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Abstract. In this paper, we study a mathematical problem for dynamic contact between
two electro-elasto-viscoplastic bodies with damage. The contact is frictionless, modelled with
a normal compliance condition involving adhesion effect of contact surfaces. Evolution of the
bonding field is described by a first order differential equation. We derive variational formulation
for the model and prove an existence and uniqueness result of the weak solution. The proof
is based on arguments of nonlinear evolution equations with monotone operators, a classical
existence and uniqueness result on parabolic inequalities, differential equations and Banach fixed
point theorem.

1 Introduction

The piezoelectric phenomenon represents the coupling between the mechanical and electrical
behavior of a class of materials, called piezoelectric materials. In simplest terms, when a piezo-
electric material is squeezed, an electric charge collects on its surface, conversely, when a piezo-
electric material is subjected to a voltage drop, it mechanically deforms. Many crystalline ma-
terials exhibit piezoelectric behavior. A few materials exhibit the phenomenon strongly enough
to be used in applications that take advantage of their properties. These include quartz, Rochelle
salt, lead titanate zirconate ceramics, barium titanate and polyvinylidene fluoride (a polymer
film). Piezoelectric materials are used extensively as switches and actually in many engineer-
ing systems in radioelectronics, electroacoustics and measuring equipment. General models for
electro-elasto-viscoplastic materials can be found in [1, 9] and, more recently, in [25]. A contact
problem with normal compliance for piezoelectric materials was investigated in [2, 10, 26, 27].
The variational formulations of the corresponding problems were derived and existence and
uniqueness of weak solutions were obtained. In this paper we deal study a dynamic friction-
less contact problem with adhesion between two electro-elasto-viscoplastic bodies. For this, we
consider a rate-type constitutive equation with two internal variables of the form

σ` = A`ε(u̇`) + G`ε(u`)+(E`)∗∇ϕ`+∫ t

0
F`
(
σ`(s)−A`ε(u̇`(s))− (E`)∗∇ϕ`(s), ε(u`(s)), ζ`(s)

)
ds,

(1.1)

whereu` the displacement field, σ` and ε(u`) represent the stress and the linearized strain tensor,
respectively. Here A` is a given nonlinear function, F` is a nonlinear constitutive function
describing the viscoplastic behaviour of the material. We also consider that the viscoplastic
function F` depends on the internal state variable ζ` describing the damage of the material
caused by plastic deformations. G` represents the elasticity operator. E(ϕ`) = −∇ϕ` is the
electric field, E` = (eijk) represents the third order piezoelectric tensor, (E`)∗ is its transposition.
In (1.1) and everywhere in this paper the dot above a variable represents derivative with respect
to the time variable t. It follows from (1.1) that at each time moment, the stress tensor σ`(t) is
split into three parts: σ`(t) = σ`V (t) + σ

`
E(t) + σ

`
R(t), where σ`V (t) = A`ε(u̇

`(t)) represents
the purely viscous part of the stress, σ`E(t) = (E`)∗∇ϕ`(t) represents the electric part of the
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stress and σ`R(t) satisfies a rate-type elastic-viscoplastic with damage relation

σ`R(t) = G`ε(u`(t)) +
∫ t

0
F`
(
σ`R(s), ε(u

`(s)), ζ`(s)
)
ds. (1.2)

Note also that whenF` = 0 the constitutive law (1.1) becomes the Kelvin-Voigt electro-viscoelastic
constitutive relation,

σ`(t) = A`ε(u̇`(t)) + G`ε(u`(t)) + (E`)∗∇ϕ`(t). (1.3)

