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Abstract. In this article, we develop the tool of saturation in the context of primary-like
submodules of modules. We are particularly interested in relationships among the saturation
of a primary-like submodule satisfying the primeful property and its radical. Furthermore, we
provide sufficient conditions involving saturation and torsion arguments under which the radical
of such a submodule is prime.

1 Introduction

Throughout this paper all rings are commutative with identity and all modules are unitary. For
a submodule N of an R-module M , we let (N : M) denote the ideal {r ∈ R | rM ⊆ N} =
Ann(MN ). A proper submodule P of M is said to be prime (resp. primary) or p-prime (resp.
p-primary) if whenever rm ∈ P for r ∈ R and m ∈ M , then m ∈ P or r ∈ p = (P : M) (resp.
r ∈ p =

√
(P : M)) [9, 10]. Note that for any ideal I of R,

√
I = {r ∈ R | rn ∈ I for some

positive integer n}. For a submodule N of M the intersection of all prime submodules of M
containing N is called the radical of N and denoted by radN [7].

As a new generalization of a primary ideal on the one hand and a generalization of a prime
submodule on the other hand, a proper submodule N of M is said to be primary-like if rm ∈ N
implies r ∈ (N : M) or m ∈ radN [4]. An R-module M is said to be primary-like if the zero
submodule of M is primary-like.

We say that a submodule N of an R-module M satisfies the primeful property if for each
prime ideal p of R with (N : M) ⊆ p, there exists a prime submodule P containing N
such that (P : M) = p. If N is a submodule of M satisfying the primeful property, then
(radN : M) =

√
(N : M) [7, Proposition 5.3]. An R-module M is called primeful if M = 0

or the zero submodule of M satisfies the primeful property. For instance finitely generated mod-
ules, projective modules over domains and (finite and infinite dimensional) vector spaces are
primeful [7]. In [4, Lemma 2.1], it has been shown that if N is a primary-like submodule of an
R-module M satisfying the primeful property, then p =

√
(N : M) is a prime ideal of R. By the

p-primary-like submodule N , we mean the primary-like submodule N with p =
√
(N : M).

The primary-like spectrum SpecL(M) (resp. p-primary-like spectrum SpecpL(M)) is defined
to be the set of all primary-like (resp. p-primary-like) submodules of M satisfying the primeful
property. If the submodule N of M satisfies the primeful property, then there exists a maximal
ideal m of R and a prime submodule P of M containing N such that (P : M) = m. In this case,
radN 6=M and radN satisfies the primeful property.

Let M be an R-module. We say that a submodule N of M has a primary-like decompo-
sition if N = N1 ∩ N2 ∩ · · · ∩ Nk, where each Ni is a primary-like submodule of M . If
Ni # N1 ∩ · · · ∩ Ni−1 ∩ Ni+1 ∩ · · · ∩ Nk and the ideals

√
(Ni : M) (resp. the submodules

radNi) are distinct primes, then the above primary-like decomposition for N is said to be re-
duced (resp. module-reduced). In this paper, we investigate the behavior of the radical with
respect to primary-like submodules satisfying the primeful property by using the saturation and
torsion arguments. In particular, we provide conditions under which the radical of such sub-
modules is prime; a necessary condition for the existence of the module-reduced primary-like
decomposition for a submodule. However the radical of primary-like submodules satisfying the
primeful property is prime in some certain classes of modules automatically. For example if N
is a submodule of a multiplication R-module M (i. e., a module whose submodules have the
form IM for some ideal I of R), then radN is a prime submodule for every N ∈ SpecL(M) [4,
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Proposition 4.10].
For a prime ideal p of R, the submodule Sp(N) = {m ∈ M : cm ∈ N for some c ∈ R\p}

is called the saturation of N with respect to p [8]. The second section has been devoted to the
relationship between the saturation and radical of primary-like submodules. It is easily verified
that Sp(N) ⊆ radN for every p ∈ V ((N : M)). In particular, if Sp(N) is a prime submodule of
M for some p ∈ V ((N : M)), then Sp(N) = radN . Thus for every primary-like submodule N
with p =

√
(N : M), it is more convenient to check that Sp(N) is prime. We prove that if N is a

p-primary-like submodule of M , then p = (rad(Sp(N)) : M) = (Sp(N + pM) : M) (Theorem
2.7 ). In particular, if m is a maximal ideal of R and N is an m-primary-like submodule of M ,
then radN = rad(Sm(N)) = Sm(radN) = Sm(N +mM) = N +mM (Corollry 2.8).

