Radical of Primary-like submodules satisfying the primeful property

H. Fazaeli Moghimi ${ }^{1}$ and F. Rashedi ${ }^{2}$
Dedicated to Patrick Smith and John Clark on the occasion of their 70th birthdays.

Communicated by Ayman Badawi

MSC 2010 Classifications: 13C13, 13C99.
Keywords and phrases: Primary-like submodule, Primeful property, Prime submodule, Radical of a submodule, Saturation of a submodule.

Abstract

In this article, we develop the tool of saturation in the context of primary-like submodules of modules. We are particularly interested in relationships among the saturation of a primary-like submodule satisfying the primeful property and its radical. Furthermore, we provide sufficient conditions involving saturation and torsion arguments under which the radical of such a submodule is prime.

1 Introduction

Throughout this paper all rings are commutative with identity and all modules are unitary. For a submodule N of an R-module M, we let $(N: M)$ denote the ideal $\{r \in R \mid r M \subseteq N\}=$ $\operatorname{Ann}\left(\frac{M}{N}\right)$. A proper submodule P of M is said to be prime (resp. primary) or p-prime (resp. p-primary) if whenever $r m \in P$ for $r \in R$ and $m \in M$, then $m \in P$ or $r \in p=(P: M)$ (resp. $r \in p=\sqrt{(P: M)})[9,10]$. Note that for any ideal I of $R, \sqrt{I}=\left\{r \in R \mid r^{n} \in I\right.$ for some positive integer $n\}$. For a submodule N of M the intersection of all prime submodules of M containing N is called the radical of N and denoted by $\operatorname{rad} N$ [7].

As a new generalization of a primary ideal on the one hand and a generalization of a prime submodule on the other hand, a proper submodule N of M is said to be primary-like if $r m \in N$ implies $r \in(N: M)$ or $m \in \operatorname{rad} N$ [4]. An R-module M is said to be primary-like if the zero submodule of M is primary-like.

We say that a submodule N of an R-module M satisfies the primeful property if for each prime ideal p of R with $(N: M) \subseteq p$, there exists a prime submodule P containing N such that $(P: M)=p$. If N is a submodule of M satisfying the primeful property, then $(\operatorname{rad} N: M)=\sqrt{(N: M)}$ [7, Proposition 5.3]. An R-module M is called primeful if $M=0$ or the zero submodule of M satisfies the primeful property. For instance finitely generated modules, projective modules over domains and (finite and infinite dimensional) vector spaces are primeful [7]. In [4, Lemma 2.1], it has been shown that if N is a primary-like submodule of an R-module M satisfying the primeful property, then $p=\sqrt{(N: M)}$ is a prime ideal of R. By the p-primary-like submodule N, we mean the primary-like submodule N with $p=\sqrt{(N: M)}$.

The primary-like spectrum $\operatorname{Spec}_{L}(M)$ (resp. p-primary-like spectrum $\operatorname{Spec}_{L}^{p}(M)$) is defined to be the set of all primary-like (resp. p-primary-like) submodules of M satisfying the primeful property. If the submodule N of M satisfies the primeful property, then there exists a maximal ideal \mathfrak{m} of R and a prime submodule P of M containing N such that $(P: M)=\mathfrak{m}$. In this case, $\operatorname{rad} N \neq M$ and $\operatorname{rad} N$ satisfies the primeful property.

Let M be an R-module. We say that a submodule N of M has a primary-like decomposition if $N=N_{1} \cap N_{2} \cap \cdots \cap N_{k}$, where each N_{i} is a primary-like submodule of M. If $N_{i} \nsupseteq N_{1} \cap \cdots \cap N_{i-1} \cap N_{i+1} \cap \cdots \cap N_{k}$ and the ideals $\sqrt{\left(N_{i}: M\right)}$ (resp. the submodules $\operatorname{rad} N_{i}$) are distinct primes, then the above primary-like decomposition for N is said to be reduced (resp. module-reduced). In this paper, we investigate the behavior of the radical with respect to primary-like submodules satisfying the primeful property by using the saturation and torsion arguments. In particular, we provide conditions under which the radical of such submodules is prime; a necessary condition for the existence of the module-reduced primary-like decomposition for a submodule. However the radical of primary-like submodules satisfying the primeful property is prime in some certain classes of modules automatically. For example if N is a submodule of a multiplication R-module M (i. e., a module whose submodules have the form $I M$ for some ideal I of R, then $\operatorname{rad} N$ is a prime submodule for every $N \in \operatorname{Spec}_{L}(M)$ [4,

