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Abstract. This paper presents the convergence of the difference approximations of an opti-
mal control problem for a quasilinear parabolic equation with controls in the heat conductivity
coefficient, boundary conditions, additional restrictions and the right side of the equation. The
difference approximations problem (DAP) associated to the problem is constructed. The estima-
tions of stability for the difference approximations problem are established. The convergence of
the difference approximations problem for the discrete optimal control problem is studied.

1 Introduction

Owing to its importance for engineering applications, the field of partial differential equations
(PDE) constrained optimization has become increasingly popular [1-4]. In them, the control can
occur both in the equations and in the boundary and initial conditions. The question arises of the
convergence of a solution of an approximate problem to a solution of the differential problem;
the possibility of finding a good approximation to an optimal control depends on the properties
of the approximation and the original problem, and the Tikhonov correctness of optimal control
problems [6-8]. In this paper, we focus on the convergence of the difference approximations
problem for an optimal control problem governed by a quasilinear parabolic equation with con-
trols in the heat conductivity coefficient, boundary conditions, additional restrictions and the
right side of the equation. The difference approximations problem associated to the problem
is constructed. The estimations of stability for the difference approximations problem are es-
tablished. The convergence of the difference approximations problem for the discrete optimal
control problem is studied.

2 Problem Formulation

Let D be a bounded domain of the N-dimensional Euclidean space EN , l,T be given positive
numbers and let Ω = {(x, t) : x ∈ D = (0, l), t ∈ (0, T )}. We consider the following optimal
control problem: minimize

Jα(v) = β0

∫ T

0
[u(0, t)− y0(t)]

2dt+ β1

∫ T

0
[u(l, t)− y1(t)]

2dt+ α‖v − ω‖2
EN (2.1)

subject to
∂u

∂t
− ∂

∂x
(λ(u, v)

∂u

∂x
) = f(x, t, u, v), (x, t) ∈ Ω (2.2)

with initial and boundary conditions

u(x, 0) = φ(x), x ∈ D (2.3)

λ(u, v)
∂u

∂x
|x=0 = Y0(t), λ(u, v)

∂u

∂x
|x=l = Y1(t), 0 ≤ t ≤ T (2.4)

and to the constraints
ν0 ≤ λ(u, v) ≤ µ0, r1 ≤ u(x, t) ≤ r2 (2.5)

on the set
V = {v : v = (v1, v2, ..., vN ) ∈ EN , ‖v‖EN ≤ R}

where R > 0 , r1, r2 ,α ≥ 0 , ν0, µ0 > 0 , β0 ≥ 0 , β1 ≥ 0 , β0 + β1 6= 0 be given positive
numbers. ω ∈ EN is also given : ω = (ω1, ω2, ..., ωN ).
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Besides, φ(x) ∈ L2(D) , Y0(t), Y1(t) ∈ L2(0, T ) and y0(t) ,y1(t) ∈ L2(0, T ) are real-valued
given functions. Moreover, the functions λ(u, v), f(x, t, u, v) are continuous for (u, v) ∈ [r1, r2]

xEN , have continuous derivatives in u and ∀(u, v) ∈ [r1, r2] xEN , the derivatives ∂λ(u,v)∂u , ∂f(u,v)∂u
are bounded.

The state-function u = u(x, t) ∈ V 1,0
2 (Ω) is defined as the solution of (2.1)-(2.4). On the

basis of adopted assumptions and the results of [9] it follows that for every v ∈ V the solution
of the problem (2.1)-(2.4) is existed, unique and |ux| ≤ C0 ,∀(x, t) ∈ Ω, ∀v ∈ V , where C0 is a
certain constant.

Definition 2.1. For given v ∈ V , the problem of finding a function u = u(x, t; v) ∈ V 1,0
2 (Ω)

from conditions (2.1)-(2.4) is called the reduced problem.

