On Exact Frames in Topological Algebras

Saakshi Garg and L. K. Vashisht

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 42C15, 46H05; Secondary 42C30.

Keywords and phrases: Frames, topological algebra, biorthogonal system, polar topology.

The second author is partly supported by R & D Doctoral Research Programme, University of Delhi, Delhi-110007, India. (Grant No.: RC/2014/6820).

Abstract. We present necessary and sufficient conditions for a frame in topological algebras to be exact.

1 Introduction and Preliminaries

Let \mathcal{A} be a linear space over the complex field \mathbb{C} (or the real field \mathbb{R}). \mathcal{A} is said to be a complex (or real) *algebra* if for all $x, y \in \mathcal{A}$, the product xy is defined and $xy \in \mathcal{A}$ satisfies the following conditions

- (i) x(yz) = (xy)z = xyz,
- (ii) x(y+z) = xy + xz,
- (iii) $(y+z)x = yx + zx \ (z \in \mathcal{A}),$
- (iv) $(\lambda x)(\mu y) = (\lambda \mu)xy$, for all $\lambda, \mu \in \mathbb{C}$.

An algebra \mathcal{A} with a Hausdorff topology is called a *semi-topological algebra* if the maps: $(x, y) \mapsto x + y$ from $\mathcal{A} \times \mathcal{A}$ to \mathcal{A} and $(\lambda, x) \mapsto \lambda x$ from $\mathbb{C} \times \mathcal{A}$ to \mathcal{A} are continuous and the map: $(x, y) \mapsto xy$ is separately continuous. A semi-topological algebra is said to be a *topological algebra* if the map: $(x, y) \mapsto xy$ is jointly continuous. For basics on topological algebra we refer [2] and for linear expansion system in topological vector spaces, see [3].

Throughout this paper, (\mathcal{A}, τ) denotes a real (or complex) locally convex separable topological algebra, assumed to be commutative. By \mathcal{A}^* and \mathcal{A}' , we denote the topological dual and the algebraic dual of \mathcal{A} , respectively. For a Hausdorff locally convex topology τ in \mathcal{A} and $Z \subset \mathcal{A}$, $[Z]^{\tau}$ shall denote the τ -closure of the span of Z in \mathcal{A} . A pair $(\{x_n\}, \{f_n\}) \subset \mathcal{A} \times \mathcal{A}'$ is called a biorthogonal system if $f_i(x_j) = \delta_{i,j}$ for all $i, j \in \mathbb{N}$, where $\delta_{i,j}$ denotes the Kronecker delta.

Definition 1.1. [7] A countable sequence $\mathcal{F} \equiv \{x_n\} \subset \mathcal{A}$ is a τ -frame for (\mathcal{A}, τ) if there exists a sequence $\{f_n\} \subset \mathcal{A}'$, such that for each $x \in \mathcal{A}$

$$x = \tau - \lim_{n \to \infty} \sum_{i=1}^{n} f_i(x) x_i \left(= \tau - \sum_{i=1}^{\infty} f_i(x) x_i \right),$$

where the sequence $\{\sum_{i=1}^{n} f_i(x)x_i\}$ converges in the topology τ of \mathcal{A} .

Remark 1.2. The sequence $\{f_n\} \subset \mathcal{A}'$ is called an *associated sequence of functionals*, which need not be unique. The associated functionals f_n $(n \in \mathbb{N})$ need not be continuous.

Definition 1.3. [7] A τ -frame $\mathcal{F} \equiv \{x_n\}$ for (\mathcal{A}, τ) is a τ -Schauder frame for \mathcal{A} if all associated functionals $f_n \ (n \in \mathbb{N})$ are τ -continuous.

In this paper, we give necessary and sufficient conditions for a τ -frame in topological algebras to be τ -exact. Since this work is continuation of a paper by authors [7], we consider the structure of a topological algebra.

First we recall some basic notations and definitions to make the paper self-contained. Let $\langle \mathcal{A}, \mathcal{B} \rangle$ be a non-degenerate dual pair of topological algebras \mathcal{A} and \mathcal{B} over the same complex (or real) field and τ be any polar topology on \mathcal{A} given by a set of weakly bounded subsets of \mathcal{B} . We consider the following polar topologies of $\langle \mathcal{A}, \mathcal{B} \rangle$ and denote them as follows. The details can be found in [8].