Proposition 4.10].
For a prime ideal p of R, the submodule $S_{p}(N)=\{m \in M: c m \in N$ for some $c \in R \backslash p\}$ is called the saturation of N with respect to p [8]. The second section has been devoted to the relationship between the saturation and radical of primary-like submodules. It is easily verified that $S_{p}(N) \subseteq \operatorname{rad} N$ for every $p \in V((N: M))$. In particular, if $S_{p}(N)$ is a prime submodule of M for some $p \in V((N: M))$, then $S_{p}(N)=\operatorname{rad} N$. Thus for every primary-like submodule N with $p=\sqrt{(N: M)}$, it is more convenient to check that $S_{p}(N)$ is prime. We prove that if N is a p-primary-like submodule of M, then $p=\left(\operatorname{rad}\left(S_{p}(N)\right): M\right)=\left(S_{p}(N+p M): M\right)$ (Theorem 2.7). In particular, if \mathfrak{m} is a maximal ideal of R and N is an \mathfrak{m}-primary-like submodule of M, then $\operatorname{rad} N=\operatorname{rad}\left(S_{\mathfrak{m}}(N)\right)=S_{\mathfrak{m}}(\operatorname{rad} N)=S_{\mathfrak{m}}(N+\mathfrak{m} M)=N+\mathfrak{m} M$ (Corollry 2.8).

In the third section, using a torsion argument, we give some conditions under which the radical of a primary-like submodule is prime. Specially it is shown that, if M is a module over a Noetherian ring R and the torsion submodule $T(M)$ satisfies the primeful property and is contained in only finitely many prime submodules of M, then the radical of each element of $\operatorname{Spec}_{L}(M)$ is a prime submodule of M (Theorem 3.3). Also it is proved that, if M is a primarylike, primeful and torsion module over a one-dimensional domain R, then the R-module $\frac{M}{S_{p}(0)}$ is isomorphic to the R-module M_{p}, where $p=\sqrt{\operatorname{Ann(M)}}$ and M_{p} is the localization of M at p (Theorem 3.8). Using this fact we conclude that $S_{p}(N)$ has a reduced primary-like decomposition if and only if the R-module N_{p} has a reduced primary-like decomposition (Corollary 3.9).

2 Radical and saturation

In this section, we investigate the behavior of primary-like submodules satisfying the primeful property under the tool of saturation of submodules. In particular, the interplay between saturation and radical of such modules are considered.

Lemma 2.1. Let N be a primary-like submodule of an R-module M. Then $S_{p}(N) \subseteq \operatorname{rad} N$ for every $p \in V((N: M))$. In particular, if $S_{p}(N)$ is a prime submodule of M for some $p \in V((N: M))$, then $S_{p}(N)=\operatorname{rad} N$.

Proof. Straightforward.
Lemma 2.2. Let M be an R-module and N be a primary-like submodule of M. If $p=(N: M)$ is a prime ideal of R, then $S_{p}(N)=M$ or $\operatorname{rad} N$ is a prime submodule of M.

Proof. Suppose $S_{p}(N) \neq M$. By [8, Proposition 2.4], $S_{p}(N)$ is a prime submodule of M. It follows from Lemma $2.1 \mathrm{rad} N$ is a prime submodule of M.

Theorem 2.3. Let M be an R-module and $N \in \operatorname{Spec}_{L}^{p}(M)$. Then the following statements are equivalent.
(i) $\operatorname{rad} N$ is a p-prime submodule of M.
(ii) $\operatorname{rad} N$ is a p-primary submodule of M.
(iii) $\operatorname{rad} N$ is a p-primary-like submodule of M.