Definition 2.2. The solution of the reduced problem (2.1)-(2.4) corresponding to the v ∈ V is a
function u(x, t) ∈ V 1,0

2 (Ω) and satisfies the integral identity∫ l
0

∫ T
0 [u∂η∂t − λ(u, v)

∂u
∂x

∂η
∂x + ηf(x, t, u, v)]dxdt =

−
∫ l

0 φ(x)η(x, 0)dx−
∫ T

0 η(0, t)Y0(t)dt+
∫ T

0 η(l, t)Y1(t)dt, (2.6)

∀ η = η(x, t) ∈W 1,1
2 (Ω) and η(x, T ) = 0.

Optimal control problems of for solutions of partial differential equations do not always have
a solution [8]. The existence and uniquness of a solution of optimal control problem (2.1)-(2.5)
can be found in Farag [10].

The inequality constrained optimal control problem (2.1)-(2.5) is converted to an uncon-
strained control problem by adding a penalty function [11] to the cost functional (2.1), yielding
the modified function Φα,n(v,An)

Φα,n(v,An) ≡ Φ(v) = Jα(v) + Pn(v), (2.7)

where
F (u, v) = [max{ν0 − λ(u, v); 0}]2 + [max{λ(u, v)− µ0; 0}]2

Q(u) = [max{r1 − u(x, t; v); 0}]2, B(u) = [max{u(x, t; v)− r2; 0}]2

Pn(v) = An

∫ l

0

∫ T

0
[F (u, v) +Q(u) +B(u)]dxdt

and An , n=1,2,... are positive numbers, limn→∞An = +∞.

The sufficient differentiability conditions of function (2.7) and its gradient formulae are in-
vestigated by Farag [12]. Also the necessary conditions for optimization for the optimal control
problem (2.1)-(1.4),(2.7) are proved by Farag [13].

3 The Discrete Optimal Control Problem

3.1 The Difference Approximations problem (DAP)

In this section, we will find the difference approximations problem for the optimal control prob-
lem (2.1)-(2.4) and (2.7). For this purpose, we must discrete the optimal control problem.

Here and further for arbitrary net functions u = uji = u(x, t) = u(xi, tj), x = xi ∈ ωh, t =
tj ∈ ωτ adopt denotations [14]:

û = u(xi, tj+1) = uj+1
i , u∗ = u(xi, tj−1) = uj−1

i

u− = u(xi−1, tj) = uji−1, u+ = u(xi+1, tj) = uji+1

ux =
u+ − u
h

, ux =
u− u−

h
, ut =

û− u
τ

, ut =
u− u∗

τ
.

The functions λ(u(x, t), v), f(u(x, t), v), φ(x), Y1(t), Y2(t) approximate as follows:

λji =
1
hτ

∫ tj

tj−1

∫ xi+1

xi

λ(u(x, t), v))dxdt, i = 0, N − 1, j = 1,M,
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f ji =
1
hτ

∫ tj

tj−1

∫ xi+1

xi

f(u(x, t), v))dxdt, i = 0, N − 1, j = 1,M,

φi =
1
h

∫ xi+1

xi

φ(x)dx, i = 0, N − 1,

(Y0)
j =

1
τ

∫ tj+
τ
2

tj− τ2
Y0(t)dt, (Y1)

j =
1
τ

∫ tj+
τ
2

tj− τ2
Y1(t)dt, j = 1,M − 1.

The discrete analogy of the integral identity (2.6) writes in the form

hτ
∑N−1
i=0

∑M−1
j=1 uji (η

j
i )t − hτ

∑N−1
i=0

∑M
j=1[−λ

j
i (u

j
i )x(η

j
i )x + f ji η

j
i ] =

= −h
∑N−1
i=0 φiη

0
i − τ

∑M
j=1 η

j
0(Y0)j − τ

∑M
j=1 η

j
N (Y1)j , (3.1)

for any network function ηji , η
M
i = 0.