- (i) $\sigma(\mathcal{A}, \mathcal{B})$ for the weak topology on \mathcal{A} , the topology of uniform convergence on the finite subsets of \mathcal{B} .
- (ii) $\beta(\mathcal{A}, \mathcal{B})$ for the strong topology on \mathcal{A} , the topology of uniform convergence on the $\sigma(\mathcal{B}, \mathcal{A})$ -bounded subsets of \mathcal{B} .
- (iii) $\beta^*(\mathcal{A}, \mathcal{B})$ for the strong* topology on \mathcal{A} , the topology of uniform convergence on the $\beta(\mathcal{B}, \mathcal{A})$ -bounded subsets of \mathcal{B} .

It is easy to see that $\sigma(\mathcal{A}, \mathcal{B}) \leq \beta^*(\mathcal{A}, \mathcal{B}) \leq \beta(\mathcal{A}, \mathcal{B})$. Some interesting properties on β duality can be found in [1].

Definition 1.4. [8] The sequential dual A^{\dagger} of A is defined by

$$\mathcal{A}^{\dagger} = \{ f \in \mathcal{A}' : f(x_n) \to 0 \text{ for all } \tau \text{-null sequences } \{x_n\} \subset \mathcal{A} \}.$$

Note that $\mathcal{A}^* \subset \mathcal{A}^\dagger \subset \mathcal{A}'$.

Definition 1.5. [8] A subset K of \mathcal{A}' is said to be τ -limited if for every τ -null sequence $\{x_n\}$ in \mathcal{A} , we have

$$\lim_{n \to \infty} \sup_{f \in K} f(x_n) = 0.$$

Remark 1.6. Let τ^{\dagger} be the topology on \mathcal{A} defined to be generated by the class \mathcal{U} of all absolutely convex subsets of \mathcal{A} such that every τ -null sequence in \mathcal{A} eventually belongs to U, for each $U \in \mathcal{U}$. The topology τ^{\dagger} is, in fact, the topology of uniform convergence on the τ -limited subsets of \mathcal{A}^{\dagger} , and $(\mathcal{A}, \tau^{\dagger})^* = \mathcal{A}^{\dagger}$.

2 Main Results

We start with the definition of exact frames in topological algebras.

Definition 2.1. A τ -frame $\mathcal{F} \equiv \{x_n\}$ for (\mathcal{A}, τ) is said to be τ -exact, if for all $j \in \mathbb{N}$ the sequence $\{x_n\}_{n \neq j}$ is not a τ -frame for \mathcal{A} .

Remark 2.2. Recall that a τ -frame $\{x_n\}$ for \mathcal{A} is said to be τ - ω -linearly independent if

$$\tau - \sum_{i=1}^{\infty} \alpha_i x_i = 0 \Rightarrow \alpha_i = 0 \text{ for all } i \in \mathbb{N}, \ (\alpha_i \text{ are scalars}).$$

A τ -exact frame $\mathcal{F} \equiv \{x_n\}$ for \mathcal{A} is τ - ω -linearly independent. Indeed, let τ - $\sum_{i=1}^{\infty} \alpha_i x_i = 0$ for some scalar coefficients $\{\alpha_i\}$. Assume that $\alpha_j \neq 0$ for some j. Then, $x_j = \tau$ - $\sum_{i=1}^{\infty} \frac{-\alpha_i}{\alpha_j} x_i$, a

contradiction.

The following proposition gives a sufficient condition for a τ -frame to be τ -exact.

Proposition 2.3. A τ -frame $\mathcal{F} \equiv \{x_n\}$ for (\mathcal{A}, τ) is τ -exact, provided for each $j \in \mathbb{N}$,

$$x_j \notin [x_1, \ldots, x_{j-1}, x_{j+1}, \ldots]^{\tau}$$

Proof. Assume that $x_j \notin [x_1, \ldots, x_{j-1}, x_{j+1}, \ldots]^{\tau}$ for each $j \in \mathbb{N}$. If possible, let \mathcal{F} be not τ -exact. Then, for some j, $\{x_n\}_{n \neq j}$ forms a frame for \mathcal{A} . So, $[x_1, \ldots, x_{j-1}, x_{j+1}, \ldots]^{\tau} = \mathcal{A}$. Thus, by τ -completeness of frames, $x_j \in [x_1, \ldots, x_{j-1}, x_{j+1}, \ldots]^{\tau}$, which is a contradiction to the hypothesis. Hence \mathcal{F} is τ -exact.

Corollary 2.4. Let $\mathcal{F} \equiv \{x_n\}$ be a τ -frame for (\mathcal{A}, τ) . If there exists a sequence $\{g_n\} \subset \mathcal{A}^*$ such that $(\{x_n\}, \{g_n\})$ is a biorthogonal system, then \mathcal{F} is τ -exact.

