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Abstract. In this paper, we study constacyclic codes over the ring R = F, + vF, + v*F),
where p is an odd prime and v = v. The polynomial generators of all constacyclic codes over
R are characterised and their dual codes are also determined.

1 Introduction

Since the discovery that many good non-linear codes over finite fields are ac- tually closely
related to linear codes over Z4 via the Gray map (see [1]), codes over finite rings have received
a great deal of attention (e.g. see [11]-[7], [9]). In these studies, most of them are concentrated
on the case that the ground rings associated with codes are finite chain rings. However, it turns
out that optimal codes over non-chain rings exist. In [2], Yildiz and Karadeniz considered linear
codes over the ring Ry = F> + uF> + vF, + uwvF; with v?> = v?> = 0 and uv = vu; some good
binary codes were obtained as the images of cyclic codes over R; under two Gray maps. In [10],
Zhu, Wang and Shi studied the structure and properties of cyclic codes over F, + vF>, where
v?> = wv; the authors showed that cyclic codes over the ring are principally generated. In the
subsequent paper [8], Zhu and Wang investigated a class of constacyclic codes over Fj, + vF,
with p being an odd prime and v? = v. It was proved that the image of a (1 — 2v)-constacyclic
code of length n over F}, 4 vF}, under the Gray map is a distance-invariant cyclic code of length
2n over F), and (1 — 2v)-constacyclic codes over the ring are principally generated. In [13]
constacyclic codes over F), + vF}, where studied by Guanghui and Bocong. These rings in the
mentioned papers are finite not chain rings.

In this paper, we mainly study the structure of constacyclic codes over R = F, +vF, +v*F,
of arbitrary length and also discuss the dual of these codes.

2 Breliminaries

Let F), be the finite field of order p and F},* the multiplicative group of F,, where p is an odd
prime. It is known that F),[z]/ (z™ — \) is a principal ideal ring for any element X in F,*. If
p(x) + (™ — X) € F,[z]/ (™ — \), then the ideal generated by p(z) + (™ — \), denoted by
(p(x)), is the smallest ideal in F},[x]/ (™ — X) containing p(x)+ (™ — A). In addition, we adopt
the notation [g(z)] to denote the ideal in F,[z]/ (™ — \) generated by g(z) + (=™ — \) with g(z)
being a monic divisor of ™ — \; in that case, g(z) is called a generator polynomial. Throughout
this paper, R denotes the commutative ring F,, + vF, + v*F, = {a + vb + v’c|a,b,c € F,}
with v® = v. Recall that R is a principal ideal ring and has six non-trivial ideals, namely (v)
={va:ac F}, (1+v)={(1+v)b:be F}, (-1+v)={(-1+v)c:ce F}, (1-v?)
={(1-v*)d :d e F,}, (v+v*) ={(v+v¥)e:e € F,} and (—v+v*) = {(—v + v?)f :
f € F,}, and the maximal ideals in R are (v), (1 + v) and (—1 4 v) , hence R is not a chain
ring. Let R™ be R-module of n-tuples over R. A linear code C of length n over R is an R-
submodule of R™. For any linear code C of length n over R, the dual C* is defined as C+ =
{v € R"|u.w = 0 for any w € C}, where u.w denotes the standard Euclidean inner product of
wand w in R™. Note that C* is linear whether or not C is linear. The Gray map 7 from R to
F, ® F, ® F, given by ¥(c) = (a + b,b+ ¢,2a + ¢), is a ring isomorphism, which means that
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R is isomorphic to the ring F}, ® F}, ® F,. Therefore R is a finite Frobenius ring. If C'is linear,
then |C||C*| = |R|™ (See [6]).

Let 6 be a unit in R. A linear code C of length n over R is called §-constacyclic if for
every (co,ci,...,cn—1) € C, we have (0c,,_1,co,c1,...,cn—2) € C. It is well known that a
f-constacyclic code of length n over R can be identified with an ideal in the quotient ring
R[z]/ (=™ — 0) via the R-module isomorphism as follows:

R™ — Rlx]/ (z™ — )

(CosClyemnsCnt) > (co + 12+ .. + cu12™ 1) (mod (™ — 6)).

If & = 1, #-constacyclic codes are just cyclic codes and while § = —1, §-constacyclic codes are
known as negacyclic codes.