Furthermore, if $(N: M)=p$, then the above statements are also equivalent to:
(iv) N is a p-primary-like submodule of M.

Proof. (iv) \Rightarrow (i) Since N is a primary-like submodule of M, we have $N \subseteq S_{p}(N) \subseteq \operatorname{rad} N$ by Lemma 2.1. Hence $\left(S_{p}(N): M\right)=(N: M)=p$ and so $S_{p}(N) \neq M$. Thus rad N is a p-prime submodule of M by Lemma 2.2. The verification of the other implications is straightforward.

Theorem 2.4. Let M be an R-module and $N \in \operatorname{Spec}_{L}^{p}(M)$. Then $S_{p}(N)$ is a p-primary and p-primary-like submodule of M.

Proof. Using [4, Lemma 2.1] and Lemma 2.1, we have

$$
p=\sqrt{(N: M)} \subseteq \sqrt{\left(S_{p}(N): M\right)} \subseteq(\operatorname{rad} N: M)=\sqrt{(N: M)}=p
$$

It follows that $\sqrt{\left(S_{p}(N): M\right)}=p$. We first show that $S_{p}(N)$ is a primary submodule. Suppose $r m \in S_{p}(N)$ and $m \notin S_{p}(N)$. Then there exists $c \in R \backslash p$ such that $c r m \in N$ and $c m \notin N$. Therefore $c r \in p$ and so $r \in p$. Thus $S_{p}(N)$ is a p-primary submodule of M. Now, we show that $S_{p}(N)$ is a primary-like submodule of M. Let $r m \in S_{p}(N)$. Then there is $c \in R \backslash p$ such that
$c r m \in N$. Since N is primary-like, we have $c r \in(N: M)$ or $m \in \operatorname{rad} N \subseteq \operatorname{rad}\left(S_{p}(N)\right)$. Thus $r \in(N: M)$ or $m \in \operatorname{rad}\left(S_{p}(N)\right)$ because $(N: M)$ is a primary ideal of R. Therefore $S_{p}(N)$ is also a p-primary-like submodule of M.

Corollary 2.5. Let M be an R-module and $N \in \operatorname{Spec}_{L}^{p}(M)$. If $\left(S_{p}(N): M\right)$ is a radical ideal, then $\operatorname{rad} N$ is a prime submodule of M.

Proof. By the proof of Theorem 2.4, $\sqrt{\left(S_{p}(N): M\right)}=(\operatorname{rad} N: M)$. Now, since $\left(S_{p}(N): M\right)$ is a radical ideal, we have $\left(S_{p}(N): M\right)=p$. It follows from [8, Theorem 2.3] and Lemma 2.1, $\operatorname{rad} N$ is a prime submodule of M.

Theorem 2.6. Let M be an R-module and $N \in \operatorname{Spec}_{L}^{p}(M)$. Then $S_{p}((N: M))=\left(S_{p}(N): M\right)$. In particular, the following statements hold and are equivalent.
(i) $S_{p}(N)$ is a p-primary submodule of M.
(ii) $\sqrt{S_{p}((N: M))}=p$.
(iii) p is a minimal prime ideal of $(N: M)$.

Proof. It is easy to verify that $S_{p}((N: M)) \subseteq\left(S_{p}(N): M\right)$. For the reverse inclusion, let $r \in\left(S_{p}(N): M\right)$ and $m \in M \backslash \operatorname{rad} N$. Then there exists $c \in R \backslash p$ such that $c r m \in N$. Since N is a primary-like submodule of M, we have $c r \in(N: M)$ and hence $r \in S_{p}((N: M))$. Thus $S_{p}((N: M))=\left(S_{p}(N): M\right)$. Since $N \in \operatorname{Spec}_{L}^{p}(M)$, then $S_{p}(N)$ is a p-primary submodule of M by Theorem 2.4. Now, we show that the statements are equivalent. (i) \Rightarrow (ii) is clear.
(ii) \Leftrightarrow (iii) follows from [1, P. 55, Ex. 10, ii and P. 56, Ex. 11].
(iii) \Rightarrow (i) Suppose that $r m \in S_{p}(N)$ and $r \notin \sqrt{\left(S_{p}(N): M\right)}$ for $r \in R$ and $m \in M$. Hence $m \in S_{p}\left(S_{p}(N)\right)=S_{p}(N)$ and so $S_{p}(N)$ is a p-primary submodule of M.