From [14], we have

hτ
∑N−1
i=0

∑M−1
j=1 uji (η

j
i )t = −hτ

∑N−1
i=1

∑M
j=1(u

j
i )tη

j
i + h

∑N−1
i=0 uMi η

M
i

−h
∑N−1
i=0 u0

iη
0
i + hτ

∑M
j=1(u

j
0)tη

j
0 (3.2)

−hτ
∑N−1
i=0

∑M
j=1 λ

j
i (u

j
i )x(η

j
i )x = hτ

∑N−1
i=1

∑M
j=1(λ

j
i (u

j
i )x)x−

τ
∑M
j=1 λ

j
N−1(u

j
N−1)xη

j
N + τ

∑M
j=1 λ

j
0(u

j
0)xη

j
0 . (3.3)

Using (3.2),(3.3), from (3.1) we obtain

hτ
∑N−1
i=1

∑M
j=1[−(u

j
i )t + (λji (u

j
i )x)x − f

j
i ]η

j
i = h

∑N−1
i=0 u0

iη
0
i

−hτ
∑M
j=1(u

j
0)tη

j
0 + τ

∑M
j=1[λ

j
0(u

j
0)xη

j
0 + λjN−1(u

j
N−1)xη

j
N ]

−h
∑N−1
i=0 φiη

0
i + τ

∑M
j=1[η

j
0(Y0)j − ηjN (Y1)j ]. (3.4)

Setting ηji equal to zero at every points in the network in the above equation, we obtain the
difference approximations problem for (2.1)-(2.4):

(uji )t − (λji (u
j
i )x)x − f

j
i = 0, i = 1, N − 1, j = 1,M, (3.5)

u0
i = φi, i = 0, N − 1 (3.6)

−λj0(u
j
0)x − Y0

j + h(uj0)t + hf j0 = 0, j = 1,M (3.7)

λjN−1(u
j
N−1)x − Y1

j = 0, j = 1,M (3.8)

Approximate the function y0, y1, F (u(x, t), v), Q(u), B(u) ,then the functional (2.7) is can be
written as follows:

In(v) = β0τ
∑M
j=1[u

j
0 − (y0)j ]2 + β1τ

∑M
j=1[u

j
N − (y1)j ]2

+α‖v − ω‖2
EN

+ hτAn
∑N−1
i=0

∑M
j=1[F (u

j
i , v) +Q(uji ) +B(uji )] (3.9)

3.2 The Stability Estimstes of DAP

We are going to give the estimates of stability for the difference approximations problem (DAP)
(3.5)-(3.8) and an estimate on v (see Farag [14]). We recall that:

Theorem 3.1. Suppose that the all functions in the system (2.1)-(2.4) satisfy the above enumer-
ated conditions. Moreover, we assume that the function λi(u, v) satisfies the Lipschitz condition
with respect to v, i.e |λi(u(x, t), v+δv)−λi(u(x, t), v)| ≤ L‖δv‖EN for every (x, t) ∈ Ω and for
every v, δv ∈ V , where L > 0 is a constant. Then the estimates of stability for DAP (3.5)-(3.8)
are

‖u‖2
L2(ωhτ )

≤ C2[‖φ‖2
L2(ωh)

+ ‖f‖2
L2(ωhτ )

+ ‖Y0‖2
L2(ωτ )

+ ‖Y1‖2
L2(ωτ )

]

‖ux‖2
L2(ωhτ )

≤ C2[‖φ‖2
L2(ωh)

+ ‖f‖2
L2(ωhτ )

+ ‖Y0‖2
L2(ωτ )

+ ‖Y1‖2
L2(ωτ )

