Constacyclic Codes Over The Ring $F_{p}+v F_{p}+v^{2} F_{p}$

Mohammed M. Al-Ashker and Mariam I. Satariah
Communicated by Taher Abualrub

MSC 2010 Classifications: Primary 94B05; Secondary 51E22.
Keywords and phrases: Constacyclic codes, Polynomial generator, Generator set in standard form.

Abstract

In this paper, we study constacyclic codes over the ring $R=F_{p}+v F_{p}+v^{2} F_{p}$, where p is an odd prime and $v^{3}=v$. The polynomial generators of all constacyclic codes over R are characterised and their dual codes are also determined.

1 Introduction

Since the discovery that many good non-linear codes over finite fields are ac- tually closely related to linear codes over Z_{4} via the Gray map (see [1]), codes over finite rings have received a great deal of attention (e.g. see [11]-[7], [9]). In these studies, most of them are concentrated on the case that the ground rings associated with codes are finite chain rings. However, it turns out that optimal codes over non-chain rings exist. In [2], Yildiz and Karadeniz considered linear codes over the ring $R_{1}=F_{2}+u F_{2}+v F_{2}+u v F_{2}$ with $u^{2}=v^{2}=0$ and $u v=v u$; some good binary codes were obtained as the images of cyclic codes over R_{1} under two Gray maps. In [10], Zhu, Wang and Shi studied the structure and properties of cyclic codes over $F_{2}+v F_{2}$, where $v^{2}=v$; the authors showed that cyclic codes over the ring are principally generated. In the subsequent paper [8], Zhu and Wang investigated a class of constacyclic codes over $F_{p}+v F_{p}$ with p being an odd prime and $v^{2}=v$. It was proved that the image of a $(1-2 v)$-constacyclic code of length n over $F_{p}+v F_{p}$ under the Gray map is a distance-invariant cyclic code of length $2 n$ over F_{p} and $(1-2 v)$-constacyclic codes over the ring are principally generated. In [13] constacyclic codes over $F_{p}+v F_{p}$ where studied by Guanghui and Bocong. These rings in the mentioned papers are finite not chain rings.

In this paper, we mainly study the structure of constacyclic codes over $R=F_{p}+v F_{p}+v^{2} F_{p}$ of arbitrary length and also discuss the dual of these codes.

2 Breliminaries

Let F_{p} be the finite field of order p and $F_{p}{ }^{*}$ the multiplicative group of F_{p}, where p is an odd prime. It is known that $F_{p}[x] /\left\langle x^{n}-\lambda\right\rangle$ is a principal ideal ring for any element λ in $F_{p}{ }^{*}$. If $p(x)+\left\langle x^{n}-\lambda\right\rangle \in F_{p}[x] /\left\langle x^{n}-\lambda\right\rangle$, then the ideal generated by $p(x)+\left\langle x^{n}-\lambda\right\rangle$, denoted by $\langle p(x)\rangle$, is the smallest ideal in $F_{p}[x] /\left\langle x^{n}-\lambda\right\rangle$ containing $p(x)+\left\langle x^{n}-\lambda\right\rangle$. In addition, we adopt the notation $[g(x)]$ to denote the ideal in $F_{p}[x] /\left\langle x^{n}-\lambda\right\rangle$ generated by $g(x)+\left\langle x^{n}-\lambda\right\rangle$ with $g(x)$ being a monic divisor of $x^{n}-\lambda$; in that case, $g(x)$ is called a generator polynomial. Throughout this paper, R denotes the commutative ring $F_{p}+v F_{p}+v^{2} F_{p}=\left\{a+v b+v^{2} c \mid a, b, c \in F_{p}\right\}$ with $v^{3}=v$. Recall that R is a principal ideal ring and has six non-trivial ideals, namely $\langle v\rangle$ $=\left\{v a: a \in F_{p}\right\},\langle 1+v\rangle=\left\{(1+v) b: b \in F_{p}\right\},\langle-1+v\rangle=\left\{(-1+v) c: c \in F_{p}\right\},\left\langle 1-v^{2}\right\rangle$ $=\left\{\left(1-v^{2}\right) d: d \in F_{p}\right\},\left\langle v+v^{2}\right\rangle=\left\{\left(v+v^{2}\right) e: e \in F_{p}\right\}$ and $\left\langle-v+v^{2}\right\rangle=\left\{\left(-v+v^{2}\right) f:\right.$ $\left.f \in F_{p}\right\}$, and the maximal ideals in R are $\langle v\rangle,\langle 1+v\rangle$ and $\langle-1+v\rangle$, hence R is not a chain ring. Let R^{n} be R-module of n-tuples over R. A linear code C of length n over R is an R submodule of R^{n}. For any linear code C of length n over R, the dual C^{\perp} is defined as $C^{\perp}=$ $\left\{u \in R^{n} \mid u . w=0\right.$ for any $\left.w \in C\right\}$, where $u . w$ denotes the standard Euclidean inner product of u and w in R^{n}. Note that C^{\perp} is linear whether or not C is linear. The Gray map ψ from R to $F_{p} \oplus F_{p} \oplus F_{p}$ given by $\psi(c)=(a+b, b+c, 2 a+c)$, is a ring isomorphism, which means that
R is isomorphic to the ring $F_{p} \oplus F_{p} \oplus F_{p}$. Therefore R is a finite Frobenius ring. If C is linear, then $|C|\left|C^{\perp}\right|=|R|^{n}$ (See [6]).

Let θ be a unit in R. A linear code C of length n over R is called θ-constacyclic if for every $\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \in C$, we have $\left(\theta c_{n-1}, c_{0}, c_{1}, \ldots, c_{n-2}\right) \in C$. It is well known that a θ-constacyclic code of length n over R can be identified with an ideal in the quotient ring $R[x] /\left\langle x^{n}-\theta\right\rangle$ via the R-module isomorphism as follows:

$$
\begin{gathered}
R^{n} \rightarrow R[x] /\left\langle x^{n}-\theta\right\rangle \\
\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \mapsto\left(c_{0}+c_{1} x+\ldots+c_{n-1} x^{n-1}\right)\left(\bmod \left\langle x^{n}-\theta\right\rangle\right)
\end{gathered}
$$

If $\theta=1, \theta$-constacyclic codes are just cyclic codes and while $\theta=-1, \theta$-constacyclic codes are known as negacyclic codes.
Let A, B and C be codes over R. We denote $A \oplus B \oplus C=\{a+b+c \mid a \in A, b \in B, c \in C\}$. Note that any element d of R^{n} can be expressed as $d=a+v b+v^{2} c=v(a+b+c)+(-v+$ $\left.v^{2}\right)(a+c)+\left(1-v^{2}\right) a$, where $a, b, c \in F_{p}^{n}$. Let C be a linear code of length n over R. Define $C_{v}=\left\{b \in F_{p}^{n} \mid v a+\left(-v+v^{2}\right) b+\left(1-v^{2}\right) c \in C\right.$ for some $\left.a, c \in F_{p}^{n}\right\}$,
$C_{-v+v^{2}}=\left\{c \in F_{p}^{n} \mid v a+\left(-v+v^{2}\right) b+\left(1-v^{2}\right) c \in C\right.$ for some $\left.a, b \in F_{p}^{n}\right\}$,
$C_{1-v^{2}}=\left\{a \in F_{p}^{n} \mid v a+\left(-v+v^{2}\right) b+\left(1-v^{2}\right) c \in C\right.$ for some $\left.b, c \in F_{p}^{n}\right\}$.
Obviously, $C_{v}, C_{-v+v^{2}}$ and $C_{1-v^{2}}$ are linear codes over F_{p}. By definition of $C_{v}, C_{-v+v^{2}}$ and $C_{1-v^{2}}$, we have that C can be uniquely expressed as $C=v C_{1-v^{2}} \oplus\left(-v+v^{2}\right) C_{v} \oplus\left(1-v^{2}\right) C_{-v+v^{2}}$. It can be routine to check that for any elements $a \in C_{1-v^{2}}, b \in C_{v}$ and $c \in C_{-v+v^{2}}$, we get $v a+\left(-v+v^{2}\right) b+\left(1-v^{2}\right) c \in C$; in particular, $|C|=\left|C_{-v+v^{2}}\right|\left|C_{v}\right|\left|C_{1-v^{2}}\right|$.