Proof. Suppose that there exists a sequence $\{g_n\} \subset \mathcal{A}^*$ such that (x_n, g_n) is a biorthogonal system. It is enough to show that $x_j \notin [x_1, \ldots, x_{j-1}, x_{j+1}, \ldots]^{\tau}$ for each $j \in \mathbb{N}$. Then, by Proposition 2.3 the result follows. If possible, let $x_j \in [x_1, \ldots, x_{j-1}, x_{j+1}, \ldots]^{\tau}$ for some j. Let $\Phi_{\mathbb{N}}$ be the family of all finite subsets of \mathbb{N} . Then, for some $F \in \Phi_{\mathbb{N}} \setminus \{j\}$

$$\left|g_j(x_j - \sum_{m \in F} \alpha_m x_m)\right| \le \frac{1}{2}.$$

However, this is absurd since (x_n, g_n) is biorthogonal. So, $x_j \notin [x_1, \ldots, x_{j-1}, x_{j+1}, \ldots]^{\tau}$ for each $j \in \mathbb{N}$. The result is proved.

It would be interesting to know the exactness of a given τ -frame for \mathcal{A} under topologies generated by pairs associated with \mathcal{A} . In this direction we have the following example of a $\beta(\mathcal{A}, \mathcal{B})$ -exact frame for \mathcal{A} .

Example 2.5. Let $\mathcal{A} = \{\{\xi_j\} \subset \mathbb{C} : \sum_{i=1}^{\infty} |\xi_i| < \infty\}$ and $\mathcal{B} = \{\{\xi_j\} \subset \mathbb{C} : \lim_{n \to \infty} \xi_n = 0\}$. Let τ be the topology induced by the metric d on \mathcal{A} which is defined as

$$d(x,y) = \sum_{j=1}^{\infty} |\xi_j - \eta_j|, \ x = \{\xi_i\}, y = \{\eta_i\} \in \mathcal{A}$$

Then, (\mathcal{A}, τ) is a locally convex separable topological algebra under pointwise multiplication. Define $\{x_n\} \subset \mathcal{A}$ by

$$x_1 = e_1$$
 and $x_n = (-1)^{n+1}e_1 + e_n, \ n \ge 2,$

where e_n denote the canonical unit vector, i.e., $e_n = \{0, 0, \dots, \underbrace{1}_{nth}, 0, 0, 0, \dots\}$ $(n \in \mathbb{N})$. Choose $f_1 = e_1 + e_2 - e_3 + e_4 - e_5 + \dots$ and $f_n = e_n, n \ge 2$.

Choose $f_1 = e_1 + e_2 - e_3 + e_4 - e_5 + \dots$ and $f_n = e_n$, $n \ge 2$. Then, $x = \tau - \lim_{n \to \infty} \sum_{i=1}^n f_i(x) x_i$ for each $x \in \mathcal{A}$. Hence $\mathcal{F} \equiv \{x_n\}$ is τ -frame for \mathcal{A} . Furthermore, each $f_n \in (\mathcal{A}, \beta(\mathcal{A}, \mathcal{B}))^* = \{\{\xi_j\} \subset \mathbb{C} : \sup_{1 \le j < \infty} |\xi_j| < \infty\} \subset \mathcal{A}'$ and $f_i(x_j) = \delta_{i,j}$ for all $i, j \in \mathbb{N}$. Therefore, by Corollary 2.4, the frame $\{x_n\}$ is $\beta(\mathcal{A}, \mathcal{B})$ -exact frame for \mathcal{A} .

If we have two comparable topologies on a topological algebra, then the exactness of τ -Schauder frames is preserved while moving to a finer topology. This is shown in the following proposition.

Proposition 2.6. Assume that τ_1 and τ_2 are Hausdorff locally convex topologies on A such that τ_2 is finer than τ_1 . Then, every τ_1 -exact Schauder frame in A is τ_2 -exact Schauder frame.

Proof. If $\mathcal{F} \equiv \{x_n\}$ is a τ_1 -exact frame, then $\{x_n\}_{n \neq j}$ is not a frame for \mathcal{A} for all $j \in \mathbb{N}$. Let $j_0 \in \mathbb{N}$ be fixed but arbitrary. Then, there exists some $x \in \mathcal{A}$ such that $x \neq \tau_1 - \sum_{n \neq j_0} f_n(x)x_n$, where $\{f_n\} \subset (\mathcal{A}, \tau_1)^*$. Since τ_2 is finer than τ_1 , therefore $(\mathcal{A}, \tau_2)^* \subseteq (\mathcal{A}, \tau_1)^*$. So, there does not exist any $\{f_n\} \subset (\mathcal{A}, \tau_2)^*$ such that $x \in \mathcal{A}$ can be expressed as $\tau_2 - \sum_{n \neq j_0} f_n(x)x_n$. That is, \mathcal{F} is τ_2 -exact. Thus, every τ_1 -exact frame is τ_2 -exact.