Let A, B and C be codes over R. We denote A B® C = {a+b+cla€ A,be B,ce C}.
Note that any element d of R" can be expressed as d = a + vb + v’c = v(a+ b+ c) + (—v +
v*)(a+¢) 4 (1 —v?)a, where a,b,c € F}. Let C be a linear code of length n over R. Define
Cy, = {be F'lva+ (—v+v*)b+ (1 —v*)c € C for some a,c € F' },

C_pir = {c€ FMva+ (—v+v?)b+ (1 —v?)c € C for some a,b € Fy'},

Ci_p ={a€ Frlva+ (—v+v*)b+ (1 —v*)c e Cforsome b, c € F'}.

Obviously, C,, C_,,,» and C|_,. are linear codes over F,,. By definition of C,, C'_,, . and
C|_,2, we have that C can be uniquely expressed as C' = vC}_» B (—v+v?)C, & (1—v?)C_, 1 2.
It can be routine to check that for any elements a € C_,2, b € C, and c € C_, 2, we get
va+ (—v+v3)b+ (1 —v?)c € C; in particular, |C| = |C_, .2 ||Cy||Ci_ 2|

3 Constacyclic Codes Over The Ring R = F,, + vF, + v*F,

In this subsection, we let R, , = Rp[z]/ (2" — 0) with @ = X\ 4+ vu + v*k being a unit in R,
where A, i and & are elements in Fj,. As usual, we identify R,, with the set of all polynomi-
als over R, of degree less than n. Let fi(x), f2(x), ..., fs(z) € R,. The ideal generated by
fl (iC), fZ(x)7 sy fS(m) will be denoted by <f1 (.’L’), f2(x)7 e fs(.’L')>

The following lemma characterizes the units in R,,.

Lemma 3.1. Let 0 = A\ 4+ vy + v2k be an element in Ry, where )\, 1 and k are elements in F,
Then if 0 = X\ + vp + v*k is a unit of R, then X # 0 and X — pn + x # 0.

Proof. Suppose that = X\ + vu + vk is a unit of R,,. Then there exists elements a,b,c € F,
and ¢’ = a + vb + v?c such that 0" = 1, that is; (A + v + v*k)(a + vb + v2¢) = Aa + v(\b +
pa + pc+ kb) + v2(Ae + pb + ka + ke) = 1. So we have the following:

Aa =1 (1),

A+ K)b+pa+pc=0 (2)and

A+ K)c+pb+rka=0 (3)

from (1) we have A # O and a # 0,in (3) if A+ x = 0, o = 0 we have ka = 0 and since a # 0,
so k = 0, which implies that A = 0 which is contradiction. Hence A + x # 0 or p # 0. So we
have three cases:

Case(l) :if \+ kK #0and p =0, we have A\ — yp 4+ x # 0.

Case(2) :if \+x =0and p # 0, we have A — u + k # 0.

Case(3) : if A+« # 0 and p # 0, we want to prove that A — p + x # 0. Let for contrary that
A — p+ k=0, then A + x = p, by substituting in (2), we have p(a + b+ ¢) = 0, since p # 0,
then a+b+c = 0, that is b+ ¢ = —a, but by substituting in (3), we have u(c+b) + ka = 0, then
—pa + ka = 0, hence a(x — ) = 0, and since a # 0, then x — p = 0, and by the assumption
that A — u + x = 0, we have A = 0 which make a contradiction. Therefore A\ — p+x #0. O

Note that the converse of the last Lemma is not true. For example 2 + v 4 2v? is unit in R3
but \—pu+x=2-14+2=0.
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Theorem 3.2. Let C = vC_,» & (—v + v*)C, & (1 —v?)C_, .2 be a linear code of length n
over R. Then C' is 0-constacyclic code of length n over R if and only if C|_,. is the zero code,
Cy is (A — p + k)-constacyclic code and C_,, . > is A\-constacyclic code of length n over F,.