3 Constacyclic Codes Over The Ring $\boldsymbol{R}=\boldsymbol{F}_{\boldsymbol{p}}+\boldsymbol{v} \boldsymbol{F}_{\boldsymbol{p}}+\boldsymbol{v}^{2} \boldsymbol{F}_{\boldsymbol{p}}$

In this subsection, we let $R_{p, n}=R_{p}[x] /\left\langle x^{n}-\theta\right\rangle$ with $\theta=\lambda+v \mu+v^{2} \kappa$ being a unit in R_{p}, where λ, μ and κ are elements in F_{p}. As usual, we identify R_{n} with the set of all polynomials over R_{p} of degree less than n. Let $f_{1}(x), f_{2}(x), \ldots, f_{s}(x) \in R_{n}$. The ideal generated by $f_{1}(x), f_{2}(x), \ldots, f_{s}(x)$ will be denoted by $\left\langle f_{1}(x), f_{2}(x), \ldots, f_{s}(x)\right\rangle$.
The following lemma characterizes the units in R_{p}.
Lemma 3.1. Let $\theta=\lambda+v \mu+v^{2} \kappa$ be an element in R_{p}, where λ, μ and κ are elements in F_{p}. Then if $\theta=\lambda+v \mu+v^{2} \kappa$ is a unit of R_{p}, then $\lambda \neq 0$ and $\lambda-\mu+\kappa \neq 0$.

Proof. Suppose that $\theta=\lambda+v \mu+v^{2} \kappa$ is a unit of R_{p}. Then there exists elements $a, b, c \in F_{p}$ and $\theta^{\prime}=a+v b+v^{2} c$ such that $\theta \theta^{\prime}=1$, that is; $\left(\lambda+v \mu+v^{2} \kappa\right)\left(a+v b+v^{2} c\right)=\lambda a+v(\lambda b+$ $\mu a+\mu c+\kappa b)+v^{2}(\lambda c+\mu b+\kappa a+\kappa c)=1$. So we have the following:
$\lambda a=1$
(1),
$(\lambda+\kappa) b+\mu a+\mu c=0 \quad$ (2) and
$(\lambda+\kappa) c+\mu b+\kappa a=0$
from (1) we have $\lambda \neq 0$ and $a \neq 0$, in (3) if $\lambda+\kappa=0, \mu=0$ we have $\kappa a=0$ and since $a \neq 0$, so $\kappa=0$, which implies that $\lambda=0$ which is contradiction. Hence $\lambda+\kappa \neq 0$ or $\mu \neq 0$. So we have three cases:
Case(1) : if $\lambda+\kappa \neq 0$ and $\mu=0$, we have $\lambda-\mu+\kappa \neq 0$.
Case(2) : if $\lambda+\kappa=0$ and $\mu \neq 0$, we have $\lambda-\mu+\kappa \neq 0$.
Case(3) : if $\lambda+\kappa \neq 0$ and $\mu \neq 0$, we want to prove that $\lambda-\mu+\kappa \neq 0$. Let for contrary that $\lambda-\mu+\kappa=0$, then $\lambda+\kappa=\mu$, by substituting in (2), we have $\mu(a+b+c)=0$, since $\mu \neq 0$, then $a+b+c=0$, that is $b+c=-a$, but by substituting in (3), we have $\mu(c+b)+\kappa a=0$, then $-\mu a+\kappa a=0$, hence $a(\kappa-\mu)=0$, and since $a \neq 0$, then $\kappa-\mu=0$, and by the assumption that $\lambda-\mu+\kappa=0$, we have $\lambda=0$ which make a contradiction. Therefore $\lambda-\mu+\kappa \neq 0$.

Note that the converse of the last Lemma is not true. For example $2+v+2 v^{2}$ is unit in R_{3} but $\lambda-\mu+\kappa=2-1+2=0$.

Theorem 3.2. Let $C=v C_{1-v^{2}} \oplus\left(-v+v^{2}\right) C_{v} \oplus\left(1-v^{2}\right) C_{-v+v^{2}}$ be a linear code of length n over R. Then C is θ-constacyclic code of length n over R if and only if $C_{1-v^{2}}$ is the zero code, C_{v} is $(\lambda-\mu+\kappa)$-constacyclic code and $C_{-v+v^{2}}$ is λ-constacyclic code of length n over F_{p}.

Proof. $\Rightarrow)$ Let $\left(r_{0}, r_{1}, \ldots, r_{n-1}\right)$ be an arbitrary element in $C_{1-v^{2}},\left(q_{0}, q_{1}, \ldots, q_{n-1}\right)$ be an arbitrary element in C_{v} and $\left(s_{0}, s_{1}, \ldots, s_{n-1}\right)$ be an arbitrary element in $C_{-v+v^{2}}$. We assume that $c_{i}=v r_{i}+\left(-v+v^{2}\right) q_{i}+\left(1-v^{2}\right) s_{i}, i=0,1, \ldots, n-1$; hence we get $\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \in C$. Since C is a θ-constacyclic code of length n over R, then $\left(\theta c_{n-1}, c_{0}, \ldots, c_{n-2}\right) \in C$. Note that:
$\theta c_{n-1}=\left(\lambda+v \mu+v^{2} \nu\right)\left[v r_{n-1}+\left(-v+v^{2}\right) q_{n-1}+\left(1-v^{2}\right) s_{n-1}\right]=v \lambda r_{n-1}+v^{2} \mu r_{n-1}+$ $v \kappa r_{n-1}+\left(-v+v^{2}\right) \lambda q_{n-1}+\left(-v+v^{2}\right)(-\mu) q_{n-1}+\left(-v+v^{2}\right) \kappa q_{n-1}+\left(1-v^{2}\right) \lambda s_{n-1}=$ $v(\lambda+\kappa) r_{n-1}+v^{2} \mu r_{n-1}+\left(-v+v^{2}\right)\left[(\lambda-\mu+\kappa) q_{n-1}\right]+\left(1-v^{2}\right)\left[\lambda s_{n-1}\right] \in C$ (since C is linear), then $r_{n-1}=0$ and $\left(\theta c_{n-1}, c_{0}, c_{1}, \ldots, c_{n-2}\right)=\left(-v+v^{2}\right)\left((\lambda-\mu+\kappa) q_{n-1}, q_{0}, \ldots, q_{n-2}\right)+(1-$ $\left.v^{2}\right)\left(\lambda s_{n-1}, s_{0}, \ldots, s_{n-2}\right) \in C$. Therefore $\left((\lambda-\mu+\kappa) q_{n-1}, q_{0}, \ldots, q_{n-2}\right) \in C_{v}$ and $\left(\lambda s_{n-1}, s_{0}, \ldots, s_{n-2}\right) \in$ $C_{-v+v^{2}}$, which implies that $C_{1-v^{2}}$ is zero code, C_{v} and $C_{-v+v^{2}}$ are $(\lambda-\mu+\kappa)$-constacyclic and λ-constacyclic codes of length n over F_{p}, respectively.
\Leftarrow Suppose that $C_{1-v^{2}}$ is zero code, C_{v} and $C_{-v+v^{2}}$ are $(\lambda-\mu+\kappa)$-constacyclic and λ constacyclic codes of length n over F_{p}, respectively. Let $\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \in C$, where $c_{i}=$ $v r_{i}+\left(-v+v^{2}\right) q_{i}+\left(1-v^{2}\right) s_{i}, i=0,1, \ldots, n-1$. It follows that $\left(q_{0}, q_{1}, \ldots, q_{n-1}\right) \in C_{v}$ and $\left(s_{0}, s_{1}, \ldots, s_{n-1}\right) \in C_{-v+v^{2}}$. Note that $\left(\theta c_{n-1}, c_{0}, \ldots, c_{n-2}\right)=\left(-v+v^{2}\right)\left((\lambda-\mu+\kappa) q_{n-1}, q_{0}, \ldots, q_{n-2}\right)+$ $\left(1-v^{2}\right)\left(\lambda s_{n-1}, s_{0}, \ldots, s_{n-2}\right) \in\left(-v+v^{2}\right) C_{v} \oplus\left(1-v^{2}\right) C_{-v+v^{2}}=C$. Hence C is θ-constacyclic code of length n over R.