]

max
j
‖uj‖2

L2(ωh)
≤ C2[‖φ‖2

L2(ωh)
+ ‖f‖2

L2(ωhτ )
+ ‖Y0‖2

L2(ωτ )
+ ‖Y1‖2

L2(ωτ )
]

where the positive constant C2 is independing of φ,u , Y0,Y1and f .
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Theorem 3.2. Suppose that the all functions in the system (2.1)-(2.4) satsify the above enumer-
ated conditions. Moreover, we assume that the function λi(u, v) satisfies the Lipschitz condition
with respect to v, i.e |λi(u(x, t), v + δv) − λi(u(x, t), v)| ≤ L‖δv‖EN for every (x, t) ∈ Ω and
for every v, δv ∈ V , where L > 0 is a constant. Then the stability estimation of the solution of
DAP (3.5)-(3.8) on v is

h

N−1∑
i=0

(δuji )
2 + hτ

N−1∑
i=0

M∑
j=0

(δuji )
2 + hτ

N−1∑
i=0

M∑
j=0

(δuji )
2
x ≤ C9‖δv‖2

EN

where the positive constant C9 is independing of δu and δv.

4 Examples and Applications

An interesting and well investigated problem is the identification of coefficients in partial differ-
ential equations [15-18]. In constract to this, the identification of nonlinear phenomina is less
developed. This refers also to the nonlinear boundary conditions for the heat equation.
The outlined of the algorithm for solving OCP problem are as follows:

1- Given It = 0, ε′ > 0, AIt > 0, ε > 0 and v(It) ∈ V.
2- At each iteration It, do

Solve (3.5)-(3.8), then find u(., v(It)).
Minimze Φ(vIt) to find optimal control v(It+1)

∗ using PQI method [12].
End do.
3- If ‖Φ(vIt+1)−Φ(vIt)‖ < ε, then Stop, else, go to Step 4.
4- Set v(It+1) = v(It), AIt+1 = ε′AIt, It = It+ 1 and go to Step 2.

The numerical results were carried out for the following examples:

EXAMPLE 1: Let us accepte that the data of the optimal control problem (2.1)-(2.5) are
given as l = 0.8, T = 0.001, α = 1, β0 = β1 = 1, φ(x) = x, y0 = t, y1 = 0.8 + t, Y0(t) =

1
1+t2 , Y1(t) =

1
1+(0.8+t)2 .

The iteration number , It, for the function to be minimized Φ(v), the exact, approximate val-
ues of λ(u, v) with the approximate control values v∗ and the absolute error: Π = |λexact−λapproxλexact

|
are tabulated in table 1. It is clear that the absolute error decreases as the number of terms (nc)
in λ(u, v) =

∑nc
k=1 vku

k increase.
In Table 2, we report the number NEF of function evaluations neeed to attain the solution

with an accuracy on the modified function Φ(v) of the order 10−6. The above algorithm takes 6
iterations for decreasing Φ(v) to the value 0.8393609E − 04.

Table 1
It λexact λapprox Π = |λexact−λapproxλexact

|
1 .7352941E+00 .1224296E+00 .8334957E+00
2 .7352941E+00 .4115356E+00 .4403116E+00
3 .7352941E+00 .4743363E+00 .3549026E+00
4 .7352941E+00 .6568843E+00 .1066374E+00
5 .7352941E+00 .7134509E+00 .2970675E-01
6 .7352941E+00 .7150049E+00 .2759337E-01

Table 2
It Φ(v) Jα(v) Pn(v) An NEF

0 15.2245300 15.2245300 0.0000000 0.0000000 1
1 12.5949100 12.5939900 9.240004E-04 1.0000000 169
2 5.0931420 5.0926800 4.620002E-04 5.000000E-01 506
3 1.4406350 1.4404040 2.310001E-04 2.500000E-01 674
4 6.352364E-02 6.340814E-02 1.155001E-04 1.250000E-01 842
5 7.121307E-04 6.543807E-04 5.775003E-05 6.250000E-02 1010
6 8.731989E-05 8.371051E-05 3.609377E-06 3.125000E-02 1176
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EXAMPLE 2: u = x+ t, λ = ln( 1
1−u), x ∈ [0, 0.9], t ∈ [0, 0.001]

Knowing the computed optimal control values v∗ ∈ V obtained by using the previous nu-
merical algorithm, we can calculate the approximate values of the unknown coefficient λ(u, v)
can be represented in a series as λ(u, v) =

∑nc
k=1 vku

k. In the below figure, the curves denoted
by λ∗1 , λ

∗
2 , · · · are the approximate values of λ(u, v) with v∗, and λExact is the exact value of

λ(u, v). Obviously by increasing nc, the coefficients λ(u, v) will agree with precise ones.