Proof. =) Let (rg,71,...,7n—1) be an arbitrary element in C|_,», (qo,q1,-..,qn—1) be an arbi-
trary element in C, and (s, 1, ..., S,—1) be an arbitrary element in C_, ... We assume that

ci = vri+(—v+v?)g+ (1 —v?)s;, i = 0,1,...,n— 1; hence we get (co, ¢y, ..., cn_1) € C. Since

C is a #-constacyclic code of length n over R, then (0c,,_1, co, ..., cn—2) € C. Note that:

Ocn1 = AN+ op+ 0*v)[orp_1 + (=0 + v} g1 + (1 — v?)sp1] = Ay + V2ur,_ +
Ve 1 + (=0 + VA1 + (=0 + ) (=) gn_1 + (—v + vV)Eq_1 + (1 — v} As =

V(N + K) a1 + 02 ur, 1+ (—v 4+ 02 [(A — 4+ &) gu_1] + (1 —v?)[As,_1] € C (since C is lin-
ear), thenr,_; = 0and (fc,_1,co,c1, -y Cn2) = (=0 +0*) (A= 1+ E)Gn_1,G0s s Gn_2) +(1—
v2)(ASp_1, 50, -+, Sn—2) € C. Therefore (A—p+5)gn_1,q0, s gn—2) € Cy and (As,,_1, 50, ..., Sp_2) €
C_ 4.2, which implies that C, _, is zero code, C,, and C_, > are (A — u + r)-constacyclic and
A-constacyclic codes of length n over Fj,, respectively.

< Suppose that C|_,. is zero code, C, and C_, > are (A — p + r)-constacyclic and A-
constacyclic codes of length n over F),, respectively. Let (co,cq,...,cn_1) € C, where ¢; =

vry + (v + v g + (1 —v?)s;, i = 0,1,....,n — 1. It follows that (qo, q1,..-,qn—1) € C, and
(50,815 -y Sn_1) € C_y4p0. Note that (0c,,_1, o, oy cn_2) = (—04+02) (A—p+E)Gn_1, 90, - Gn—2)+
(1 —v?)(ASp_1,50, -, 5n—2) € (~v+*)C, & (1 —v?)C_,,,» = C. Hence C is -constacyclic
code of length n over R. O

Theorem 3.3. Let C = vC_,» @ (—v + v*)C, @ (1 — v*)C_, .2 be a O-constacyclic code of
length n over R. Then C = {(—v + v?)gy(2), (1 = v*)g_,1.2(2)), where g,(z) and g_,, ,»(z)
are the generator polynomials of C,, and C_, ., respectively.

Proof. Since C,, and C_, > are (A — pu + x)-constacyclic and A-constacyclic codes of length n
over F),, respectively, we will assume that the generator polynomials of C,, and C_,,, » are g, ()
and g_,,.»(z), respectively. Then (—v + v?)g,(z) € (—v +v?)C, C C and (1 —v?)g_,,» €
(1 =v?)C_ 42 € C,hence ((—v +v?)gy(2), (1 = v*)g_p02(2)) € C.

Let f(x) € C. Since C = (—v+2v?)C, @ (1 —2v?)C_, 2, then there are s'(x) = g, (x ) () € Cy

0w (2) = g o (2Yula) € Cyere such that 1(5) = (v -+ 02)'(2) 1 (1~ 02 () =
(ot 1) (D3(0) (1 — 1D)grsmn(a), where s(x). u(x) € Fyla] © Ryfa]. Henee 1(x) €
{(=v+ v?)gu (@), (1 = v2)g_ypr2 (). Therefore C C ((—v +v2)g,(2), (1 = v2)g_y100()).

This gives that C' = ((—v + v?)gy(2), (1 = v?)g_,12(2)). O

Proposition 3.4. Let C = vC;_,» @ (—v + v*)C, & (1 — v?)C_, ;.0 be a H-constacyclic code
of length n over R, and g,,(z), g_,,2(x) are generator polynomials of C,, and C_, ., respec-
tively. Then |C| = p3n — deg(go(z)) — deglg_,2(x))

Proof. Since |C| = |C,||C_ 1 ,2||Cy 2| Then, |C| = p* — deolov(x) = degly_ . 2x)), O
Here we have three canonical projections defined as follows:
0: R, =F, +vF, +v'F, = F,
va+ (—v+v2)b+ (1 —v?)e— a;
p: R, =F,+vF, +v'F, - F,
va+ (—v+v2)b+ (1 —v*)e— b;
and
7: R, = F, +vF, +v*F, -+ F,
va + (—v 4+ )b+ (1 —v*)e— c.