Theorem 3.3. Let $C=v C_{1-v^{2}} \oplus\left(-v+v^{2}\right) C_{v} \oplus\left(1-v^{2}\right) C_{-v+v^{2}}$ be a θ-constacyclic code of length n over R. Then $C=\left\langle\left(-v+v^{2}\right) g_{v}(x),\left(1-v^{2}\right) g_{-v+v^{2}}(x)\right\rangle$, where $g_{v}(x)$ and $g_{-v+v^{2}}(x)$ are the generator polynomials of C_{v} and $C_{-v+v^{2}}$, respectively.

Proof. Since C_{v} and $C_{-v+v^{2}}$ are $(\lambda-\mu+\kappa)$-constacyclic and λ-constacyclic codes of length n over F_{p}, respectively, we will assume that the generator polynomials of C_{v} and $C_{-v+v^{2}}$ are $g_{v}(x)$ and $g_{-v+v^{2}}(x)$, respectively. Then $\left(-v+v^{2}\right) g_{v}(x) \in\left(-v+v^{2}\right) C_{v} \subseteq C$ and $\left(1-v^{2}\right) g_{-v+v^{2}} \in$ $\left(1-v^{2}\right) C_{-v+v^{2}} \subseteq C$, hence $\left\langle\left(-v+v^{2}\right) g_{v}(x),\left(1-v^{2}\right) g_{-v+v^{2}}(x)\right\rangle \subseteq C$.
Let $f(x) \in C$. Since $C=\left(-v+v^{2}\right) C_{v} \oplus\left(1-v^{2}\right) C_{-v+v^{2}}$, then there are $s^{\prime}(x)=g_{v}(x) s(x) \in C_{v}$ and $u^{\prime}(x)=g_{-v+v^{2}}(x) u(x) \in C_{-v+v^{2}}$ such that $f(x)=\left(-v+v^{2}\right) s^{\prime}(x)+\left(1-v^{2}\right) u^{\prime}(x)=$ $\left(-v+v^{2}\right) g_{v}(x) s(x)+\left(1-v^{2}\right) g_{-v+v^{2}} u(x)$, where $s(x), u(x) \in F_{p}[x] \subseteq R_{p}[x]$. Hence $f(x) \in$ $\left\langle\left(-v+v^{2}\right) g_{v}(x),\left(1-v^{2}\right) g_{-v+v^{2}}(x)\right\rangle$. Therefore $C \subseteq\left\langle\left(-v+v^{2}\right) g_{v}(x),\left(1-v^{2}\right) g_{-v+v^{2}}(x)\right\rangle$.

This gives that $C=\left\langle\left(-v+v^{2}\right) g_{v}(x),\left(1-v^{2}\right) g_{-v+v^{2}}(x)\right\rangle$.
Proposition 3.4. Let $C=v C_{1-v^{2}} \oplus\left(-v+v^{2}\right) C_{v} \oplus\left(1-v^{2}\right) C_{-v+v^{2}}$ be a θ-constacyclic code of length n over R_{p} and $g_{v}(x), g_{-v+v^{2}}(x)$ are generator polynomials of C_{v} and $C_{-v+v^{2}}$, respectively. Then $|C|=p^{3 n-\operatorname{deg}\left(g_{v}(x)\right)-\operatorname{deg}\left(g_{-v+v^{2}}(x)\right)}$.
Proof. Since $|C|=\left|C_{v} \| C_{-v+v^{2}}\right|\left|C_{1-v^{2}}\right|$.Then, $|C|=p^{3 n-\operatorname{deg}\left(g_{v}(x)\right)-\operatorname{deg}\left(g_{-v+v^{2}}(x)\right)}$.
Here we have three canonical projections defined as follows:

$$
\begin{gathered}
\sigma: R_{p}=F_{p}+v F_{p}+v^{2} F_{p} \rightarrow F_{p} \\
v a+\left(-v+v^{2}\right) b+\left(1-v^{2}\right) c \longmapsto a \\
\rho: R_{p}=F_{p}+v F_{p}+v^{2} F_{p} \rightarrow F_{p} \\
v a+\left(-v+v^{2}\right) b+\left(1-v^{2}\right) c \longmapsto b ;
\end{gathered}
$$

and

$$
\begin{gathered}
\tau: R_{p}=F_{p}+v F_{p}+v^{2} F_{p} \rightarrow F_{p} \\
v a+\left(-v+v^{2}\right) b+\left(1-v^{2}\right) c \longmapsto c
\end{gathered}
$$

Denote by r^{σ}, r^{ρ} and r^{τ} the images of an element $r \in R_{p}$ under these three projections, respectively. These three projections can be extended naturally from R_{p}^{n} to F_{p}^{n} and from $R_{p}[x]$ to
$F_{p}[x]$.
Let $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n-1} x^{n-1}$, where $a_{i} \in R_{p}$ for $0 \leq i \leq n-1$, and we denote $f(x)^{\sigma}=a_{0}^{\sigma}+a_{1}^{\sigma} x+\ldots+a_{n-1}^{\sigma} x^{n-1} ; f(x)^{\rho}=a_{0}^{\rho}+a_{1}^{\rho} x+\ldots+a_{n-1}^{\rho} x^{n-1} ; f(x)^{\tau}=a_{0}^{\tau}+a_{1}^{\tau} x+$ $\ldots+a_{n-1}^{\tau} x^{n-1}$.
Hence $f(x)$ has a unique expression as $f(x)=v f(x)^{\sigma}+\left(-v+v^{2}\right) f(x)^{\rho}+\left(1-v^{2}\right) f(x)^{\tau}$
For a code C of length n over $R_{p}, a \in R_{p}$. The submodule quotiont is a linear code of length n over R_{p}, defined as follows:

$$
(C: a)=\left\{r \in R_{p}^{n} \mid a r \in C\right\} .
$$

Theorem 3.5. Let $C=v C_{1-v^{2}} \oplus\left(-v+v^{2}\right) C_{v} \oplus\left(1-v^{2}\right) C_{-v+v^{2}}$ be a θ-constacyclic code of length n over R_{p}. If $C=\left\langle\left(-v+v^{2}\right) h_{1}(x),\left(1-v^{2}\right) h_{2}(x)\right\rangle$, where $h_{1}(x), h_{2}(x) \in F_{p}[x]$ are monic with $h_{1}(x) /\left(x^{n}-(\lambda-\mu+\kappa)\right)$ and $h_{2}(x) /\left(x^{n}-\lambda\right)$, then $C_{v}=\left[h_{1}(x)\right]$ and $C_{-v+v^{2}}=\left[h_{2}(x)\right]$, that is, $h_{1}(x)$ and $h_{2}(x)$ are the generator polynomials of constacyclic codes of C_{v} and $C_{-v+v^{2}}$, respectively.