In the third section, using a torsion argument, we give some conditions under which the rad-
ical of a primary-like submodule is prime. Specially it is shown that, if M is a module over
a Noetherian ring R and the torsion submodule T (M) satisfies the primeful property and is
contained in only finitely many prime submodules of M , then the radical of each element of
SpecL(M) is a prime submodule of M (Theorem 3.3). Also it is proved that, if M is a primary-
like, primeful and torsion module over a one-dimensional domain R, then the R-module M

Sp(0)

is isomorphic to the R-module Mp, where p =
√
Ann(M) and Mp is the localization of M at

p (Theorem 3.8). Using this fact we conclude that Sp(N) has a reduced primary-like decom-
position if and only if the R-module Np has a reduced primary-like decomposition (Corollary
3.9).

2 Radical and saturation

In this section, we investigate the behavior of primary-like submodules satisfying the primeful
property under the tool of saturation of submodules. In particular, the interplay between satura-
tion and radical of such modules are considered.

Lemma 2.1. Let N be a primary-like submodule of an R-module M . Then Sp(N) ⊆ radN
for every p ∈ V ((N : M)). In particular, if Sp(N) is a prime submodule of M for some
p ∈ V ((N : M)), then Sp(N) = radN .

Proof. Straightforward.

Lemma 2.2. Let M be an R-module and N be a primary-like submodule of M . If p = (N : M)
is a prime ideal of R, then Sp(N) =M or radN is a prime submodule of M .

Proof. Suppose Sp(N) 6= M . By [8, Proposition 2.4], Sp(N) is a prime submodule of M . It
follows from Lemma 2.1 radN is a prime submodule of M .

Theorem 2.3. Let M be an R-module and N ∈ SpecpL(M). Then the following statements are
equivalent.

(i) radN is a p-prime submodule of M .

(ii) radN is a p-primary submodule of M .

(iii) radN is a p-primary-like submodule of M .

Furthermore, if (N : M) = p, then the above statements are also equivalent to:

(iv) N is a p-primary-like submodule of M .

Proof. (iv)⇒(i) Since N is a primary-like submodule of M , we have N ⊆ Sp(N) ⊆ radN by
Lemma 2.1. Hence (Sp(N) : M) = (N : M) = p and so Sp(N) 6=M . Thus radN is a p-prime
submodule ofM by Lemma 2.2. The verification of the other implications is straightforward.

Theorem 2.4. Let M be an R-module and N ∈ SpecpL(M). Then Sp(N) is a p-primary and
p-primary-like submodule of M .

Proof. Using [4, Lemma 2.1] and Lemma 2.1, we have

p =
√
(N : M) ⊆

√
(Sp(N) : M) ⊆ (radN : M) =

√
(N : M) = p.

It follows that
√
(Sp(N) : M) = p. We first show that Sp(N) is a primary submodule. Suppose

rm ∈ Sp(N) and m /∈ Sp(N). Then there exists c ∈ R\p such that crm ∈ N and cm /∈ N .
Therefore cr ∈ p and so r ∈ p. Thus Sp(N) is a p-primary submodule of M . Now, we show that
Sp(N) is a primary-like submodule of M . Let rm ∈ Sp(N). Then there is c ∈ R\p such that
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crm ∈ N . Since N is primary-like, we have cr ∈ (N : M) or m ∈ radN ⊆ rad(Sp(N)). Thus
r ∈ (N : M) or m ∈ rad(Sp(N)) because (N : M) is a primary ideal of R. Therefore Sp(N) is
also a p-primary-like submodule of M .