Dynamic contact problems with Kelvin-Voigt materials of the form (1.3) can be found in [2,
27]. The normal compliance contact condition was first considered in [16] in the study of
dynamic problems with linearly elastic and viscoelastic materials and then it was used in various
references, see e.g. [14, 21]. This condition allows the interpenetration of the body’s surface into
the obstacle and it was justified by considering the interpenetration and deformation of surface
asperities. The importance of this paper is to make the coupling of the piezoelectric problem and
a frictionless contact problem with adhesion. The adhesive contact between deformable bodies,
when a glue is added to prevent relative motion of the surfaces, has received recently increased
attention in the mathematical literature. Analysis of models for adhesive contact can be found
in [4, 10, 17, 18] and recently in the monographs [19, 20]. The novelty in all these papers is
the introduction of a surface internal variable, the bonding field, denoted in this paper by β, it
describes the point wise fractional density of adhesion of active bonds on the contact surface, and
some times referred to as the intensity of adhesion. Following [11], the bonding field satisfies the
restriction 0 ≤ β ≤ 1, when β = 1 at a point of the contact surface, the adhesion is complete and
all the bonds are active, when β = 0 all the bonds are inactive, severed, and there is no adhesion,
when 0 < β < 1 the adhesion is partial and only a fraction β of the bonds is active. The damage
is an extremely important topic in engineering, since it affects directly the useful life of the
designed structure or component. There exists a very large engineering literature on it. Models
taking into account the influence of the internal damage of the material on the contact process
have been investigated mathematically. General models for damage were derived in [6, 7] from
the virtual power principle. Mathematical analysis of one-dimensional problems can be found in
[8]. The three-dimensional case has been investigated in [15]. In all these papers the damage of
the material is described with a damage function ζ`, restricted to have values between zero and
one. When ζ` = 1, there is no damage in the material, when ζ` = 0, the material is completely
damaged, when 0 < ζ` < 1 there is partial damage and the system has a reduced load carrying
capacity. Contact problems with damage have been investigated in [8, 22, 23, 25]. In this paper
the inclusion used for the evolution of the damage field is

ζ̇` − κ`∆ζ` + ∂ψK`(ζ`) 3 φ`
(
σ` −A`ε(u̇`)− (E`)∗∇ϕ`, ε(u`), ζ`

)
, (1.4)

where K` denotes the set of admissible damage functions defined by

K` = {ξ ∈ H1(Ω`); 0 ≤ ξ ≤ 1, a.e. in Ω
`}, (1.5)

κ` is a positive coefficient, ∂ψK` represents the subdifferential of the indicator function of the set
K` and φ` is a given constitutive function which describes the sources of the damage in the sys-
tem. Examples and mechanical interpretation of elasto-viscoplastic materials of the form (1.2)
in which the function F` does not depend on the damage parameter ζ` were considered by many
authors, see for instance [5, 12] and the references therein. Contact problems for materials of the
form (1.1), (1.2) without damage parameter. Contact problems for elasto-viscoplastic materials
of the form (1.2) are studied in[1, 25]. In this paper we consider a mathematical frictionless
contact problem between two electro-elasto-viscoplastic bodies for rate-type materials of the
form (1.1). The contact is modelled with normal compliance where the adhesion of the contact
surfaces is taken into account and is modelled with a surface variable, the bonding field. We
model the material’s behavior with an electro-elasto-viscoplastic constitutive law with damage.
We derive a variational formulation of the problem and prove the existence of a unique weak
solution.

The paper is organized as follows. In Sect.2 we describe the mathematical models for the
frictionless adhesive contact problem between two materials behavior with an electro-elasto-
viscoplastic constitutive law with damage and the contact with normal compliance. In Sect.3 we
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list the assumption on the data and derive the variational formulation of the problem. In Sect.4 we
state our main existence and uniqueness result, Theorem 4.1. The proof of the theorem is based
on arguments of nonlinear evolution equations with monotone operators, a classical existence
and uniqueness result on parabolic inequalities and fixed-point arguments.

2 Problem Statement

We consider the following physical setting. Let us consider two electro-elastic- viscoplastics
bodies, occupying two bounded domains Ω1, Ω2 of the space Rd(d = 2, 3). For each domain
Ω`, the boundary Γ` is assumed to be Lipschitz continuous, and is partitioned into three disjoint
measurable parts Γ`1, Γ`2 and Γ`3, on one hand, and on two measurable parts Γ`a and Γ`b, on the
other hand, such that measΓ`1 > 0, measΓ`a > 0. Let T > 0 and let [0, T ] be the time interval of
interest. The Ω` body is submitted to f `0 forces and volume electric charges of density q`0. The
bodies are assumed to be clamped on Γ`1×(0, T ). The surface tractions f `2 act on Γ`2×(0, T ).We
also assume that the electrical potential vanishes on Γ`a × (0, T ) and a surface electric charge of
density q`2 is prescribed on Γ`b×(0, T ). The two bodies can enter in contact along the common part
Γ1

3 = Γ2
3 = Γ3. The bodies is in adhesive contact with an obstacle, over the contact surface Γ3.

With these assumptions, the classical formulation of the mechanical frictionless contact problem
with adhesion and damage between two electro-elastic-viscoplastics bodies is the following.