Proof. We shall prove the theorem by carrying out of the following steps:
Step(1):If $C=\left(-v+v^{2}\right) C_{v} \oplus\left(1-v^{2}\right) C_{-v+v^{2}}$, then $\left(C:\left(-v+v^{2}\right)\right)^{\rho}=C_{v}$ and $\left(C:\left(1-v^{2}\right)\right)^{\tau}=$ $C_{-v+v^{2}}$.
Let $a \in\left(C:\left(-v+v^{2}\right)\right)$, then $\left(-v+v^{2}\right) a \in C$. Setting $a=v a^{\rho}+\left(-v+v^{2}\right) a^{\rho}+\left(1-v^{2}\right) b$, where $b \in F_{p}^{n}$. Hence $\left(-v+v^{2}\right) a^{\rho}=\left(-v+v^{2}\right)\left[v a^{\rho}+\left(-v+v^{2}\right) a^{\rho}+\left(1-v^{2}\right) b\right]=\left(-v+v^{2}\right) a \in C$. Therefore $a^{\rho} \in C_{v}$, which implies that $\left(C:\left(-v+v^{2}\right)\right)^{\rho} \subseteq C_{v}$. Let $y \in C_{v}, C_{1-v^{2}}$, then there exists $z \in F_{p}^{n}$ such that $v y+\left(-v+v^{2}\right) y+\left(1-v^{2}\right) z \in C$. Note that $\left(-v+v^{2}\right) y=$ $\left(-v+v^{2}\right)\left[v y+\left(-v+v^{2}\right) y+\left(1-v^{2}\right) z\right] \in\left(-v+v^{2}\right) C \subseteq C$ and $y=v y+\left(-v+v^{2}\right) y+\left(1-v^{2}\right) y$, so $y \in\left(C:\left(-v+v^{2}\right)\right)$ and $y^{\rho}=y$. Hence $C_{v} \subseteq\left(C:\left(-v+v^{2}\right)\right)^{\rho}$. Therefore $\left(C:\left(-v+v^{2}\right)\right)^{\rho}=$ C_{v}.
Let $c \in\left(C:\left(1-v^{2}\right)\right)$, then $\left(1-v^{2}\right) c \in C$. Setting $c=v a^{\prime}(x)+\left(-v+v^{2}\right) b^{\prime}(x)+\left(1-v^{2}\right) c^{\tau}$, where $a^{\prime}(x), b^{\prime}(x) \in F_{p}^{n}$. Hence $\left(1-v^{2}\right)\left[v a^{\prime}(x)+\left(-v+v^{2}\right) b^{\prime}(x)+\left(1-v^{2}\right) c^{\tau}\right]=\left(1-v^{2}\right) c \in C$. Therefore $c^{\tau} \in C_{-v+v^{2}}$, which implies that $\left(C:\left(1-v^{2}\right)\right)^{\tau} \subseteq C_{-v+v^{2}}$. Let $y \in C_{-v+v^{2}}$, then there exists $w, z \in F_{p}^{n}$ such that $v w+\left(-v+v^{2}\right) z+\left(1-v^{2}\right) y \in C$. Note that $\left(1-v^{2}\right) y=$ $\left(1-v^{2}\right)\left[v w+\left(-v+v^{2}\right) z+\left(1-v^{2}\right) y\right] \in\left(1-v^{2}\right) C \subseteq C$ and $y=v y+\left(-v+v^{2}\right) y+\left(1-v^{2}\right) y$, so $y \in\left(C:\left(1-v^{2}\right)\right)$ and $y=y^{\tau}$. Hence $C_{-v+v^{2}} \subseteq\left(C:\left(1-v^{2}\right)\right)^{\tau}$. Therefore $\left(C:\left(1-v^{2}\right)\right)^{\tau}=$ $C_{-v+v^{2}}$.
Step(2) :If $C=\left\langle\left(-v+v^{2}\right) h_{1}(x),\left(1-v^{2}\right) h_{2}(x)\right\rangle$,then $\left(C:\left(-v+v^{2}\right)\right)^{\rho}=\left[h_{1}(x)\right]$ and $(C:$ $\left.\left(1-v^{2}\right)\right)^{\tau}=\left[h_{2}(x)\right]$.
Let $f(x) \in\left(C:\left(-v+v^{2}\right)\right)$, then $\left(-v+v^{2}\right) f(x) \in C$. So we have that $\left(-v+v^{2}\right) f(x)=$ $\left(-v+v^{2}\right) h_{1}(x) s_{1}(x)+\left(1-v^{2}\right) h_{2}(x) t_{1}(x)$, for some $s_{1}(x), t_{1}(x) \in R_{p, n}$. Write
$f(x)=\left(-v+v^{2}\right) f(x)^{\rho}+\left(1-v^{2}\right) f(x)^{\tau}, s_{1}(x)=\left(-v+v^{2}\right) s_{1}(x)^{\rho}+\left(1-v^{2}\right) s_{1}(x)^{\tau}$ and $t_{1}(x)=$ $\left(-v+v^{2}\right) t_{1}(x)^{\rho}+\left(1-v^{2}\right) t_{1}(x)^{\tau}$, where $f(x)^{\rho}, f(x)^{\tau}, s_{1}(x)^{\rho}, s_{1}(x)^{\tau}, t_{1}(x)^{\rho}, t_{1}(x)^{\tau} \in F_{p}[x]$. Thus $\left(-v+v^{2}\right)\left[\left(-v+v^{2}\right) f(x)^{\rho}+\left(1-v^{2}\right) f(x)^{\tau}\right]=\left(-v+v^{2}\right) h_{1}(x)\left[\left(-v+v^{2}\right) s_{1}(x)^{\rho}+(1-\right.$ $\left.\left.v^{2}\right) s_{1}(x)^{\tau}\right]+\left(1-v^{2}\right) h_{2}(x)\left[\left(-v+v^{2}\right) t_{1}(x)^{\rho}+\left(1-v^{2}\right) t_{1}(x)^{\tau}\right]$. Thus $2\left(-v+v^{2}\right) f(x)^{\rho}=2(-v+$ $\left.v^{2}\right) h_{1}(x) s_{1}(x)^{\rho}+\left(1-v^{2}\right) h_{2}(x) t_{1}(x)^{\tau}$, which forces that $f(x)^{\rho}=h_{1}(x) s_{1}(x)^{\rho}$. This shows that $f(x)^{\rho} \in\left[h_{1}(x)\right]$. Therefor $\left(C:\left(-v+v^{2}\right)\right)^{\rho} \subseteq\left[h_{1}(x)\right]$. Conversely; if $f(x) \in\left[h_{1}(x)\right]$, then $f(x)=h_{1}(x) r_{1}(x)$, for some $r_{1}(x) \in F_{p}[x]$. Hence $\left(-v+v^{2}\right) f(x)=\left(-v+v^{2}\right) h_{1}(x) r_{1}(x) \in$ $\left\langle\left(-v+v^{2}\right) h_{1}(x),\left(1-v^{2}\right) h_{2}(x)\right\rangle=C$, which shows that $f(x) \in\left(C:\left(-v+v^{2}\right)\right)$; note that $f(x)=v f(x)+\left(-v+v^{2}\right) f(x)+\left(1-v^{2}\right) f(x)$, so $f(x)=f(x)^{\rho}$. Hence $f(x) \in\left(C:\left(-v+v^{2}\right)\right)^{\rho}$. We obtain that $\left[h_{1}(x)\right] \subseteq\left(C:\left(-v+v^{2}\right)\right)^{\rho}$. Then we have $\left(C:\left(-v+v^{2}\right)\right)^{\rho}=\left[h_{1}(x)\right]$.
Now we prove the second equality in this step.
Let $f(x) \in\left(C:\left(1-v^{2}\right)\right)$, then $\left(1-v^{2}\right) f(x) \in C$. So we have that $\left(1-v^{2}\right) f(x)=(-v+$ $\left.v^{2}\right) h_{1}(x) s_{2}(x)+\left(1-v^{2}\right) h_{2}(x) t_{2}(x)$, for some $s_{2}(x), t_{2}(x) \in R_{p}^{n}$. Write
$f(x)=\left(-v+v^{2}\right) f(x)^{\rho}+\left(1-v^{2}\right) f(x)^{\tau}, s_{2}(x)=\left(-v+v^{2}\right) s_{2}(x)^{\rho}+\left(1-v^{2}\right) s_{2}(x)^{\tau}$ and $t_{2}(x)=\left(-v+v^{2}\right) t_{2}(x)^{\rho}+\left(1-v^{2}\right) t_{2}(x)^{\tau}$, where $f(x)^{\rho}, f(x)^{\tau}, s_{2}(x)^{\rho}, s_{2}(x)^{\tau}, t_{2}(x)^{\rho}, t_{2}(x)^{\tau} \in$ $F_{p}[x]$. Thus $\left(1-v^{2}\right)\left[\left(-v+v^{2}\right) f(x)^{\rho}+\left(1-v^{2}\right) f(x)^{\tau}\right]=\left(-v+v^{2}\right) h_{1}(x)\left[\left(-v+v^{2}\right) s_{2}(x)^{\rho}+\right.$ $\left.\left(1-v^{2}\right) s_{2}(x)^{\tau}\right]+\left(1-v^{2}\right) h_{2}(x)\left[\left(-v+v^{2}\right) t_{2}(x)^{\rho}+\left(1-v^{2}\right) t_{2}(x)^{\tau}\right]$. Thus $\left(1-v^{2}\right) f(x)^{\tau}=$ $2\left(-v+v^{2}\right) h_{1}(x) s_{2}(x)^{\rho}+\left(1-v^{2}\right) h_{2}(x) t_{2}(x)^{\tau}$, which forces that $f(x)^{\tau}=h_{2}(x) t_{2}(x)^{\tau}$. This shows that $f(x)^{\tau} \in\left[h_{2}(x)\right]$. Therefore $\left(C:\left(1-v^{2}\right)\right)^{\tau} \subseteq\left[h_{2}(x)\right]$. Conversely; if $f(x) \in\left[h_{2}(x)\right]$, then $f(x)=h_{2}(x) r_{2}(x)$, for some $r_{2}(x) \in F_{p}[x]$. Hence $\left(1-v^{2}\right) f(x)=\left(1-v^{2}\right) h_{2}(x) r_{2}(x) \in$
$\left\langle\left(-v+v^{2}\right) h_{1}(x),\left(1-v^{2}\right) h_{2}(x)\right\rangle=C$, which shows that $f(x) \in\left(C:\left(1-v^{2}\right)\right)$; note that $f(x)=v f(x)+\left(-v+v^{2}\right) f(x)+\left(1-v^{2}\right) f(x)$, so $f(x)=f(x)^{\tau}$. Hence $f(x) \in\left(C:\left(1-v^{2}\right)\right)^{\tau}$. We obtain that $\left[h_{2}(x)\right] \subseteq\left(C:\left(1-v^{2}\right)\right)^{\tau}$. Then we have $\left(C:\left(1-v^{2}\right)\right)^{\tau}=\left[h_{2}(x)\right]$.
By the above tow steps, we can obtain our desired results. Specially, $h_{1}(x)$ and $h_{2}(x)$ are the generator polynomials of constacyclic codes C_{v} and $C_{-v+v^{2}}$, respectively.
Definition 3.1. Let $C=v C_{1-v^{2}} \oplus\left(-v+v^{2}\right) C_{v} \oplus\left(1-v^{2}\right) C_{-v+v^{2}}$ be a θ-constacyclic code of length n over R. We say that the set $S=\left\{\left(-v+v^{2}\right) g_{1}(x),\left(1-v^{2}\right) g_{2}(x)\right\}$ is generating set in standard form for the θ-constacyclic code $C=\langle S\rangle$ if both the following two conditions are satisfied:
(1) for each $i \in\{1,2\}, g_{i}(x)$ is either monic in $F_{p}[x]$ or equals to 0 ;
(2) if $g_{1}(x) \neq 0$, then $g_{1}(x) \mid\left(x^{n}-(\lambda-\mu+\kappa)\right)$; if $g_{2}(x) \neq 0$, then $g_{2}(x) \mid\left(x^{n}-\lambda\right)$.