Remark 2.7. In Proposition 2.6 if τ_1^{\dagger} is finer than τ_2 , then τ_2 - ω -linearly independent Schauder frame for the topological algebra \mathcal{A} is τ_1 - ω -linearly independent. Indeed, let $\mathcal{F} \equiv \{x_n\}$ be τ_2 - ω -linearly independent Schauder frame for \mathcal{A} and $\tau_1 - \sum_{i=1}^{\infty} \alpha_i x_i = 0$ for some scalars $\{\alpha_n\}$. Then, $\{\sum_{i=1}^{n} \alpha_i x_i\}$ is τ_1 -null sequence. Since $\tau_2 \leq \tau_1^{\dagger}$, every τ_1 -null sequence in \mathcal{A} is τ_2 -null. So, the sequence $\{\sum_{i=1}^{n} \alpha_i x_i\}$ is τ_2 -null. Hence $\tau_2 - \sum_{i=1}^{\infty} \alpha_i x_i = 0$. This implies that $\alpha_i = 0$ for all $i \in \mathbb{N}$, as \mathcal{F} is τ_2 - ω -linearly independent. Therefore, \mathcal{F} is τ_1 - ω -linearly independent Schauder frame for \mathcal{A} .

Remark 2.8. The converse of the Proposition 2.6 is not true. That is, a τ -exact Schauder frame for (\mathcal{A}, τ) need not be μ -exact Schauder frame for (\mathcal{A}, μ) , where $\mu \leq \tau$. More precisely, the τ -exactness of a τ -Schauder frame for \mathcal{A} is not stable under topologies generated by certain dual pairs. In this direction, we observed that, a $\beta(\mathcal{A}, \mathcal{B})$ -exact Schauder frame is not a $\sigma(\mathcal{A}, \mathcal{B})$ -exact Schauder frame for the underlying space. This is justified in the following example.

Example 2.9. Let (A, τ) and B be the topological algebras given in Example 2.5. Define a sequence $\{x_n\} \subset A$ by

$$x_1 = e_1, x_n = e_{n+1} - e_n, n \ge 2.$$

Choose $f_1 = e_1$, $f_n = -e_n$, $n \ge 2$. Then, each $f_n \in (\mathcal{A}, \beta(\mathcal{A}, \mathcal{B}))^* \subset \mathcal{A}'$. One can easily see that $\{x_n\}$ is a τ - Schauder frame for \mathcal{A} . Furthermore, $f_i(x_j) = \delta_{i,j}$ for all $i, j \in \mathbb{N}$. Hence by Corollary 2.4, the τ - Schauder frame $\{x_n\}$ is a $\beta(\mathcal{A}, \mathcal{B})$ -exact Schauder frame for \mathcal{A} . To show $\{x_n\}$ is not a $\sigma(\mathcal{A}, \mathcal{B})$ -exact Schauder frame, it enough to show that $\{x_n\}$ is not $\sigma(\mathcal{A}, \mathcal{B})$ - ω -linearly independent.

Choose $\alpha_1 = 1$ and $\alpha_i = -1$ $(i \ge 2)$. Then

$$\sigma(\mathcal{A}, \mathcal{B}) - \sum_{i=1}^{\infty} \alpha_i x_i = \sum_{i=1}^{\infty} \alpha_i x_i(y)$$
$$= y_1 - \sum_{i=2}^{\infty} (y_{i+1} - y_i)$$
$$= 0 \quad \text{for all } y = \{y_i\} \in \mathcal{B}.$$

Hence $\{x_n\}$ is not a $\sigma(\mathcal{A}, \mathcal{B})$ -exact Schauder frame for \mathcal{A} .

Next we give necessary and sufficient conditions for a τ -Schauder frame in a topological algebra to be exact.

Theorem 2.10. A finitely linearly independent τ -Schauder frame $\mathcal{F} \equiv \{x_n\}$ for (\mathcal{A}, τ) is τ -exact if and only if whenever τ -lim_{$n\to\infty$} $\sum_{i=1}^n \alpha_i x_i = 0$, we have $\lim_{n\to\infty} \alpha_n = 0$.