Figure 1. The identification of coefficient λ(u, v)

5 The Convergence Theorem

To come to the convergence theorem, we have to do the following assumptions:
1) For the problems (2.2)-(2.4),(2.7) and (3.5)-(3.8),(3.9), we define:

Φ
∗ = inf

v∈V
Φ(v), I∗n = inf

v∈V
In(v), n = 1, 2, · · · .

2) Let for any n � 1, there exists an approximate lower bounded value of the functional
In(v) and also exists a discrete control v ∈ V such that

I∗n ≤ In(v) ≤ I∗n + εn, (5.1)

where εn ≥ 0 and εn → 0 at n→∞.
3) In domain Ω = [0, l] × [0, T ], we construct the net such that hn = τn and limn→∞Nn =

limn→∞Mn =∞ , hn = l
Nn

= τn = T
Mn

.
Now, we prove that the convergence of the difference approximations of the optimal control

problem (3.5)-(3.8),(3.9). The proof of the theorem will be prepared by the following two lem-
mas.
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Lemma 5.1. If the above assumptions are fullfilled, then for any control v ∈ V , there exists a
number 0 < n0 < n such that

|In(v)−Φ(v)| ≤ δ, δ > 0. (5.2)

Proof. Suppose that u(x, t) and U = uji are the solutions of problems (2.2)-(2.4) and (3.5)-
(3.8) respectively for a discrete control v ∈ V . From the work by Ladyzenskaya [9,p. 293]
the interpolations {Û∆(x, t)} are uniformly bounded in V 1,0

2 (Ω). It is possible to choose sub-
sequence from {Û∆(x, t)} is weakly convergence to Z(x, t) ∈ V 1,0

2 (Ω) and thier derivatives
{∂Û∆(x,t)

∂x }, {∂Û∆(x,t)
∂t } also are weakly convergence to the functions ∂Z(x,t)

∂x , ∂Z(x,t)
∂t ∈ W 1,1

2 (Ω)
correspondingly.

However, proceeding as in the results of Ladyzenskaya [9,p. 345], Z(x, t) is the solution
of the problem (2.2)-(2.4),i.e Z(x, t) = u(x, t). Results in [9,p. 289] imply that the func-
tions Û∆(x, t) converge in L2(Ω) to u(x, t) , functions Û∆(0, t), Û∆(l, t) converge in L2(0, T ) to
u(0, t), u(l, t) and the function Û∆(x, 0) converges in L2(0, l) to u(x, 0).

Let ŷ0, ŷ1 denote the piecewise constant fulfillement of net functions (y0)j , (y1)j correspond-
ingly, then in vitrue of results of [9,p. 301] we have

‖ŷ0(t)− y0(t)‖L2(0,T ) → 0, ‖ŷ1(t)− y1(t)‖L2(0,T ) → 0, at n→∞. (5.3)

Besides, we have

τ
M∑
j=1

[U j0 − (y0)
j ]2 = ‖Û(0, t)− ŷ0(t)‖2

L2(0,T ), (5.4)

τ

M∑
j=1

[U jN − (y1)
j ]2 = ‖Û(l, t)− ŷ1(t)‖2

L2(0,T ). (5.5)

Using the forms of the functions Φ(v), In(v) and the last two equalities, we have

|In(v)−Φ(v)| ≤ C1[‖Û(0, t)− u(0, t)‖L2(0,T ) + ‖ŷ(t)− y0(t)‖L2(0,T )