Theorem 2.7. Let M be an R-module and $N \in \operatorname{Spec}_{L}^{p}(M)$. Then $\operatorname{rad}\left(S_{p}(N)\right) \subseteq S_{p}(N+p M) \subseteq$ $S_{p}(\operatorname{rad} N)$. In particular, $p=\left(\operatorname{rad}\left(S_{p}(N)\right): M\right)=\left(S_{p}(N+p M): M\right)$.

Proof. Since N satisfies the primeful property, $S_{p}(N+p M)$ is a p-prime submodule of M by [7, Proposition 4.4] and so $\operatorname{rad}\left(S_{p}(N)\right) \subseteq S_{p}(N+p M)$. Suppose $x \in S_{p}(N+p M)$. Then there exists $c \in R \backslash p$ such that $c x \in N+p M$. Since $\sqrt{(N: M)}=p$ and $c x \in \operatorname{rad} N$, we conclude that $x \in S_{p}(\operatorname{rad} N)$. Also we have $p=(\operatorname{rad} N: M) \subseteq\left(\operatorname{rad}\left(S_{p}(N)\right): M\right) \subseteq\left(S_{p}(N+p M): M\right) \subseteq$ $\sqrt{\left(S_{p}(N+p M): M\right)}=p$, as required.

Corollary 2.8. Let \mathfrak{m} be a maximal ideal of R, M be an R-module and $N \in \operatorname{Spec}_{L}^{\mathfrak{m}}(M)$. Then

$$
\operatorname{rad} N=\operatorname{rad}\left(S_{\mathfrak{m}}(N)\right)=S_{\mathfrak{m}}(\operatorname{rad} N)=S_{\mathfrak{m}}(N+\mathfrak{m} M)=N+\mathfrak{m} M(*)
$$

Proof. It is easy to check that, $N+\mathfrak{m} M=\operatorname{rad} N$. By Theorem 2.7, $\operatorname{rad} N \subseteq \operatorname{rad}\left(S_{\mathfrak{m}}(N)\right) \subseteq$ $S_{\mathfrak{m}}(\operatorname{rad} N)$. Since $\operatorname{rad} N$ is \mathfrak{m}-prime, then $S_{\mathfrak{m}}(\operatorname{rad} N)=\operatorname{rad} N$ and so the equality $(*)$ holds.

Remark 2.9. Let R be an Artinian ring. In [2, Theorem 2.16], it has been shown that every R module is primeful. Now, if N is a primary-like submodule of an R-module M, then N satisfies the primeful property and so $\operatorname{rad} N$ is an \mathfrak{m}-prime submodule of M, where $\mathfrak{m}=\sqrt{(N: M)}$. Furthermore, the equality $(*)$ in Corollary 2.8 holds again.

3 Radical and torsion

The torsion submodule of a module M over a domain R, denoted by $T(M)$, is the submodule $\{m \in M: \operatorname{Ann}(m) \neq 0\}$ of M. An R-module M is said to be torsion (resp. torsion-free), if $T(M)=M(\operatorname{resp} . T(M)=0)$.

Proposition 3.1. Let M be an R-module and $N \in \operatorname{Spec}_{L}(M)$. Then $\operatorname{rad} N$ is a prime submodule of M if and only if $T\left(\frac{M}{\operatorname{rad} N}\right)=0$ as an $\frac{R}{\sqrt{(N: M)}}$-module.