Denote by 77, r” and r7 the images of an element » € R, under these three projections, re-
spectively. These three projections can be extended naturally from R} to F}' and from R, [z] to
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Flz).
Lgt[ }(m) =ap+ a1z + ax® + ...+ a,_12" ', where a; € R, for 0 < i < n — 1, and we denote
f(@)7 =af +afz+...+al_ja" " f(z) =af + alz+ ...+ al_ 2" f(z)” = af +ajz+
tal_ e
Hence f(z) has a unique expression as f(z) = vf(z)7 + (—v +v?) f(x)? + (1 — v?) f(z)"
For a code C of length n over R, a € R,,. The submodule quotiont is a linear code of length n
over R, defined as follows:

(C:a)={reR}larecC}.

Theorem 3.5. Let C' = v, _ . @ (—v+v?)C, & (1—v?)C_, 1.2 be a O-constacyclic code of length
nover Ry. If C = ((—v + v*)hi(z), (1 — v*)ha(x)), where hy(x), hy(x) € F,[x] are monic with
hi(z)/(x™ — (A= p+ K)) and hy(x) /(2™ — X), then C,, = [hi(z)] and C_, ;> = [ha(2)), that
is, hi(x) and hy(x) are the generator polynomials of constacyclic codes of C, and C_,_,»,
respectively.

Proof. We shall prove the theorem by carrying out of the following steps:
Step(1) :If C = (—v+2v*)C, & (1—v*)C_, 2, then (C : (—v+0?))? = C, and (C : (1—v?))7 =
Cpy-
Leta € (C: (—v+v?)), then (—v+v?)a € C. Setting a = va” + (—v+v?)a” + (1 —v?)b, where
b € FJ'. Hence (—v + v?)a” = (—v +v*)[va’ + (—v +v*)a? + (1 —v*)b] = (—v +v*)a € C.
Therefore a” € C,, which implies that (C' : (—v + v?))? C C,. Lety € C,,C,_,2, then
there exists z € F' such that vy + (—v 4+ v*)y + (1 — v*)z € C. Note that (—v + v?)y =
(—v+v?) vy + (—v+vH)y+(1-2v?)z] € (~v+0?)C C Candy = vy+ (—v+vH)y+ (1 —v?)y,
soy € (C: (—v+v?))and y” = y. Hence C,, C (C : (—v+v?))?. Therefore (C : (—v+v?))? =
Cy.
Letc € (C: (1 —v?)), then (1 —v?)c € C. Setting ¢ = va'(z) + (—v + v?)¥' (x) + (1 — v?)c7,
where o’ (z), V' (x) € F}'. Hence (1 —v?)[va’(z) + (—v+0?)V (z)+ (1 —v?)c"] = (1-v*)c e C.
Therefore ¢™ € C_, 2, which implies that (C : (1 —v?))” € C_,,,». Lety € C_, 2, then
there exists w, z € F)' such that vw + (—v + v?)z + (1 — v?)y € C. Note that (1 — v?)y =
(1= pw+ (—v+v?)z+ (1 —v?)y] € (1—v?)C C Cand y = vy+ (—v+v?)y+ (1 —v?)y, so
ye(C:(1—v?)andy = y". Hence C_,,,» C (C: (1 —2?))7. Therefore (C : (1 —v?))" =
Cpy-
Step(2) :If C = ((—v+v?)hi(z), (1 — v*)ha(z))then (C : (—v + v?))? = [h(z)] and (C :
(1 =0%))" = [ha(2)].
Let f(z) € (C : (—v + v?)), then (—v + v?)f(z) € C. So we have that (—v + v?)f(z) =
(—v+vH)h(z)s1(z) + (1 — v?)ha(z)ti (x), for some sy (x),t(z) € Rp,,. Write
fl@) = (v+0?) f(2)? +(1=v?) f(2)7, s1(2) = (~v+0?)s1 (@ )’”r(l—v )s1(z)" and 1, (x) =
(v + )t (2)” + (1 = v*)ty (2)7, where S @) f@)7ss1(@)?, s1(0)7, 4 (2)°, 1 (@ )T € Fylz].
Thus (*U+U2)[(*U+vz)f($) (1= f ()] = (o + o) (@)[(~0 + o?)si (2)° + (1 -
v?)s1(2)7]+ (1 =02 ha(2)[(—v+02)t; ()P + (1 —0v?)t; (2)7]. Thus 2(—v+0?) f(z )P:2( v+
v?)hi(z)s1(x)? + (1 —v?)ha(z)t; (z)7, which forces that f(x)? = hy(x)s;(z)?. This shows that
(x)? € [h(z)]. Therefor (C : (—v + v?))? C [hi(x)]. Conversely; if f(z) € [hi(x)], then
flz) = hl( )r1(z), for some 7 (z) € F,[z]. Hence (—v + v?) f(z) = (v +v )hl( yri(z) €
((—v +v*)h(x ),(l—v Jha(z)) = C, which shows that f(z) € (C : (—v + v?)); note that
f(@) = vf(z)+(~v+v?) f(2)+(1-v*) f(z), s0 f(z) = f(x)". Hence f(z) € (C': (—v+0v?))”.
We obtain that [k (z)] € (C : (—v + v?))?. Then we have (C : (—v +v?))? = [hl(x)]
Now we prove the second equality in this step.
Let f(z) € (C : (1 —v?)), then (1 — v?)f(z) € C. So we have that (1 — v?)f(x) = (—v +
v})hy(z)s2(x) + (1 — v?)ho(z)ta (), for some s, (x),2(z) € Ry Write
flz) = (~v+ ) f(2)? + (1 = ) f(2)7, s2(z) = (—v + v?)s2(2)? + (1 — v?)s2(2)
tr(z) = (—v +vH)ta(z)? + (1 —v?)ta(z)7, where f(z)?, f(z)7, s2(x)?, sz(ac)T,tg(J:)P ta(z
Fylz]. Thus (1 —v?)[(=v +v?) f(2)? + (1 = 0*) f(2)7] = (=v + v*) (@) [(—v + v?) sa(
(1 —v¥)sy(2)7] + (1 — v¥)ha(z)[(—v + v*)ta(2)? + (1 — v*)ta(x)7]. Thus (1 — v?)f(x)"
2(—v + v?})hi(z)s2(x)? + (1 — v*)hy(2)t2(x)7, which forces that f(z)” = hy(x)ty(z)7
shows that f(z)7 € [hy(x)]. Therefore (C : (1 —v?))™ C [ha(z)]. Conversely; if f(z) € [ha(z)],
then f(z) = ha(x)r2(x), for some 72 (z) € Fp[z]. Hence (1 —v?) f(x) = (1 — v*)ha(x)ra(x) €