Now combining Theorem 3.3 and 3.5, the following result is obtained.
Theorem 3.6. Any nonzero constacyclic code $C=\left(-v+v^{2}\right) C_{v} \oplus\left(1-v^{2}\right) C_{-v+v^{2}}$ over R has a unique generating set in standard form.
Corollary 3.7. Let C be an ideal in R_{n}, then there exists a unique polynomial $g(x)=(-v+$ $\left.v^{2}\right) g(x)^{\rho}+\left(1-v^{2}\right) g(x)^{\tau} \in C$ such that $C=\langle g(x)\rangle$ with $g(x)^{\rho}$ and $g(x)^{\tau}$ being monic in $F_{p}[x]$. In particular, R_{n} is a principal ideal ring.

Proof. According to Theorem 3.6 we have $C=\left\langle\left(-v+v^{2}\right) g_{v}(x),\left(1-v^{2}\right) g_{-v+v^{2}}(x)\right\rangle$, where $\left\{\left(-v+v^{2}\right) g_{v}(x),\left(1-v^{2}\right) g_{-v+v^{2}}(x)\right\}$ is a generating set in standard form for C. Let $g(x)=$ $\left(-v+v^{2}\right) g_{v}(x)+\left(1-v^{2}\right) g_{-v+v^{2}}(x)$. Note that

$$
2\left(-v+v^{2}\right) g_{v}(x)=\left(-v+v^{2}\right) g(x)=\left(-v+v^{2}\right)\left[\left(-v+v^{2}\right) g_{v}(x)+\left(1-v^{2}\right) g_{-v+v^{2}}(x)\right] \in C
$$

and

$$
\left(1-v^{2}\right) g_{-v+v^{2}}=\left(1-v^{2}\right) g(x)=\left(1-v^{2}\right)\left[\left(-v+v^{2}\right) g_{v}(x)+\left(1-v^{2}\right) g_{-v+v^{2}}(x)\right] \in C
$$

Hence $2\left(-v+v^{2}\right) g_{v}(x)+\left(1-v^{2}\right) g_{-v+v^{2}}(x)=\left(-v+v^{2}\right) g(x)+\left(1-v^{2}\right) g(x) \in C$, then $v^{2} g(x)-v g(x)+g(x)-v^{2} g(x)=g(x)(1-v) \in C$ and it is belong to $\langle g(x)\rangle$. Thus $C \subseteq\langle g(x)\rangle$ and since $g(x)=\left(-v+v^{2}\right) g_{v}(x)+\left(1-v^{2}\right) g_{-v+v^{2}}(x) \in C$. So $\langle g(x)\rangle \subseteq C$. Therefore $C=\langle g(x)\rangle$.
Finally, we prove the uniqueness of such a polynomial. Suppose that $C=\langle h(x)\rangle$. Write $h(x)=$ $\left(-v+v^{2}\right) h(x)^{\rho}+\left(1-v^{2}\right) h(x)^{\tau}$, where $h(x)^{\rho}$ and $h(x)^{\tau}$ are monic in $F_{p}[x]$. In the following we shall prove that $h(x)^{\rho}=g_{v}(x)$ and $h(x)^{\tau}=g_{-v+v^{2}}(x)$. Since $C=\langle h(x)\rangle$ and $\left(-v+v^{2}\right) h(x) \in$ C, so $h(x) \in\left(C:\left(-v+v^{2}\right)\right)$, that is, $h(x)^{\rho} \in\left(C:\left(-v+v^{2}\right)\right)^{\rho}=C_{v}$. Then $g_{v}(x) \mid h(x)^{\rho}$, similarly we have that $g_{-v+v^{2}}(x) \mid h(x)^{\tau}$. On the other hand, there exists some polynomial $s(x) \in R_{n}$ such that $\left(-v+v^{2}\right) g_{v}(x)+\left(1-v^{2}\right) g_{-v+v^{2}}(x)=\left[\left(-v+v^{2}\right) s_{v}(x)^{\rho}+\left(1-v^{2}\right) s_{-v+v^{2}}(x)^{\tau}\right][(-v+$ $\left.\left.v^{2}\right) h(x)^{\rho}+\left(1-v^{2}\right) h(x)^{\tau}\right]=2\left(-v+v^{2}\right) s_{v}(x)^{\rho} h(x)^{\rho}+\left(1-v^{2}\right) s_{-v+v^{2}}(x)^{\tau} h(x)^{\tau}$, it follows that $2 s_{v}(x)^{\rho} h(x)^{\rho}=g_{v}(x)$ and $s_{-v+v^{2}}(x)^{\tau} h(x)^{\tau}=g_{-v+v^{2}}(x)$. Hence $h(x)^{\rho} \mid g_{v}(x)$ and $h(x)^{\tau} \mid g_{-v+v^{2}}(x)$. Therefore we obtain that $h(x)^{\rho}=g_{v}(x)$ and $h(x)^{\tau}=g_{-v+v^{2}}(x)$, which is the required results.