Corollary 2.5. Let M be an R-module and N ∈ SpecpL(M). If (Sp(N) : M) is a radical ideal,
then radN is a prime submodule of M .

Proof. By the proof of Theorem 2.4,
√
(Sp(N) : M) = (radN : M). Now, since (Sp(N) : M)

is a radical ideal, we have (Sp(N) : M) = p. It follows from [8, Theorem 2.3] and Lemma 2.1,
radN is a prime submodule of M .

Theorem 2.6. LetM be anR-module andN ∈ SpecpL(M). Then Sp((N : M)) = (Sp(N) : M).
In particular, the following statements hold and are equivalent.

(i) Sp(N) is a p-primary submodule of M .

(ii)
√
Sp((N : M)) = p.

(iii) p is a minimal prime ideal of (N : M).

Proof. It is easy to verify that Sp((N : M)) ⊆ (Sp(N) : M). For the reverse inclusion, let
r ∈ (Sp(N) : M) and m ∈ M\ radN . Then there exists c ∈ R\p such that crm ∈ N . Since N
is a primary-like submodule of M , we have cr ∈ (N : M) and hence r ∈ Sp((N : M)). Thus
Sp((N : M)) = (Sp(N) : M). Since N ∈ SpecpL(M), then Sp(N) is a p-primary submodule of
M by Theorem 2.4. Now, we show that the statements are equivalent. (i)⇒(ii) is clear.
(ii)⇔(iii) follows from [1, P. 55, Ex. 10, ii and P. 56, Ex. 11].
(iii)⇒(i) Suppose that rm ∈ Sp(N) and r /∈

√
(Sp(N) : M) for r ∈ R and m ∈ M . Hence

m ∈ Sp(Sp(N)) = Sp(N) and so Sp(N) is a p-primary submodule of M .

Theorem 2.7. LetM be anR-module andN ∈ SpecpL(M). Then rad(Sp(N)) ⊆ Sp(N+pM) ⊆
Sp(radN). In particular, p = (rad(Sp(N)) : M) = (Sp(N + pM) : M).

Proof. Since N satisfies the primeful property, Sp(N + pM) is a p-prime submodule of M by
[7, Proposition 4.4] and so rad(Sp(N)) ⊆ Sp(N + pM). Suppose x ∈ Sp(N + pM). Then there
exists c ∈ R\p such that cx ∈ N + pM . Since

√
(N : M) = p and cx ∈ radN , we conclude that

x ∈ Sp(radN). Also we have p = (radN : M) ⊆ (rad(Sp(N)) : M) ⊆ (Sp(N + pM) : M) ⊆√
(Sp(N + pM) : M) = p, as required.

Corollary 2.8. Let m be a maximal ideal of R, M be an R-module and N ∈ SpecmL (M). Then

radN = rad(Sm(N)) = Sm(radN) = Sm(N +mM) = N +mM (∗).

Proof. It is easy to check that, N + mM = radN . By Theorem 2.7, radN ⊆ rad(Sm(N)) ⊆
Sm(radN). Since radN is m-prime, then Sm(radN) = radN and so the equality (∗) holds.

Remark 2.9. Let R be an Artinian ring. In [2, Theorem 2.16], it has been shown that every R-
module is primeful. Now, if N is a primary-like submodule of an R-module M , then N satisfies
the primeful property and so radN is an m-prime submodule of M , where m =

√
(N : M).

Furthermore, the equality (∗) in Corollary 2.8 holds again.

3 Radical and torsion

The torsion submodule of a module M over a domain R, denoted by T (M), is the submodule
{m ∈ M : Ann(m) 6= 0} of M . An R-module M is said to be torsion (resp. torsion-free), if
T (M) =M (resp. T (M) = 0).

Proposition 3.1. Let M be an R-module and N ∈ SpecL(M). Then radN is a prime submodule
of M if and only if T ( M

rad N ) = 0 as an R√
(N :M)

-module.