ti(z
v+
1z
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((=v +v*)hi(x), (1 —v*)ho(x)) = C, which shows that f(z) € (C : (1 —
f(@) = vf(@)+(—v+0?) f(2) + (1 —UZ)f(l‘), so f(x) = f(z)". Hence f(z)
We obtain that [hy(x)] C (C': (1 —v?))7. Then we have (C : (1 —v?))" = [ha(2)].
By the above tow steps, we can obtain our desired results. Specially, h1(x) and hy(z) are the
generator polynomials of constacyclic codes C, and C_,, 2, respectively. O

v?)); note that

(C:(1=?).

Definition 3.1. Let C = vC;_,» @ (—v + v?)C, @ (1 — v?)C_,,..» be a H-constacyclic code of
length n over R. We say that the set S = {(—v +v?)gi(z), (1 —v?)ga(2)} is generating set
in standard form for the §-constacyclic code C' = (S) if both the following two conditions are
satisfied:
(1) foreachi € {1,2}, g;(x) is either monic in F},[z] or equals to 0;
(2) if g1(x) # 0, then gy ()|(z"™ — (A — p+ k)); if g2(x) # 0, then ga(2)|(z™ — N).
Now combining Theorem 3.3 and 3.5, the following result is obtained.

Theorem 3.6. Any nonzero constacyclic code C = (—v +v*)C, @ (1 — v*)C_, ;.2 over R has
a unique generating set in standard form.

Corollary 3.7. Let C be an ideal in R,,, then there exists a unique polynomial g(z) = (—v +
v2)g(x)? + (1 —v2)g(z)™ € C such that C = (g(x)) with g(z)? and g(x)™ being monic in F,[z].
In particular, R, is a principal ideal ring.

Proof. According to Theorem 3.6 we have C' = ((—v + v?)gy(z), (1 — v?)g_,4.2(x)), where
{(=v+vH)gu(z), (1 —v?)g_, 4.2 (x)} is a generating set in standard form for C. Let g(z) =
(—v+v?)go(z) + (1 — v?)g_, 42 (7). Note that

2(—v+v?)gu(x) = (v +1P)g(x) = (v + ) [(—v + v*)gu(x) + (1 —1*)g_,12(2)] € C
and

(1= 0")gopie = (1 = 0%)g(x) = (1 = 0))[(=v +0?)gu(2) + (1 = v*)g_ps,2(2)] € C.

