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Abstract.

In the present paper, the solution of lower and higher order differential equations based on
Haar operational method is considered. Haar wavelet method is used because its computation is
simple as it converts the problem into an algebraic matrix equation. The results and graphs show
that the proposed way is quite reasonable when compared to with existing exact solution.

1 Introduction

The idea of operational matrix was established via the Walsh function [1]. Conventional meth-
ods of deriving the operational matrix are difficult and not uniform. In this paper, we present a
unified approach to derive the operational matrices of orthogonal functions for finding the so-
lution of lower and higher order differential equations. The Method is computer oriented and
simple; therefore it is very useful in practice.

In recent years wavelet approach has become more popular in the field of numerical ap-
proximations. Different types of wavelets and approximating functions have been used for the
numerical solution of initial and boundary value problems. Chen and Hsiao [2] have gained pop-
ularity, due to their useful contribution in wavelet. Lepik [9, 10, 11, 12] applied Haar wavelet
for solving differential equations and partial differential equations.

In this present paper, a computational method for solving lower and higher order ordinary
differential equation is introduced. This method consists of reducing the problem to a set of
algebraic equations by first expanding the terms, which have maximum derivatives, given in
the equation as Haar function with unknown coefficients. The operational matrix of integration
and product operational matrix are utilized to evaluate the coefficients of the Haar functions.
The differentiation of Haar wavelets results in impulse functions which must be avoided, the
integration of Haar wavelet is preferred. Since the integration of the Haar functions vector is
continuous function, the solutions obtained are continuous. This method is simple, fast, flexible,
convenient and of small computational cost because it is fully computer supported, we don’t
need to solve it manually.

2 Haar wavelet operational matrix of ordiuary differential eqnation

2.1 Haar wevelet

Haar wavelet is the simplest wavelet. The Haar wavelet transform, proposed in 1910 Alfred Haar
[6], is the first known wavelet. Haar wavelet transform has been used as an earliest example for
orthonormal wavelet transform with compact support. The Haar wavelet is defined as ¢ € [0, 1]
The orthogonal set of Haar functions are defined in the interval [0 1) by ho(t) = 1

k—1 k—0.5
hi(t) =< —1 ’“;35 <t< 5 (2.1

0 otherwise
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where i = 1,2,...m — 1,m = 2M and M is a positive integer, j and k represent the integer
decomposition of the index i,i.e. i =27 + k- 1,0<j<iand 1 <k <2/ + 1.
Any function f(t) € L?([0, 1]) can be expanded in Haar series

F) = cihi(t), 2.2)

where ¢;,7 = 0,1,2--- is the Haar coefficient, which is given by

1
6 =2 / FOha(t)dt 2.3)
0

These coefficients are determined in such a way that the following square error integral e is
minimized
1 m—1 4
6/ F6) = 3 chi(®)Pdt, m=27,j € {0} UN.
0

=0

The series expansion of f(¢) contains an infinite number of terms. If f(¢) is piecewise con-
stant, or may be approximated as piecewise constant during each subinterval, then f(t) will be
terminated at finite terms, i.e.

F)~ S ehi(t) = CLH () = F(0) 2.4)
i=0

where m = 27, the superscript 7" indicates transposition, f (t) denotes the truncated sum.

The Haar coefficient vector C,,, and Haar function vector H,,(¢) are defined as
A T
Cm = [003617627"'Cm—1] . (25)

Hm(t) é [h07h17h27"'hm71]T' (26)

The collection points are taken as follows

tk:w,kzl,z’...m (2.7)
2m

We defined the m-square Haar matrix ,,, x,, as:
A 1 3 5 2m — 1
=|\Hy|— |Hn|=— | Hn|=— ) ---H . 2.
b 2 [t (5) H (52 ) o (57 )+ (P )| 3)

2.2 Operational matrix

The integration of the H,,(t), were approximated by Chen and Hsiao [2] as :

t
/ H,,(T)dr = P} . H,(t) (2.9)
0

where P}, . is the Haar wavelet operational matrix of integration, which is a square matrix of

dimension m x m

Hp,(t) n=23- (2.10)

mxXm mxXm

t
/ Py H (T)dT = P
0
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Also, we define an m-set of block pulse function [9] as:

1 L<pcttd
bi(t) =

0 otherwise
wherei =0,1,2,---(m —1).
The function b;(¢) is disjoint and orthogonal. That is,

0, i #,
bi(t)bu(t) =
0, i#1,

m’

2.11)

(2.12)

(2.13)

Since Haar functions are piecewise constant, it may be expanded into an m-term block pulse

functions

Hm(t) = ¢meBm(t)
where By, () 2 [bo(£)by (£) - - b1 ()7

(2.14)

Kilicman and AL Zhour [8] have given the & Block pulse operational matrix F" as follows

(I"B,,)(t) =~ F"B,,(t)

Where I™ shows that nth integration of function.

Where
Loy om0 Mmet
1 1 0 1 m o Nim=2
F* = 0 0 1 Mm-3 |nel
m" (n+1)! _ .
o 0 o0 .
0O 0 0 O 1
with

e = (k?+ 1)n+1 _ anJrl + (k— 1)n+l.

Next, we derive Haar wavelet operational matrix for general order integration.

Let

(I"H.,)(t) =~ P}

mXxXm

H,,(t).
Now from (14) and (15) we get

(InHm)(t) ~ ¢m><anB'm(t)
Now from (18), (19) and (16) we have

Pn

—1
mxm — ¢m><an¢m><m'

3 Application of Haar wavelet method

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

In this section, we are using the operational matrix of Haar wavelet for finding the numerical
solution of ordinary differential equations. All calculations have been done by Matlab program-

ming.

Example: 2 Let us consider
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y 42y +5y=f(t) (3.1)

where f(t) = 3e tsint
and subject to (0) = 0,3 (0) = 1
Exact solution of equation (21) by homotopy petutbaton method (HPM) is y = e~ 'sint.

Let
y'(t) = ClL Hm(1). (3.2)

Integrating equation (22) with respect to ¢ from 0 to ¢ and using initial conditions

y'(t)=CT P! H,(t)+1, (3.3)

m mXm
y(t) = CEP2 Hon(t) + (111 1]ep L PY L Hoo(8), (3.4)

f(t) can be expanded by Haar function as

F(t) = () Hn(®), (3.5)
where £ () is a known constant vector

Now substituting equations (22), (23), (24) and (25) in equation (21), we get

CTHp(t) +2[CT P! Hyn(t) + 111+ 1] + 5[CT P2 H, (1)

m* mxm m* mxXm=--m

L, P He (8)] = 3T (8) o, (3.6)

mxXxm=T mXm--m

CT H,,(t) + 2P ., Ho(t) +5P2 , H,(t)] = 3L (t)H,,

mxXm=+m

20111 1] = 5[11L--- 1yt PLH,, (8). (3.7)

mxXm= m*+m

Equation (27) is algebraic form of equation (21). After solving the system of algebraic equa-
tions, we can obtain the Haar coefficient CL, . Then from equation (24), we can calculate values
of y(t), which are quite similar with those of the exact solution. The numerical result for m = 8

is shown in table 1 and figure 1.

Table - 1
t Exact solution by HPM | Haar solution | Absolute Error
0.0625 0.0587 0.0576 0.0011
0.1875 0.1545 0.1539 0.0006
0.3125 0.2249 0.2245 0.0004
0.4375 0.2735 0.2735 0.0000
0.5625 0.3039 0.3042 0.0003
0.6875 0.3191 0.3192 0.0001
0.8125 0.3222 0.3225 0.0003
0.9375 0.3157 0.3160 0.0003
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Example: 1 We consider an ordinary differential equation with variable coefficient

ty' +(1-2t)y —2y=f(t) (3.8)

Subject to y(0) = 1,4 (0) = 2 where f(t) =0
Exact solution of equation (28) by homotopy petutbaton method (H PM) is y = .
Let
Yy (t) = CL Hp (1) (3.9)