Proof. Suppose N is a primary-like submodule of M satisfying the primeful property. By [4, Lemma 2.1], $\sqrt{(N: M)}=(\operatorname{rad} N: M)$ is a prime ideal of R and so the proof is completed by [5, Lemma 1].

Theorem 3.2. Let M be a module over a Dedekind domain R and $N \in \operatorname{Spec}_{L}(M)$. Then $\operatorname{rad} N$ is a prime submodule of M if and only if $M=\operatorname{rad} N \bigoplus N^{\prime}$ for some torsion-free submodule N^{\prime} of M or $(\operatorname{rad} N: M)=\mathfrak{m}$ for some maximal ideal \mathfrak{m} of R.

Proof. Suppose first that rad N is a 0-prime submodule of M. It follows from Lemma $3.1 \frac{M}{\mathrm{rad} N}$ is a torsion-free R-module. Hence by [3, Exercise 19.6(a)] $\frac{M}{\text { rad } N}$ is projective and so $M=$ $\operatorname{rad} N \bigoplus N^{\prime}$ for some submodule N^{\prime} of M. Clearly N^{\prime} is torsion-free. Now, let $\operatorname{rad} N$ be a prime submodule of M with $(\operatorname{rad} N: M) \neq 0$. Since R is Dedekind domain, $(\operatorname{rad} N: M)$ is a maximal ideal of R. Conversely, suppose $M=\operatorname{rad} N \bigoplus N^{\prime}$ for some torsion-free submodule N^{\prime} of M. Then $\frac{M}{\operatorname{rad} N} \cong N^{\prime}$ follows that $\frac{M}{\operatorname{rad} N}$ is torsion-free and hence $\operatorname{rad} N$ is a 0 -prime submodule of M by [5, Lemma 1]. On the other hand, it is easy to verify that $\operatorname{rad} N$ is prime when $(\operatorname{rad} N: M)$ is a maximal ideal.

Theorem 3.3. Let R be a Noetherian domain and M be a non-torsion R-module such that $T(M)$ satisfies the primeful property and is contained in only finitely many prime submodules of M. Let $N \in \operatorname{Spec}_{L}(M)$. Then rad N is a prime submodule of M.
Proof. By Theorem 2.3 we may assume that $(N: M) \neq 0$. If P is a prime submodule containing N, we have the chain $0=(T(M): M) \subset \sqrt{(N: M)} \subseteq(P: M)$ of prime ideals of R. If the later containment is proper, then by [6, P. 144] there are infinitely many prime ideals p with $(T(M): M) \subset p \subset(P: M)$ and so we have infinitely prime submodules P containing $T(M)$, a contradiction. Hence we have $\sqrt{(N: M)}=(P: M)$, for all prime submodules P containing N. Now, if $r m \in \operatorname{rad} N$ and $m \notin \operatorname{rad} N$, there is a prime submodule P containing N such that $r m \in P$ and $m \notin P$ and therefore $r \in(P: M)=\sqrt{(N: M)}=(\operatorname{rad} N: M)$.

Let M be an R-module. The dimension of M is defined by $\operatorname{dim} M=S u p\left\{P_{0} \subset P_{1} \subset \cdots \subset\right.$ $P_{n} \mid P_{i}$ is a prime submodule of $\left.M\right\}$.

Theorem 3.4. Let R be a one-dimensional domain and M be a one-dimensional torsion module over R such that every prime submodule of M is contained in $\operatorname{Spec}_{L}(M)$. Then the following are equivalent.
(i) 0 is a prime submodule of M;
(ii) $P_{1} \cap P_{2}=0$ for any distinct prime submodules P_{1} and P_{2};
(iii) Every non-zero element N of $\operatorname{Spec}_{L}(M)$ is contained in exactly one prime submodule;
(iv) Every non-zero prime submodule is maximal.