Hence 2(—v + v?)g,(2) + (1 — v?)g_p12(7) = (—v + v?)g(x) + (1 — v*)g(z) € O, then
v2g(z) —vg(z) + g(x) —vzg( ) = g(z)(1 v) € C and it is belong to (g(x)). Thus C C {(g(x))
and since g(z) = (—v + v?)g,(x) + (1 — v})g_, 2(x) € C. So {g(x)) C C. Therefore
C = (g(z)).
Finally, we prove the uniqueness of such a polynomial. Suppose that C' = (h(z)). Write h(z) =
(—v+v?)h(x)? + (1 —v?)h(x)T, where h(x)? and h(z)™ are monic in F,[z]. In the following we
shall prove that h(z)? = gv( )and h(z)” = g_,,»(x). Since C = (h(z)) and (—v +v?)h(z) €
C,s0 h(z) € (C: (—v +v?)), thatis, h(z)? € (C : (—v +v?))? = C,. Then g, (x)|h(z)?, simi-
larly we have that 9—vs02 2(x)|h(2)". On the other hand, there exists some polynomial s(x) € R,
Suchthat( vt v?)go () + (1=02)g_pp2(2) = [(—v+v2)8u($)p+(1—Uz)sfuw(x)T][(—er
v)h(z)? + (1 — v2)h(x)7] = 2(—v + v})s,(2)Ph(2)? + (1 — v*)s_, 2 (x)"h(x)7, it fol-
lows that 25, (z)?h(z)? = g,(x) and s_,. 2 (2)"h(z)” = g_yr2(x). Hence h(z)?|g,(z) and
h(2)T|g_pse2(2). Therefore we obtain that h(z)? = g,(z) and h(z)™ = g_,4.2(x), which is the
required results. O

Now we give the definition of polynomial Gray map over R,,. Let f(z) € R,, with degree less
than n, then f(x) can be expressed as f(z) = r(x) + vq(z) + v?s(x), where r(z), ¢(z), s(x) €
F,[x] and their degrees are less than n. Let § = A\ + vy + v’k € R*.

Define the polynomial Gray map as follows:

@y : R, — F,[z]/(2® —1).
f(@) = r(2) +vg(x) + v*s(2) = AA = g+ K)s(a) + 2" [ur(z) — mr(e) — (A — p+ 5)s(2)].

Obviously the above polynomial Gray map ®y is well-defined. If i, < # 0, then the map Py is
bijection.

Theorem 3.8. Let C be a 0-constacyclic code of length n over R with a generating set in standard
form {(—v +v*)gu(x), (1 = v?*)g_12(2) }. Then @p(C) C (go(2)g_p 102 (@)).



172 Mohammed M. Al-Ashker and Mariam 1. Satariah

Proof. Since g, (z)|(z" — (A — p+k)) and g_, ;2 (x)[(z™ — X), then there exist ¢; (), ¢2(z) €
F,[x] such that:

" — (A —p+v) = g@)aqa(zr) and 2" — X = g_,»2(z)q2(x). By the proof of Corollary
3.7, we have that ((—v + v?)g,(z) + (1 — v*)g_, 1,2(2)). Let f(z) be an element in C. Then
f(@) = [(—v+v2)gu(x) + (1 —v?)g_y 02 (7)]h(z), for some h(z) € R,,. Since h(z) can be writ-
tenas h(z) = vh(z)? +(—v+v?)h(z)? + (1 —v?)h(z)7, where h(z)?, h(x)? and h(z)T € F,[z],
it follows that

f@) = [(=v+0*)gu(@) + (1 = 02)g_yyp2 (@)][Vh(2)7 + (—v + 0*)(x)? + (1 = v*)h(z)"] =
(=0 +v)go (@)1 ()7 + (=20 +20%) gy (2)1(2)” + (1 = v?) gy 42 (2)1(2)T = g U+u2($)h( )+
v(go () ()7 = 290 () h(2)?) + v*(—go (@) (%) + 290 (2)1(2)? — g2 (2)h()7). Then we

have that:
Dy (f(2)) = AA—ptr)[=go(2)h(2)7+ 29, (2)(2)? =gy 12 (@) W(2) 7]+ 27 [1g 2 () (@)=
g