Proof. Suppose N is a primary-like submodule of M satisfying the primeful property. By [4,
Lemma 2.1],

√
(N : M) = (radN : M) is a prime ideal of R and so the proof is completed by

[5, Lemma 1].

Theorem 3.2. Let M be a module over a Dedekind domain R and N ∈ SpecL(M). Then radN
is a prime submodule of M if and only if M = radN

⊕
N ′ for some torsion-free submodule N ′

of M or (radN : M) = m for some maximal ideal m of R.
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Proof. Suppose first that radN is a 0-prime submodule of M . It follows from Lemma 3.1 M
rad N

is a torsion-free R-module. Hence by [3, Exercise 19.6(a)] M
rad N is projective and so M =

radN
⊕
N ′ for some submodule N ′ of M . Clearly N ′ is torsion-free. Now, let radN be a prime

submodule of M with (radN : M) 6= 0. Since R is Dedekind domain, (radN : M) is a maximal
ideal of R. Conversely, suppose M = radN

⊕
N ′ for some torsion-free submodule N ′ of M .

Then M
rad N

∼= N ′ follows that M
rad N is torsion-free and hence radN is a 0-prime submodule of M

by [5, Lemma 1]. On the other hand, it is easy to verify that radN is prime when (radN : M) is
a maximal ideal.

Theorem 3.3. LetR be a Noetherian domain andM be a non-torsionR-module such that T (M)
satisfies the primeful property and is contained in only finitely many prime submodules of M .
Let N ∈ SpecL(M). Then radN is a prime submodule of M .

Proof. By Theorem 2.3 we may assume that (N : M) 6= 0. If P is a prime submodule containing
N , we have the chain 0 = (T (M) : M) ⊂

√
(N : M) ⊆ (P : M) of prime ideals of R. If the

later containment is proper, then by [6, P. 144] there are infinitely many prime ideals p with
(T (M) : M) ⊂ p ⊂ (P : M) and so we have infinitely prime submodules P containing T (M),
a contradiction. Hence we have

√
(N : M) = (P : M), for all prime submodules P containing

N . Now, if rm ∈ radN and m /∈ radN , there is a prime submodule P containing N such that
rm ∈ P and m /∈ P and therefore r ∈ (P : M) =

√
(N : M) = (radN : M).

Let M be an R-module. The dimension of M is defined by dimM = Sup
n
{P0 ⊂ P1 ⊂ · · · ⊂

Pn | Pi is a prime submodule of M}.

Theorem 3.4. Let R be a one-dimensional domain and M be a one-dimensional torsion module
over R such that every prime submodule of M is contained in SpecL(M). Then the following
are equivalent.

(i) 0 is a prime submodule of M ;

(ii) P1 ∩ P2 = 0 for any distinct prime submodules P1 and P2;

(iii) Every non-zero element N of SpecL(M) is contained in exactly one prime submodule;

(iv) Every non-zero prime submodule is maximal.

Proof. (i)⇒(ii). Since T (M) = M , for each 0 6= m ∈ M there exists 0 6= r such that rm = 0.
Hence by (i) we have r ∈ (0 : M) and so (0 : M) 6= 0. Now, if P is a non-zero prime
submodule of M , then (0 : M) = (P : M) since dimR = 1 and 0 ⊂ (0 : M) ⊆ (P : M) is a
chain of prime ideals. In particular, for distinct non-zero prime submodules P1 and P2 we have
(0 : M) = (P1 : M) = (P2 : M) and so P1 ∩ P2 is prime. We have the chain 0 ⊆ P1 ∩ P2 ∩ P1.
Since dim(M) = 1, P1 ∩ P2 = 0 or P1 ⊂ P2 which follows P1 = 0.
(ii)⇒(iii) Since N satisfies the primeful property, there exists a prime submodule P such that
(P : M) =

√
(N : M). Now, if N is contained in more than one prime submodule, then it

contradicts with (ii).
(iii)⇒(iv) is clear because SpecL(M) contains the set of all prime submodules of M .
(iv)⇒(i) Since dimM = 1, there must exist a chain of prime submodules P1 ⊂ P2 and so P1 = 0
by (iv).