Proof. (i) \Rightarrow (ii). Since $T(M)=M$, for each $0 \neq m \in M$ there exists $0 \neq r$ such that $r m=0$. Hence by (i) we have $r \in(0: M)$ and so $(0: M) \neq 0$. Now, if P is a non-zero prime submodule of M, then $(0: M)=(P: M)$ since $\operatorname{dim} R=1$ and $0 \subset(0: M) \subseteq(P: M)$ is a chain of prime ideals. In particular, for distinct non-zero prime submodules P_{1} and P_{2} we have $(0: M)=\left(P_{1}: M\right)=\left(P_{2}: M\right)$ and so $P_{1} \cap P_{2}$ is prime. We have the chain $0 \subseteq P_{1} \cap P_{2} \cap P_{1}$. Since $\operatorname{dim}(M)=1, P_{1} \cap P_{2}=0$ or $P_{1} \subset P_{2}$ which follows $P_{1}=0$.
(ii) \Rightarrow (iii) Since N satisfies the primeful property, there exists a prime submodule P such that $(P: M)=\sqrt{(N: M)}$. Now, if N is contained in more than one prime submodule, then it contradicts with (ii).
(iii) \Rightarrow (iv) is clear because $\operatorname{Spec}_{L}(M)$ contains the set of all prime submodules of M.
(iv) \Rightarrow (i) Since $\operatorname{dim} M=1$, there must exist a chain of prime submodules $P_{1} \subset P_{2}$ and so $P_{1}=0$ by (iv).

Note that if the assumptions of Theorem 3.4 are satisfied, then $\operatorname{rad} N$ is prime for all submodules $N \in \operatorname{Spec}_{L}(M)$.
For an R-module M and $m \in M$, we mean that $(N: m)$ is the set $\{r \in R: r m \in N\}$. Now, we have the following elementary lemma.

Lemma 3.5. Let M be an R-module. Then N is a primary-like submodule of M if and only if $(N: M)=(N: m)$ for all $m \in M \backslash \operatorname{rad} N$.
Theorem 3.6. Let M be a primary-like and primeful module over a one-dimensional domain R. Then either $\sqrt{\operatorname{Ann}(M)}=0$ or $\sqrt{\operatorname{Ann}(M)}=\sqrt{(N: M)}$ for all proper submodules N of M. In particular, if M is a non-cyclic torsion module, then $\sqrt{(R m: M)}=\sqrt{\text { Ann(m) }}$ for all $m \in M \backslash \operatorname{rad} 0$.
Proof. Suppose $\sqrt{\operatorname{Ann}(M)} \neq 0$. Since R is a one-dimensional domain, $\sqrt{\operatorname{Ann(M)}}$ is a maximal ideal of R. It follows that $\sqrt{\operatorname{Ann(M)}}=\sqrt{(N: M)}$ for all proper submodules N. Since 0 is a primary-like submodule satisfying the primeful property, $\operatorname{rad} 0 \neq M$. Now, if M is a torsion module, then $\sqrt{\operatorname{Ann}(M)} \neq 0$. Again since 0 is primary-like, $\operatorname{Ann}(M)=\operatorname{Ann}(m)$ for all $m \in M \backslash \operatorname{rad} 0$ by Lemma 3.5. Since $R m$ is a proper submodule for all $m \in M$, by the first part $\sqrt{(R m: M)}=\sqrt{A n n(M)}=\sqrt{A n n(m)}$

Theorem 3.7. Let M be a primary-like, primeful and torsion module over a one-dimensional domain R. Then there exists a prime ideal pof R such that $r \notin p$ implies $r M=M$.

Proof. Use Theorem 3.6.
Theorem 3.8. Let M be a primary-like, primeful and torsion module over a one-dimensional domain R. If $p=\sqrt{\operatorname{Ann}(M)}$ and M_{p} is the localization of M at p, then the R-module $\frac{M}{S_{p}(0)}$ is isomorphic to the R-module M_{p}.