+‖Û(l, t)− u(l, t)‖L2(0,T ) + ‖ŷ1(t)− y1(t)‖L2(0,T )]

+C2An[‖F (Û , v)− F (u, v)‖L2(Ω)

+‖Q(Û)−Q(u)‖L2(Ω) + ‖B(Û)−B(u)‖L2(Ω)]. (5.6)

Employing the equality (5.3) in (5.6), we can choose a number 0 < n0 < n for any discrete
control v ∈ V such that the relation (5.2) is valid. Then the Lemma 5.1 is proved.

Lemma 5.2. Assume that the above assumptions satisfied and δ > 0. Then for any sequence of
control {vn} ∈ V , there exists a number 0 < n0 < n such that

|Φ(vn)− In(vn)| ≤ δ. (5.7)

Proof. Let Un = U(v) be the solution of the problem (3.5)-(3.8) at v = vn and un = u(x, t, v̂)
be the solution of problem (2.2)-(2.4) at v̂ = vn and denote the Ûn(x, t) piecewise constant net
functions U(v).

Applying the techniqe described in Lemma 5.1, in the proof,we obtain

‖un(0, t)− Ûn(0, t)‖L2(0,T ) + ‖un(l, t)− Ûn(l, t)‖L2(0,T ) → 0, at n→∞. (5.8)

‖un(x, t)− Ûn(x, t)‖L2(Ω) → 0, at n→∞. (5.9)

Thanks to (5.8),(5.9) and the form of Φ(vn), In(vn) , we get

|Φ(vn)− In(vn)| ≤ C3[‖un(0, t)− Ûn(0, t)‖L2(0,T ) + ‖y0(t)− ŷ0(t)‖L2(0,T )

+‖un(l, t)− Ûn(l, t)‖L2(0,T ) + ‖y1(t)− ŷ1(t)‖L2(0,T )]

+C4An[‖Fn(un, v)− F (Ûn, v)‖L2(Ω)

+‖Qn(un)−Q(Ûn)‖L2(Ω) + ‖Bn(un)−B(Ûn)‖L2(Ω)]. (5.10)

Employing the equalities (5.8),(5.9) in (5.10), the estimat (5.7) is valid. Then the Lemma 5.2 is
proved.
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Theorem 5.3. Under the above assumptions, if n is (big enough), then

lim
n→∞

I∗n = Φ
∗. (5.11)

Besides, if the discrete control v ∈ V satisfies the relation (5.1), then the sequence of control
{vn} ∈ V is a minimizing sequence for the problem (2.2)-(2.4),(2.7),i.e

lim
n→∞

Φ(vn) = Φ
∗. (5.12)

Proof. The function Φ(v) is bounded below, then we find vδ ∈ V, δ > 0 such that Φ∗ ≤ Φ(vδ) <
Φ∗ + δ

2 .

It thus follow from Lemma 5.1 that |In(vδ) − Φ(v)| ≤ δ
2 . But Φ∗n ≤ Φ(vδ) ≤ I(vδ) +

δ
2 <

Φ∗ + δ then we obtain
lim
n→∞

I∗n ≤ Φ
∗. (5.13)

The reasoning used in the proof of (5.13), applied here, proves that In virtue of arbitrariness of
δ > 0, we obtain

Φ
∗ ≤ lim

n→∞
I∗n. (5.14)

It follows from (5.13) and (5.14) that limn→∞ I∗n exists and (5.4) is fullfilled.
Finally, if the controls vn ∈ V satisfy the conditions of theorem, then

|Φ(vn)−Φ
∗| ≤ |Φ(vn)− In(vn)|+ |In(v)− I∗n|+ |I∗n −Φ

∗| → 0, n→∞. (5.15)

This gives The relation (5.11) and the proof is completed.
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