Rg 2 (2)(2)7 = (A = p+ 1) (=90 (2)(2)7 + 290 (2)A(2)" = g2 () P(2)7)] =

Ag—pro2 (@)(2)7 (2" — (A = p + 8))= (A = 5+ K)[=go(2)h(2)7+ 29, (2)h(2)7](z" = ) =
Mgz (2)A(2)7 g0 (2)q1 (2) = (A = p 4 5) [=g0 (2) ()7 + 290 (€)1 (2)° 19102 ()2 () =
Mgy (2) ()7 g0 (€)1 (2) = (A = po + K)o (2) [=R(2) 7+ 2h(2)°1g_y 420a(2) =

9o (2) gy () M(2)Tq1 (2) = (A= p-5) (—h(2)7+ 20(2)) g2 (x)] € (gu(2)g—_psr2 (). Hence
(I’G(C) - <gv( )gfv+v2($ =

Corollary 3.9. Let § = 1 +v —v? or —1 —v+v? and let C = vC,_p @ (—v +v?)C, & (1 —
v?)C_, 12 be a O-constacyclic code of length n over R with generating set in standard form

{(=v+v?)gu(x), (1 = v*)g_p102(2) }. Then @o(C) = [gu ()92 ()]:

Proof. Note that gv(a:)\(x”—()\—u—i-/s)) and g_, 2 (x)|(2™ =), where \+vp+v’k = 1+v—202
or —1—v+v?, then (2" —(A—p+r)) (2" =) = (22" —1). Hence g, (7)g_, .2 (x)|(z*"—1), which
shows that g, (x)g_,,.2(z) is the generator polynomial for cyclic code (g, (x)g_, .2 (2)), that

<gv( )g v+v2( ) [g ( )g—'u+v2]' By Theorem 3.8, we have that q)e(c) < [gv(x)g—ervz]'
On the other hand, |®(C)| = |C] = pPrdeglgo(@)=deglg_, . ,2(@) gpq [90(2)g—psn (2)]| =
prdeston(P)=deals 2 (0)) Hence, @(C) = [gu ()02 ()], O

For a unit § of R, the f-constacyclic shift 7, on R, is the shift

™ (z0, 15 oy ) = (ATp_1, 0, ..., Tn—2)

Proposition 3.10. Ler C be a §-constacyclic code of length n over R,. Then the dual code C+
for C is a 0-constacyclic code of length n over R,,.

Proof. Let C be a §-constacyclic code of length n over R,,. Consider arbitrary elements z € C*
and y € C. Because C is #-constacyclic, 75~ ' (y) € C. Thus, 0 = z.7 ' (y) = My (x).y =
Tx-1(z).y, which means that T;l (z) € C+. Therefore, C+ is closed under the T;l-Shift; ie, Ct
is a f-constacyclic code. O

Let go(2)ho(z) = 2™ — (A — p + £) and g_ .02 (2)h_yi2(z) = 2™ — A Let hy(z) =

adestrol@Dp, (1) and h_, p(z) = 2%9P-2Ep_ o (2)(1) be the reciprocal polynomi-

als of h,(x) and h_, »(x), respectively. We write h}(z) = hvl(o)ﬁv(m) and h* _ ,(r) =

. ~
h,u+v2(0)h71’+v2 (x)

Theorem 3.11. Let C = vC_,» @ (—v + v?)C, ® (1 — v?)C_ .2 be a O-constacyclic code of
length n over R. Then C+ = (—v +v*)Cy @ (1 —v*)CL ..
Proof. From Theorem 3.2, C,, and C_,, » are constacyclic codes over F},. Then C;- and Cfv o2
are constacyclic code over F),. Let g,(z) and g_,,,,2(z) are generator polynomials for C,, and
C_pirps respectively Then Cy = [h}(x)] and C+, . = [h* . .(z)]. Thus we have that

|CL| = pdeg(g,, and |C’L 2| = pdeg(g_1)+vz (1))
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Foranya € C,be CL . andc= (—v+v?)r+ (1 —v?)g € C,wherer € Cy, g € C_, 12,
we have that

c((=v+v)a+ (1 =v*)b) = ((—v +v)r + (1 =3 g)((=v +v*)a + (1 — v*)b)
=2(—v+vH)ra+ (1 —v¥)gb

