v}(x)g_{-v+v^{2}}(x)]^{\perp}$$
$$= [h_{v}^{*}(x)h_{-v+v^{2}}^{*}(x)]$$
$$= \Phi_{\theta}(C^{\perp}),$$

which is the required result.

Example 3.1. In $F_3[x]$

$$x^{3} + 1 = (x + 1)^{3};$$

 $x^{3} - 1 = (x + 2)^{3}.$

Let C be the $(-1 - v + v^2)$ -constacyclic code of length 3 over $F_3 + vF_3 + v^2F_3$ with generating polynomial: $g(x) = (-v + v^2)(x + 1) + (1 - v^2)(x + 2) = v^2x - vx + v^2 - v + x - v^2x + 2 - 2v^2 = x(1 - v) - (1 + v + v^2)$. The Gray image $\Phi_{\theta}(C)$ is a [6, 4, 2] code over F_3 with generator polynomial (x + 1)(x + 2).

References

- A. R. Hammons, Jr., P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, P. Sole, The Z₄ linearity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. Inform. Theory 40(2), 301-319(1994).
- [2] B. Yildiz, S. Karadeniz, Linear codes over $F_2 + uF_2 + vF_2 + uvF_2$, Des. Codes Cryptogr. 54,61-81(2010).
- [3] H. Q. Dinh, Constacyclic codes of length 2^s over Galois extension rings of $F_2 + uF_2$, IEEE Trans. Theory 55,1730-1740(2009).
- [4] H. Q. Dinh, Constacyclic codes of length ps over $F_{p^m} + uF_{p^m}$, J. Algebra 324,940-950(2010).
- [5] H. Q. Dinh, S. R. Lopez-Permouth, Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory 50(8),1728-1744(2004).
- [6] J. Wood, Duality for modules over finite rings and applications to coding theory, Amer. J. Math. 121, 555-575(1999).
- [7] K. Guenda, T. A. Gulliver, MDS and self-dual codes over rings, Finite Fields Appl. 18,1061-1075(2012).
- [8] S. Zhu, L. Wang, A class of constacyclic codes over $F_p + vF_p$ and its Gray image, Discrete Math. 311,2677-2682(2011).
- [9] S, Zhu, X. Kai, Dual and self-dual negacyclic codes of even length over $Z_{2^{\alpha}}$, Discrete Math. 309,2382-2391(2009).
- [10] S. Zhu, Y. Wang, M. Shi, Some results on cyclic codes over $F_2 + vF_2$, IEEE Trans. Inform. Theory 56(4),1680-1684(2010).
- [11] T. Abualrub, I. Siap, Constacyclic codes over $F_2 + uF_2$, J. Franklin Inst. 346,520-529(2009).
- [12] T. Blackford, Negacyclic codes over Z_4 of even length, IEEE Trans. Theory, 49,1417-1424(2003).
- [13] Z.Guanghui and C.Bocong, Constacyclic codes over $F_p + vF_p$, arxiv:1301.06669v1[csit]4 Jan. (2013).

Author information

Mohammed M. Al-Ashker and Mariam I. Satariah, Mathematics Department, Faculty of Science, Islamic University of Gaza, Gaza, P.O. Box 108, Palestine. E-mail: mashker@iugaza.edu.ps

Received: May 22, 2015.

Accepted: January 21, 2016