Proof. Consider the R-module homomorphism $\psi: M \longrightarrow M_{p}$ given by $m \mapsto \frac{m}{1}$. To show that ψ is an epimorphism, take any $\frac{m}{s} \in M_{p}$. Since $s \notin p, s M=M$ by Theorem 3.7 and so there exists $m^{\prime} \in M$ such that $m=s m^{\prime}$. Thus $\frac{m}{s}=\frac{s m^{\prime}}{s}=\frac{m^{\prime}}{1}=\psi\left(m^{\prime}\right)$. Also it is easy to verified that the kernel of ψ is $S_{p}(0)$. Hence $\frac{M}{S_{p}(0)} \cong{ }_{s}^{s}$.

Corollary 3.9. Let M be a primary-like, primeful and torsion module over a one-dimensional domain R and N be a submodule of M. If $p=\sqrt{\operatorname{Ann}(M)}$, then $S_{p}(N)$ has a reduced primarylike decomposition if and only if the R-module N_{p} has a reduced primary-like decomposition. In particular, $S_{p}(N)=S_{p}\left(N_{1}\right) \cap \cdots \cap S_{p}\left(N_{k}\right)$ is a reduced primary-like decomposition of $S_{p}(N)$ if and only if $N_{p}=\left(N_{1}\right)_{p} \cap \cdots \cap\left(N_{k}\right)_{p}$ is a reduced primary-like decomposition of R-module N_{p}.

Proof. Suppose $\phi: \frac{M}{S_{p}(0)} \longrightarrow M_{p}$ is the natural isomorphism in Theorem 3.8. We show that $\phi\left(\frac{S_{p}(N)}{S_{p}(0)}\right)=N_{p}$. Let $\frac{n}{s} \in N_{p}$. Then $\frac{n}{s}=\phi\left(m+S_{p}(0)\right)=\frac{m}{1}$ for some $m \in M$. Thus there exists $u \in R \backslash p$ such that $u m \in N$ and so $m \in S_{p}(N)$. Therefore $N_{p} \subseteq \phi\left(\frac{S_{p}(N)}{S_{p}(0)}\right)$. For the reverse inclusion, let $m+S_{p}(0) \in \frac{S_{p}(N)}{S_{p}(0)}$. Then $u m \in N$ for some $u \in R \backslash p$. It follows that $\phi\left(m+S_{p}(0)\right)=\frac{m}{1}=\frac{u m}{u} \in N_{p}$. Thus $\frac{S_{p}(N)}{S_{p}(0)} \cong N_{p}$. Now, the assertion holds by [4, Corollary 3.6].

References

[1] Atiyah, M. F., Macdonald, I. G. (1969). Introduction to commutative algebra. Addison-Wesley.
[2] Behboodi, M., Sabzevari, M. (submitted). Modules satisfying the prime radical condition and a sheaf construction for modules I.
[3] Eisenbud, D. (1994). Commutative algebra with a view toward algebraic geometry. Springer-Verlag.
[4] Fazaeli Moghimi, H., Rashedi, F. (to appear). Primary-like submodules satisfying the primeful property.
[5] Jenkins, J., Smith, P. F. (1992). On the prime radical of a module over a commutative ring. Comm. Algebra. 20: 3593-3602.
[6] Kaplansky, I. (1974). Commutative rings. University of Chicago press, Chicago.
[7] Lu, C. P. (2007). A module whose prime spectrum has the surjective natural map. Houston J. Math. 33(1): 127-143.
[8] Lu, C. P. (2003). Saturations of submodules. Comm. Algebra. 31(6): 2655-2673.
[9] McCasland, R. L., Moore, M. E. (1992). Prime submodules. Comm. Algebra. 20: 1803-1817.
[10] Smith, P. F. (2001). Primary modules over commutative rings. Glasg. Math. J. 43(1): 103-111.

Author information

H. Fazaeli Moghimi ${ }^{1}$ and F. Rashedi ${ }^{2}$, Department of Mathematics, University of Birjand, P. O. Box 97175-615, Birjand, Iran.
E-mail: hfazaeli@birjand.ac.ir; fatemehrashedi@birjand.ac.ir
Received: February 14, 2014.
Accepted: April 3, 2014.