Note that if the assumptions of Theorem 3.4 are satisfied, then radN is prime for all submod-
ules N ∈ SpecL(M).
For an R-module M and m ∈M , we mean that (N : m) is the set {r ∈ R : rm ∈ N}. Now, we
have the following elementary lemma.

Lemma 3.5. Let M be an R-module. Then N is a primary-like submodule of M if and only if
(N : M) = (N : m) for all m ∈M\ radN .

Theorem 3.6. Let M be a primary-like and primeful module over a one-dimensional domain
R. Then either

√
Ann(M) = 0 or

√
Ann(M) =

√
(N : M) for all proper submodules N of

M . In particular, if M is a non-cyclic torsion module, then
√
(Rm : M) =

√
Ann(m) for all

m ∈M\ rad 0.

Proof. Suppose
√
Ann(M) 6= 0. Since R is a one-dimensional domain,

√
Ann(M) is a max-

imal ideal of R. It follows that
√
Ann(M) =

√
(N : M) for all proper submodules N . Since

0 is a primary-like submodule satisfying the primeful property, rad 0 6= M . Now, if M is a
torsion module, then

√
Ann(M) 6= 0. Again since 0 is primary-like, Ann(M) = Ann(m) for

all m ∈ M\ rad 0 by Lemma 3.5. Since Rm is a proper submodule for all m ∈ M , by the first
part

√
(Rm : M) =

√
Ann(M) =

√
Ann(m)
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Theorem 3.7. Let M be a primary-like, primeful and torsion module over a one-dimensional
domain R. Then there exists a prime ideal p of R such that r /∈ p implies rM =M .

Proof. Use Theorem 3.6.

Theorem 3.8. Let M be a primary-like, primeful and torsion module over a one-dimensional
domain R. If p =

√
Ann(M) and Mp is the localization of M at p, then the R-module M

Sp(0)
is

isomorphic to the R-module Mp.

Proof. Consider the R-module homomorphism ψ : M −→ Mp given by m 7→ m
1 . To show that

ψ is an epimorphism, take any m
s ∈ Mp. Since s /∈ p, sM = M by Theorem 3.7 and so there

exists m′ ∈ M such that m = sm′. Thus m
s = sm′

s = m′

1 = ψ(m′). Also it is easy to verified
that the kernel of ψ is Sp(0). Hence M

Sp(0)
∼=Mp.

Corollary 3.9. Let M be a primary-like, primeful and torsion module over a one-dimensional
domain R and N be a submodule of M . If p =

√
Ann(M), then Sp(N) has a reduced primary-

like decomposition if and only if the R-module Np has a reduced primary-like decomposition. In
particular, Sp(N) = Sp(N1) ∩ · · · ∩ Sp(Nk) is a reduced primary-like decomposition of Sp(N)
if and only if Np = (N1)p ∩ · · · ∩ (Nk)p is a reduced primary-like decomposition of R-module
Np.

Proof. Suppose φ : M
Sp(0)

−→ Mp is the natural isomorphism in Theorem 3.8. We show that

φ(Sp(N)
Sp(0)

) = Np. Let n
s ∈ Np. Then n

s = φ(m + Sp(0)) = m
1 for some m ∈ M . Thus there

exists u ∈ R\p such that um ∈ N and so m ∈ Sp(N). Therefore Np ⊆ φ(Sp(N)
Sp(0)

). For the

reverse inclusion, let m + Sp(0) ∈ Sp(N)
Sp(0)

. Then um ∈ N for some u ∈ R\p. It follows that

φ(m+ Sp(0)) = m
1 = um

u ∈ Np. Thus Sp(N)
Sp(0)

∼= Np. Now, the assertion holds by [4, Corollary
3.6].
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