Proof. Since $\mathcal{F} \equiv \{x_n\}$ is a τ -Schauder frame for \mathcal{A} , $[x_n]^{\tau} = \mathcal{A}$ and each $x \in \mathcal{A}$ can be expressed as

$$x = \tau - \lim_{n \to \infty} \sum_{i=1}^{n} f_i(x) x_i$$

where $\{f_i\} \subset \mathcal{A}^*$.

For a fixed $k \in \mathbb{N}$, by hypothesis, we have

$$\tau - \lim_{n \to \infty} \left(\sum_{i=1}^{n+k} f_i(x) x_i - \sum_{i=1}^n f_i(x) x_i \right) = 0 \Rightarrow \lim_{n \to \infty} [f_{n+k}(x) - f_n(x)] = 0.$$

Therefore, $\lim_{n\to\infty} f_n(x) \sim \lim_{n\to\infty} f_{n,k}(x)$ exists. Choose $g_j(x) = \lim_{n\to\infty} f_{n,j}(x)$, where g_j are defined on span $\{x_n\}_n$ by

$$g_j\left(\sum_{i=1}^n \alpha_i x_i\right) = \alpha_j, \ \{\alpha_i\}_{i=1}^n \text{ are scalars } (j, n \in \mathbb{N}).$$

Notice that, by hypothesis $\{x_n\}$ is finitely linearly independent, so g_j are well-defined. Furthermore, each g_j is a τ -continuous linear functional on \mathcal{A} and $g_i(x_j) = \delta_{ij}$ for all $i, j \in \mathbb{N}$. Thus, by Corollary 2.4, \mathcal{F} is a τ -exact Schauder frame for \mathcal{A} .

For the reverse part, let \mathcal{F} be a τ -exact Schauder frame for (\mathcal{A}, τ) . Then, by Remark 2.2, \mathcal{F} is a τ - ω -linearly independent Schauder frame. Suppose τ -lim_{$n\to\infty$} $\sum_{i=1}^{n} \alpha_i x_i = 0$. Then, clearly we have $\lim_{n\to\infty} \alpha_n = 0$.

To conclude the paper, we show that a ω -linearly independent Schauder frame in a coarser topology becomes an exact Schauder in finer topology on the underlying space.

Proposition 2.11. Assume that τ_1 and τ_2 are Hausdorff locally convex topologies on A such that τ_2 is finer than τ_1 . Then, a τ_1 - ω -linearly independent Schauder frame $\mathcal{F} \equiv \{x_n\}$ in A is τ_2 -exact if \mathcal{F} is a finitely linearly independent τ_2 -Schauder frame for A.

Proof. If possible, suppose $\mathcal{F} \equiv \{x_n\}$ is not τ_2 -exact, then by Theorem 2.10, there exists a sequence of scalars $\{\alpha_n\}_{n=1}^{\infty}$ such that τ_2 -lim $_{n\to\infty}\sum_{i=1}^{n} \alpha_i x_i = 0$ and $\lim_{n\to\infty} \alpha_n \neq 0$. Since τ_2 is finer than τ_1 , we have τ_1 -lim $_{n\to\infty}\sum_{i=1}^{n} \alpha_i x_i = 0$. This gives $\alpha_i = 0$ for each $i \in \mathbb{N}$. That is, $\lim_{n\to\infty} \alpha_n = 0$, a contradiction. Hence \mathcal{F} is a τ_2 -exact Schauder frame for \mathcal{A} .

References

- [1] D. J. H. Garling, The β -and γ -duality, *Proc. Camb. Phil. Soc.*, 63 (1967), 963–981.
- [2] T. Husain, *Multiplicative Functionals on Topological Algebra*, Pitman Advanced Publishing Program, Boston, Melbourne (1983).
- [3] P. K. Kamthan and M. Gupta, Sequence Spaces and Series, Marcel Dekker, Inc. New York (1981).
- [4] C. W. McArthur, A convergence criterion with applications to series in locally convex spaces, *Duke Math. Jour.*, 34 (1967), 193–199.
- [5] S. Radenovic, Some remarks on the weak topology of locally convex spaces, *Pub. Inst. Math.*, 44 (58) (1988), 155–157.
- [6] A. P. Robertson and W. Robertson, Topological Vector Spaces, Cambridge University Press (1973).
- [7] L. K. Vashisht and Saakshi Garg, Frames in topological algebras, submitted.
- [8] J. H. Webb, Sequential convergence in locally convex spaces, Proc. Camb. Phil. Soc., 64 (1968), 341-364.

Author information

Saakshi Garg and L. K. Vashisht, Department of Mathematics, University of Delhi, Delhi-110007, India. E-mail: saakshi.garg@yahoo.com ; lalitkvashisht@gmail.com

Received: September 5, 2014.

Accepted: March 21, 2015