Integrating equation (22) twice with respect to ¢ from O to ¢ and using initial conditions

y'(t) = CLP), o H(t) +2 (3.10)

m mXm
y(t) = ChPa . Hu(t) +2[111 -+ 1o, L P H (8) + 1, (3.11)

f(¢) can be expanded by Haar function as

f(t) = [ (t)H () (3.12)

where fI(t) is a known constant vector

Now substituting equations (29), (30), (31) and (32) in equation (28), we get

tCT H,,(t) + (1 =20)[CT P} o Hpn(t) +2[111 -+ - 1]

m* mxm=-m

—=2[CT P2 Hy(t) +2[111--- 1y P H, ()] = [111---1] =0, (3.13)

m* mxXm=-m mxXm=T mXxXm

CT[tH, () + (1 —2t) P}

mXm

Hm(t) - 2P3a><mHm(t)]

=20111---1] = (1 = 26)2[111--- 1) +4[111--- 1], PL o H(2). (3.14)
Equation (34) is algebraic form of equation (28). After solving the system of algebraic equa-
tions, we can obtain the Haar coefficient C, . Then from equation (31), we can calculate value
of y(t), Which approximate the exact solution. The numerical result for m = 8 is shown in table
2 and figure 2.

Table - 2
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t Exact solution by HPM | Haar solution | Absolute Error
0.0625 1.1331 1.1364 0.0033
0.1875 1.4550 1.4596 0.0046
0.3125 1.8682 1.8758 0.0076
0.4375 2.3989 2.4088 0.0099
0.5625 3.0802 3.0931 0.0129
0.6875 3.9551 3.9756 0.0205
0.8125 5.0784 5.1078 0.0294
0.9375 6.5208 6.5637 0.0429
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Example: 3 We consider the following eighth order differential equation:

y3(t) = y(t) — 8e'where 0 <t <1, (3.15)

subjected to initial conditions

y(0) =1, 4 (0)=0, 4 (0) = —1,y" (0) = -2,5™(0) = -3,
yv(o) = 747y7§v (0) = 753 yvu(o) = 765

Now by homotopy petutbaton method (H PM)[5] exact solution of equation (35) is y(t) =
(I —t)et
Let

y®(t) = Cl Hon(t) (3.16)

Now from successive integration of equation (36) with respect to ¢ from 0 to ¢ and using the
initial conditions, we get

y(t)=CTpS  H(t)—6[111---1]¢ P H,(t)

m> mXm--m mxXm>T mxm

=S - by P  Hon (8) — 4[10L - Uy L PSH, ()

mXm= mXm mXm= mXm

B[ e P Hon (8) = 2[00 - 1] PR Ho(8)

mXxXm=T mXm

—[1- Ayt P2 Ho (1) 4 1. (3.17)

mxXm= mXm

Now from equation (35)

CTH,,(t) — P}

mXxXm

H,, ()] = —=6[111--- 1]} PT H,(t)

mxXm=T mXm

—S[UL - et PSS H o (8) — 410 - 1)t P H (1)

mXm= mXm mXm= mXm

“3[L - et P H G (8) = 2[00 - A P H (1)

mXxXm>T mXm mXxXm>T mXm
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[0 PR Ho (8) + [T -+ 1] — 8L () H,, (3.18)

mxXm=T mXm

which is the algebraic form of equation (35), we can calculate the value of Haar coefficient C}L,
after solving system of the algebraic equations for different values of ¢. Now substitute values of
those coefficients in equation (36), we get numerical solution of equation (35), which is shown
in following table 3 and figure 3.

Table - 3
t Exact solution by HPM | Haar solution | Absolute Error
0.0625 0.9980 0.9970 0.0010
0.1875 0.9812 0.9790 0.0022
0.3125 0.9397 0.9386 0.0011
0.4375 0.8712 0.8693 0.0019
0.5625 0.7678 0.7661 0.0017
0.6875 0.6215 0.6193 0.0022
0.8125 0.4225 0.4200 0.0025
0.9375 0.1596 0.1565 0.0031
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4 Conclusion

The main goal of this paper is to demonstrate that the Haar wavelet operational method is a
powerful tool for solving lower and higher order differential equations. The result is compared
with the exact solutions. It is worth mentioning that Haar solution provides excellent result even
for small values of m(m = 8). For large values of m(m = 16, m = 32), we can also obtain the
results closer to exact values.
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