=0,
and hence (—v +v*)C @ (1 —v )CLUJr , CCH.
Furthermore, suppose that (—v +v?)a+ (1 —v?)b = (—v+v?)a’ + (1 —v?)b', where a, a’ € C;-
and b, b’ € C’i‘v+v2,then( v+v?)(a—ad ) =1 =) (0 ~-b),s0(—v+v¥)(a—d)=
v?[(~v+v?)(a—d )} v?[(1—v?)(b' —b)] = 0. Hence a = a’, which forces b = t'. Thus every
element c of (—v +v )CL ®(1— 1}2)C’LU+U2 has a unique expression as (—v +v?)r + (1 —v?)q,

where r € C;f, g € CL .. This shows that
|(—v +v2>ci @ (1 -0t [ergi{ess

v+v2| U+v2|

pdeg(gv (z))+deg(g_,,,2(x))

Finally, by Proposition 3.4, |C| = p>"~e9(gv(@))=degls_,,.2(*))  Gince R, is a Frobenius ring,
ClICH] = |Ry|", so

|Rp‘" _ p3n
(O]~ pn—dela, (@) =deglo_ 2 (2)

|CH| =
_ plealou(®))deglo_,, (=)
=[(—v+0*)C; @ (1 —v*) 02

'u+v2|
Note that (—v + v?)Cy- & (1 —v?)CL ., € C* as above, we have that C+ = (—v 4+ 0*)C;- &
(1-v?)Ct

pip2s a8 required. O

Theorem 3.12. With notations as above. Let C = vC_,» & (—v +v*)C, @ (1 — v?)C_, 2 be
a 0-constacyclic code of length n over R with generating set in standard form

{(—’U + Uz)gv(l‘)7 (1 - Uz)g—ervz {L‘ } Then

(1) O = (v +v?)hi(a), (1 = v)B", () ) and [ O] = pleoloe () reolo o),

(2) €+ = (ot )hy(@) @ (1= vh” o (2));
(3) @a(CH C (Ry(@)h,. ().

Proof. (1) By Proposition 3.10, C* is a f-constacyclic code over R,,; by Theorem 3.11, we have
that C+ = (—v+0*)C;f & (1 —v?*)CL . ., where according to Theorem 3.2 C;- and C* . are

two constacyclic codes over F,,. Since hj(x) and h*  ,(x) are generator polynomials for C;-

and C+ respectively, we have that {(—v + 2Rk (x), (1 —v?)h*

—v+0?

(z )} is the generating
(m)> In addition,

vFov2?
set in standard form for C+. So CL = <(—v +v?)hi(x), (1 —v?)h*
|CJ‘| _ |CJ_HC . = deg(g,, deg( 9_ . 2(2)) :pdeg(gv(x)ﬂdeg(g_vﬁ,

(2) Since {(fv + 0Py (), (1 —v*)h* (2 )} is the generating set in standard form for C,
according to the proof of Corollary 3.7 we have that

= ((~v+0))hy(2) & (1 = v*)h" 0 (2))

vto?
2(2))

(3) Similar to the proof of Theorem 3.9. O

Theorem 3.13. Let 0 = 1 +v —v? or —1 —v +v?> and let C = vC0_,2 & (—v +v*)C, & (1 —
v?)C_, 12 be a O-constacyclic code of length n over R with generating set in standard form
{(=v+vH)gu(z), (1 —v?)g_py2(x)}. Then
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(1) @o(C*) = [hs(x)h* . ()]
(2) @y(C*) = (Py(C))™.

Proof. (1) According to the proof of Corollary 3.9, we can obtain the result.
(2) Note the facts that

Py (C) = [g0(2)g-p+02(2)], Po(CT) = [hy(2)h7, . 2 (2)],

we have
®y(C)" = [90(2)g 12 (@)]
= [y (@)hZ, o (2)]
= Py (CH),
which is the required result. O

Example 3.1. In F3[z]

1= (z+1)%

2 —1=(zx+2).
Let C be the (—1 — v + v?)-constacyclic code of length 3 over F3 + vF; + v F; with generating
polynomial:
gz)=(—v+)z+ D)+ (1 -v)(z+2)=vzr—vr+v> —v+z—v’x+2 -2 =
(1 —v) — (1 4+v+0?).
The Gray image ®¢(C) is a [6,4,2] code over F3 with generator polynomial (x + 1)(z + 2).
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