Now we give the definition of polynomial Gray map over R_{n}. Let $f(x) \in R_{n}$ with degree less than n, then $f(x)$ can be expressed as $f(x)=r(x)+v q(x)+v^{2} s(x)$, where $r(x), q(x), s(x) \in$ $F_{p}[x]$ and their degrees are less than n. Let $\theta=\lambda+v \mu+v^{2} \kappa \in R^{*}$.
Define the polynomial Gray map as follows:

$$
\Phi_{\theta}: R_{n} \rightarrow F_{p}[x] /\left(x^{2 n}-1\right)
$$

$f(x)=r(x)+v q(x)+v^{2} s(x) \longmapsto \lambda(\lambda-\mu+\kappa) s(x)+x^{n}[\mu r(x)-\kappa r(x)-(\lambda-\mu+\kappa) s(x)]$.
Obviously the above polynomial Gray map Φ_{θ} is well-defined. If $\mu, \kappa \neq 0$, then the map Φ_{θ} is bijection.

Theorem 3.8. Let C be a θ-constacyclic code of length n over R with a generating set in standard form $\left\{\left(-v+v^{2}\right) g_{v}(x),\left(1-v^{2}\right) g_{-v+v^{2}}(x)\right\}$. Then $\Phi_{\theta}(C) \subseteq\left\langle g_{v}(x) g_{-v+v^{2}}(x)\right\rangle$.

Proof. Since $g_{v}(x) \mid\left(x^{n}-(\lambda-\mu+\kappa)\right)$ and $g_{-v+v^{2}}(x) \mid\left(x^{n}-\lambda\right)$, then there exist $q_{1}(x), q_{2}(x) \in$ $F_{p}[x]$ such that:
$x^{n}-(\lambda-\mu+\nu)=g_{v}(x) q_{1}(x)$ and $x^{n}-\lambda=g_{-v+v^{2}}(x) q_{2}(x)$. By the proof of Corollary 3.7, we have that $\left\langle\left(-v+v^{2}\right) g_{v}(x)+\left(1-v^{2}\right) g_{-v+v^{2}}(x)\right\rangle$. Let $f(x)$ be an element in C. Then $f(x)=\left[\left(-v+v^{2}\right) g_{v}(x)+\left(1-v^{2}\right) g_{-v+v^{2}}(x)\right] h(x)$, for some $h(x) \in R_{n}$. Since $h(x)$ can be written as $h(x)=v h(x)^{\sigma}+\left(-v+v^{2}\right) h(x)^{\rho}+\left(1-v^{2}\right) h(x)^{\tau}$, where $h(x)^{\sigma}, h(x)^{\rho}$ and $h(x)^{\tau} \in F_{p}[x]$, it follows that
$f(x)=\left[\left(-v+v^{2}\right) g_{v}(x)+\left(1-v^{2}\right) g_{-v+v^{2}}(x)\right]\left[v h(x)^{\sigma}+\left(-v+v^{2}\right) h(x)^{\rho}+\left(1-v^{2}\right) h(x)^{\tau}\right]=$ $\left(-v^{2}+v\right) g_{v}(x) h(x)^{\sigma}+\left(-2 v+2 v^{2}\right) g_{v}(x) h(x)^{\rho}+\left(1-v^{2}\right) g_{-v+v^{2}}(x) h(x)^{\tau}=g_{-v+v^{2}}(x) h(x)^{\tau}+$ $v\left(g_{v}(x) h(x)^{\sigma}-2 g_{v}(x) h(x)^{\rho}\right)+v^{2}\left(-g_{v}(x) h(x)^{\sigma}+2 g_{v}(x) h(x)^{\rho}-g_{-v+v^{2}}(x) h(x)^{\tau}\right)$. Then we have that:
$\Phi_{\theta}(f(x))=\lambda(\lambda-\mu+\kappa)\left[-g_{v}(x) h(x)^{\sigma}+2 g_{v}(x) h(x)^{\rho}-g_{-v+v^{2}}(x) h(x)^{\tau}\right]+x^{n}\left[\mu g_{-v+v^{2}}(x) h(x)^{\tau}-\right.$ $\left.\kappa g_{-v+v^{2}}(x) h(x)^{\tau}-(\lambda-\mu+\kappa)\left(-g_{v}(x) h(x)^{\sigma}+2 g_{v}(x) h(x)^{\rho}-g_{-v+v^{2}}(x) h(x)^{\tau}\right)\right]=$
$\lambda g_{-v+v^{2}}(x) h(x)^{\tau}\left(x^{n}-(\lambda-\mu+\kappa)\right)-(\lambda-\mu+\kappa)\left[-g_{v}(x) h(x)^{\sigma}+2 g_{v}(x) h(x)^{\rho}\right]\left(x^{n}-\lambda\right)=$ $\lambda g_{-v+v^{2}}(x) h(x)^{\tau} g_{v}(x) q_{1}(x)-(\lambda-\mu+\kappa)\left[-g_{v}(x) h(x)^{\sigma}+2 g_{v}(x) h(x)^{\rho}\right] g_{-v+v^{2}}(x) q_{2}(x)=$
$\lambda g_{-v+v^{2}}(x) h(x)^{\tau} g_{v}(x) q_{1}(x)-(\lambda-\mu+\kappa) g_{v}(x)\left[-h(x)^{\sigma}+2 h(x)^{\rho}\right] g_{-v+v^{2}} q_{2}(x)=$
$g_{v}(x) g_{-v+v^{2}}(x)\left[\lambda h(x)^{\tau} q_{1}(x)-(\lambda-\mu+\kappa)\left(-h(x)^{\sigma}+2 h(x)^{\rho}\right) q_{2}(x)\right] \in\left\langle g_{v}(x) g_{-v+v^{2}}(x)\right\rangle$. Hence $\Phi_{\theta}(C) \subseteq\left\langle g_{v}(x) g_{-v+v^{2}}(x)\right\rangle$.

Corollary 3.9. Let $\theta=1+v-v^{2}$ or $-1-v+v^{2}$ and let $C=v C_{1-v^{2}} \oplus\left(-v+v^{2}\right) C_{v} \oplus(1-$ $\left.v^{2}\right) C_{-v+v^{2}}$ be a θ-constacyclic code of length n over R with generating set in standard form $\left\{\left(-v+v^{2}\right) g_{v}(x),\left(1-v^{2}\right) g_{-v+v^{2}}(x)\right\}$. Then $\Phi_{\theta}(C)=\left[g_{v}(x) g_{-v+v^{2}}(x)\right]$.

Proof. Note that $g_{v}(x) \mid\left(x^{n}-(\lambda-\mu+\kappa)\right)$ and $g_{-v+v^{2}}(x) \mid\left(x^{n}-\lambda\right)$, where $\lambda+v \mu+v^{2} \kappa=1+v-v^{2}$ or $-1-v+v^{2}$, then $\left(x^{n}-(\lambda-\mu+\kappa)\right)\left(x^{n}-\lambda\right)=\left(x^{2 n}-1\right)$. Hence $g_{v}(x) g_{-v+v^{2}}(x) \mid\left(x^{2 n}-1\right)$, which shows that $g_{v}(x) g_{-v+v^{2}}(x)$ is the generator polynomial for cyclic code $\left\langle g_{v}(x) g_{-v+v^{2}}(x)\right\rangle$, that is, $\left\langle g_{v}(x) g_{-v+v^{2}}(x)\right\rangle=\left[g_{v}(x) g_{-v+v^{2}}\right]$. By Theorem 3.8, we have that $\Phi_{\theta}(C) \subseteq\left[g_{v}(x) g_{-v+v^{2}}\right]$. On the other hand, $\left|\Phi_{\theta}(C)\right|=|C|=p^{2 n-\operatorname{deg}\left(g_{v}(x)\right)-\operatorname{deg}\left(g_{-v+v^{2}}(x)\right)}$ and $\left|\left[g_{v}(x) g_{-v+v^{2}}(x)\right]\right|=$ $p^{2 n-\operatorname{deg}\left(g_{v}(x)\right)-\operatorname{deg}\left(g_{-v+v^{2}}(x)\right)}$. Hence, $\Phi_{\theta}(C)=\left[g_{v}(x) g_{-v+v^{2}}(x)\right]$.

For a unit θ of R_{p}, the θ-constacyclic shift τ_{λ} on R_{p} is the shift

$$
\tau_{\lambda}\left(x_{0}, x_{1}, \ldots, x_{n}\right)=\left(\lambda x_{n-1}, x_{0}, \ldots, x_{n-2}\right)
$$

Proposition 3.10. Let C be a θ-constacyclic code of length n over R_{p}. Then the dual code C^{\perp} for C is a θ-constacyclic code of length n over R_{p}.

Proof. Let C be a θ-constacyclic code of length n over R_{p}. Consider arbitrary elements $x \in C^{\perp}$ and $y \in C$. Because C is θ-constacyclic, $\tau_{\theta}^{n-1}(y) \in C$. Thus, $0=x . \tau_{\theta}^{n-1}(y)=\lambda \tau_{\lambda^{-1}}(x) . y=$ $\tau_{\lambda^{-1}}(x) . y$, which means that $\tau_{\theta}^{-1}(x) \in C^{\perp}$. Therefore, C^{\perp} is closed under the τ_{θ}^{-1}-shift; i.e, C^{\perp} is a θ-constacyclic code.

Let $g_{v}(x) h_{v}(x)=x^{n}-(\lambda-\mu+\kappa)$ and $g_{-v+v^{2}}(x) h_{-v+v^{2}}(x)=x^{n}-\lambda$. Let $\widetilde{h}_{v}(x)=$ $x^{\operatorname{deg}\left(h_{v}(x)\right)} h_{v}\left(\frac{1}{x}\right)$ and $\widetilde{h}_{-v+v^{2}}(x)=x^{\operatorname{deg}\left(h_{-v+v^{2}}(x)\right)} h_{-v+v^{2}}(x)\left(\frac{1}{x}\right)$ be the reciprocal polynomials of $h_{v}(x)$ and $h_{-v+v^{2}}(x)$, respectively. We write $h_{v}^{*}(x)=\frac{1}{h_{v}(0)} \widetilde{h}_{v}(x)$ and $h_{-v+v^{2}}^{*}(x)=$ $\frac{1}{h_{-v+v^{2}}(0)} \widetilde{h}_{-v+v^{2}}(x)$.

Theorem 3.11. Let $C=v C_{1-v^{2}} \oplus\left(-v+v^{2}\right) C_{v} \oplus\left(1-v^{2}\right) C_{-v+v^{2}}$ be a θ-constacyclic code of length n over R. Then $C^{\perp}=\left(-v+v^{2}\right) C_{v}^{\perp} \oplus\left(1-v^{2}\right) C_{-v+v^{2}}^{\perp}$.

Proof. From Theorem 3.2, C_{v} and $C_{-v+v^{2}}$ are constacyclic codes over F_{p}. Then C_{v}^{\perp} and $C_{-v+v^{2}}^{\perp}$ are constacyclic code over F_{p}. Let $g_{v}(x)$ and $g_{-v+v^{2}}(x)$ are generator polynomials for C_{v} and $C_{-v+v^{2}}$, respectively. Then $C_{v}^{\perp}=\left[h_{v}^{*}(x)\right]$ and $C_{-v+v^{2}}^{\perp}=\left[h_{-v+v^{2}}^{*}(x)\right]$. Thus we have that $\left|C_{v}^{\perp}\right|=p^{\operatorname{deg}\left(g_{v}(x)\right)}$ and $\left|C_{-v+v^{2}}^{\perp}\right|=p^{\operatorname{deg}\left(g_{-v+v^{2}}(x)\right)}$.

For any $a \in C_{v}^{\perp}, b \in C_{-v+v^{2}}^{\perp}$ and $c=\left(-v+v^{2}\right) r+\left(1-v^{2}\right) q \in C$, where $r \in C_{v}, q \in C_{-v+v^{2}}$, we have that

$$
\begin{gathered}
c .\left(\left(-v+v^{2}\right) a+\left(1-v^{2}\right) b\right)=\left(\left(-v+v^{2}\right) r+\left(1-v^{2}\right) q\right)\left(\left(-v+v^{2}\right) a+\left(1-v^{2}\right) b\right) \\
=2\left(-v+v^{2}\right) r . a+\left(1-v^{2}\right) q . b \\
=0,
\end{gathered}
$$

and hence $\left(-v+v^{2}\right) C_{v}^{\perp} \oplus\left(1-v^{2}\right) C_{-v+v^{2}}^{\perp} \subseteq C^{\perp}$.
Furthermore, suppose that $\left(-v+v^{2}\right) a+\left(1-v^{2}\right) b=\left(-v+v^{2}\right) a^{\prime}+\left(1-v^{2}\right) b^{\prime}$, where $a, a^{\prime} \in C_{v}^{\perp}$ and $b, b^{\prime} \in C_{-v+v^{2}}^{\perp}$, then $\left(-v+v^{2}\right)\left(a-a^{\prime}\right)=\left(1-v^{2}\right)\left(b^{\prime}-b\right)$, so $\left(-v+v^{2}\right)\left(a-a^{\prime}\right)=$ $v^{2}\left[\left(-v+v^{2}\right)\left(a-a^{\prime}\right)\right]=v^{2}\left[\left(1-v^{2}\right)\left(b^{\prime}-b\right)\right]=0$. Hence $a=a^{\prime}$, which forces $b=b^{\prime}$. Thus every element c of $\left(-v+v^{2}\right) C_{v}^{\perp} \oplus\left(1-v^{2}\right) C_{-v+v^{2}}^{\perp}$ has a unique expression as $\left(-v+v^{2}\right) r+\left(1-v^{2}\right) q$, where $r \in C_{v}^{\perp}, q \in C_{-v+v^{2}}^{\perp}$. This shows that

$$
\begin{gathered}
\left|\left(-v+v^{2}\right) C_{v}^{\perp} \oplus\left(1-v^{2}\right) C_{-v+v^{2}}^{\perp}\right|=\left|C_{v}^{\perp}\right|\left|C_{-v+v^{2}}^{\perp}\right| \\
p^{\operatorname{deg}\left(g_{v}(x)\right)+\operatorname{deg}\left(g_{-v+v^{2}}(x)\right)} .
\end{gathered}
$$

Finally, by Proposition 3.4, $|C|=p^{3 n-\operatorname{deg}\left(g_{v}(x)\right)-\operatorname{deg}\left(g_{-v+v^{2}}(x)\right)}$. Since R_{p} is a Frobenius ring, $|C|\left|C^{\perp}\right|=\left|R_{p}\right|^{n}$, so

$$
\begin{gathered}
\left|C^{\perp}\right|=\frac{\left|R_{p}\right|^{n}}{|C|}=\frac{p^{3 n}}{p^{3 n-\operatorname{deg}\left(g_{v}(x)\right)-\operatorname{deg}\left(g_{-v+v^{2}}(x)\right)}} \\
=p^{\operatorname{deg}\left(g_{v}(x)\right)+\operatorname{deg}\left(g_{-v+v^{2}}(x)\right)} \\
=\left|\left(-v+v^{2}\right) C_{v}^{\perp} \oplus\left(1-v^{2}\right) C_{-v+v^{2}}^{\perp}\right| .
\end{gathered}
$$

Note that $\left(-v+v^{2}\right) C_{v}^{\perp} \oplus\left(1-v^{2}\right) C_{-v+v^{2}}^{\perp} \subseteq C^{\perp}$ as above, we have that $C^{\perp}=\left(-v+v^{2}\right) C_{v}^{\perp} \oplus$ $\left(1-v^{2}\right) C_{-v+v^{2}}^{\perp}$, as required.

Theorem 3.12. With notations as above. Let $C=v C_{1-v^{2}} \oplus\left(-v+v^{2}\right) C_{v} \oplus\left(1-v^{2}\right) C_{-v+v^{2}}$ be a θ-constacyclic code of length n over R with generating set in standard form $\left\{\left(-v+v^{2}\right) g_{v}(x),\left(1-v^{2}\right) g_{-v+v^{2}}(x)\right\}$. Then
(1) $C^{\perp}=\left\langle\left(-v+v^{2}\right) h_{v}^{*}(x),\left(1-v^{2}\right) h_{-v+v^{2}}^{*}(x)\right\rangle$ and $\left|C^{\perp}\right|=p^{\operatorname{deg}\left(g_{v}(x)\right)+\operatorname{deg}\left(g_{-v+v^{2}}(x)\right)}$;
(2) $C^{\perp}=\left\langle\left(-v+v^{2}\right) h_{v}^{*}(x) \oplus\left(1-v^{2}\right) h_{-v+v^{2}}^{*}(x)\right\rangle$;
(3) $\Phi_{\theta}\left(C^{\perp} \subseteq\left\langle h_{v}^{*}(x) h_{-v+v^{2}}^{*}(x)\right\rangle\right.$.

Proof. (1) By Proposition 3.10, C^{\perp} is a θ-constacyclic code over R_{p}; by Theorem 3.11, we have that $C^{\perp}=\left(-v+v^{2}\right) C_{v}^{\perp} \oplus\left(1-v^{2}\right) C_{-v+v^{2}}^{\perp}$, where according to Theorem 3.2 C_{v}^{\perp} and $C_{-v+v^{2}}^{\perp}$ are two constacyclic codes over F_{p}. Since $h_{v}^{*}(x)$ and $h_{-v+v^{2}}^{*}(x)$ are generator polynomials for C_{v}^{\perp} and $C_{-v+v^{2}}^{\perp}$, respectively, we have that $\left\{\left(-v+v^{2}\right) h_{v}^{*}(x),\left(1-v^{2}\right) h_{-v+v^{2}}^{*}(x)\right\}$ is the generating set in standard form for C^{\perp}. So $C^{\perp}=\left\langle\left(-v+v^{2}\right) h_{v}^{*}(x),\left(1-v^{2}\right) h_{-v+v^{2}}^{*}(x)\right\rangle$. In addition, $\left|C^{\perp}\right|=\left|C_{v}^{\perp}\right|\left|C_{-v+v^{2}}^{\perp}\right|=p^{\operatorname{deg}\left(g_{v}(x)\right)} \cdot p^{\operatorname{deg}\left(g_{-v+v^{2}}(x)\right)}=p^{\operatorname{deg}\left(g_{v}(x)\right)+\operatorname{deg}\left(g_{-v+v^{2}}(x)\right)}$.
(2) Since $\left\{\left(-v+v^{2}\right) h_{v}^{*}(x),\left(1-v^{2}\right) h_{-v+v^{2}}^{*}(x)\right\}$ is the generating set in standard form for C^{\perp}, according to the proof of Corollary 3.7 we have that

$$
C^{\perp}=\left\langle\left(-v+v^{2}\right) h_{v}^{*}(x) \oplus\left(1-v^{2}\right) h_{-v+v^{2}}^{*}(x)\right\rangle
$$

(3) Similar to the proof of Theorem 3.9.

Theorem 3.13. Let $\theta=1+v-v^{2}$ or $-1-v+v^{2}$ and let $C=v C_{1-v^{2}} \oplus\left(-v+v^{2}\right) C_{v} \oplus(1-$ $\left.v^{2}\right) C_{-v+v^{2}}$ be a θ-constacyclic code of length n over R with generating set in standard form $\left\{\left(-v+v^{2}\right) g_{v}(x),\left(1-v^{2}\right) g_{-v+v^{2}}(x)\right\}$. Then
(1) $\Phi_{\theta}\left(C^{\perp}\right)=\left[h_{v}^{*}(x) h_{-v+v^{2}}^{*}(x)\right]$.
(2) $\Phi_{\theta}\left(C^{\perp}\right)=\left(\Phi_{\theta}(C)\right)^{\perp}$.

Proof. (1) According to the proof of Corollary 3.9, we can obtain the result.
(2) Note the facts that

$$
\Phi_{\theta}(C)=\left[g_{v}(x) g_{-v+v^{2}}(x)\right], \Phi_{\theta}\left(C^{\perp}\right)=\left[h_{v}^{*}(x) h_{-v+v^{2}}^{*}(x)\right]
$$

we have

$$
\begin{gathered}
\Phi_{\theta}(C)^{\perp}=\left[g_{v}(x) g_{-v+v^{2}}(x)\right]^{\perp} \\
=\left[h_{v}^{*}(x) h_{-v+v^{2}}^{*}(x)\right] \\
=\Phi_{\theta}\left(C^{\perp}\right),
\end{gathered}
$$

which is the required result.
Example 3.1. In $F_{3}[x]$

$$
\begin{aligned}
& x^{3}+1=(x+1)^{3} \\
& x^{3}-1=(x+2)^{3}
\end{aligned}
$$

Let C be the $\left(-1-v+v^{2}\right)$-constacyclic code of length 3 over $F_{3}+v F_{3}+v^{2} F_{3}$ with generating polynomial:
$g(x)=\left(-v+v^{2}\right)(x+1)+\left(1-v^{2}\right)(x+2)=v^{2} x-v x+v^{2}-v+x-v^{2} x+2-2 v^{2}=$ $x(1-v)-\left(1+v+v^{2}\right)$.
The Gray image $\Phi_{\theta}(C)$ is a $[6,4,2]$ code over F_{3} with generator polynomial $(x+1)(x+2)$.

References

[1] A. R. Hammons , Jr., P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, P. Sole, The Z_{4} linearity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. Inform. Theory 40(2), 301-319(1994).
[2] B. Yildiz, S. Karadeniz, Linear codes over $F_{2}+u F_{2}+v F_{2}+u v F_{2}$, Des. Codes Cryptogr. 54,61-81(2010).
[3] H. Q. Dinh, Constacyclic codes of length 2^{s} over Galois extension rings of $F_{2}+u F_{2}$, IEEE Trans. Theory 55,1730-1740(2009).
[4] H. Q. Dinh, Constacyclic codes of length ps over $F_{p^{m}}+u F_{p^{m}}$, J. Algebra 324,940-950(2010).
[5] H. Q. Dinh, S. R. Lopez-Permouth, Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory 50(8),1728-1744(2004).
[6] J. Wood, Duality for modules over finite rings and applications to coding theory, Amer. J. Math. 121, 555-575(1999).
[7] K. Guenda, T. A. Gulliver, MDS and self-dual codes over rings, Finite Fields Appl. 18,1061-1075(2012).
[8] S. Zhu, L. Wang, A class of constacyclic codes over $F_{p}+v F_{p}$ and its Gray image, Discrete Math. 311,2677-2682(2011).
[9] S, Zhu, X. Kai, Dual and self-dual negacyclic codes of even length over $Z_{2^{a}}$, Discrete Math. 309,23822391(2009).
[10] S. Zhu, Y. Wang, M. Shi, Some results on cyclic codes over $F_{2}+v F_{2}$, IEEE Trans. Inform. Theory 56(4),1680-1684(2010).
[11] T. Abualrub, I. Siap, Constacyclic codes over $F_{2}+u F_{2}$, J. Franklin Inst. 346,520-529(2009).
[12] T. Blackford, Negacyclic codes over Z_{4} of even length, IEEE Trans. Theory, 49,1417-1424(2003).
[13] Z.Guanghui and C.Bocong, Constacyclic codes over $F_{p}+v F_{p}$, arxiv:1301.06669v1[csit]4 Jan. (2013).

Author information

Mohammed M. Al-Ashker and Mariam I. Satariah, Mathematics Department, Faculty of Science, Islamic University of Gaza, Gaza, P.O. Box 108, Palestine.
E-mail: mashker@iugaza.edu.ps
Received: May 22, 2015.
Accepted: January 21, 2016