Problem P. For ` = 1, 2, find a displacement field u` : Ω` × (0, T ) −→ Rd, a stress field
σ` : Ω` × (0, T ) −→ Sd, an electric potential field ϕ` : Ω` × (0, T ) −→ R, a damage field
ζ` : Ω` × (0, T ) −→ R, a bonding field β : Γ3 × (0, T ) −→ R and a electric displacement field
D` : Ω` × (0, T ) −→ Rd such that

σ` = A`ε(u̇`) + G`ε(u`)+(E`)∗∇ϕ`+∫ t

0
F`
(
σ`(s)−A`ε(u̇`(s))− (E`)∗∇ϕ`(s), ε(u`(s)), ζ`(s)

)
ds

in Ω
` × (0, T ), (2.1)

D` = E`ε(u`)− B`∇ϕ` in Ω
` × (0, T ), (2.2)

ζ̇` − κ`∆ζ` + ∂ψK`(ζ`) 3 φ`
(
σ` −A`ε(u̇`)− (E`)∗∇ϕ`(s), ε(u`), ζ`

)
(2.3)

in Ω
` × (0, T ),

ρ`ü` = Divσ` + f `0 in Ω
` × (0, T ), (2.4)

divD` − q`0 = 0 in Ω
` × (0, T ), (2.5)

u` = 0 on Γ
`
1 × (0, T ), (2.6)

σ`ν` = f `2 on Γ
`
2 × (0, T ), (2.7)

{
σ1
ν = σ2

ν ≡ σν ,

σν = −pν([uν ]) + γνβ
2Rν([uν ])

on Γ3 × (0, T ), (2.8)

{
σ1
τ = −σ2

τ ≡ στ ,
στ = pτ (β)Rτ ([uτ ])

on Γ3 × (0, T ), (2.9)
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β̇ = −
(
β
(
γν(Rν([uν ]))

2 + γτ |Rτ ([uτ ])|2
)
− εa

)
+

on Γ3 × (0, T ), (2.10)

∂ζ`

∂ν`
= 0 on Γ

` × (0, T ), (2.11)

ϕ` = 0 on Γ
`
a × (0, T ), (2.12)

D`.ν` = q`2 on Γ
`
b × (0, T ), (2.13)

u`(0) = u`0, u̇
`(0) = v`0, ζ

`(0) = ζ`0 in Ω
`, (2.14)

β(0) = β0 on Γ3. (2.15)

First, equations (2.1) and (2.2) represent the electro-elastic-viscoplastic constitutive law with
damage of the material in which ε(u`) denotes the linearized strain tensor, E(ϕ`) = −∇ϕ` is
the electric field, where ϕ` is the electric potential, A` and G` are nonlinear operators describ-
ing the purely viscous and the elastic properties of the material, respectively. F` is a nonlinear
constitutive function describing the viscoplastic behaviour of the material. E` represents the
piezoelectric operator, (E`)∗ is its transpose, B` denotes the electric permittivity operator, and
D` = (D`

1, ..., D
`
d) is the electric displacement vector. The evolution of the damage field is

governed by the inclusion of parabolic type given by the relation (2.3). Equations (2.4) and
(2.5) are the equilibrium equations for the stress and electric-displacement fields, respectively, in
which "Div" and "div" denote the divergence operator for tensor and vector valued functions, re-
spectively. Next, the equations (2.6) and (2.7) represent the displacement and traction boundary
condition, respectively. Condition (2.8) represents the normal compliance conditions with adhe-
sion where γν is a given adhesion coefficient and [uν ] = u1

ν + u2
ν stands for the displacements

in normal direction. The contribution of the adhesive to the normal traction is represented by
the term γνβ

2Rν([uν ]), the adhesive traction is tensile and is proportional, with proportionality
coefficient γν , to the square of the intensity of adhesion and to the normal displacement, but as
long as it does not exceed the bond length L. The maximal tensile traction is γνβ2L. Rν is the
truncation operator defined by

Rν(s) =


L if s < −L,
−s if − L ≤ s ≤ 0,
0 if s > 0.

Here L > 0 is the characteristic length of the bond, beyond which it does not offer any additional
traction. The introduction of the operator Rν , together with the operator Rτ defined below, is
motivated by mathematical arguments but it is not restrictive for physical point of view, since no
restriction on the size of the parameter L is made in what follows. Condition (2.9) represents the
adhesive contact condition on the tangential plane, where [uτ ] = u1

τ −u2
τ stands for the jump of

the displacements in tangential direction. Rτ is the truncation operator given by

Rτ (v) =

{
v if |v| ≤ L,
L v
|v| if |v| > L.

This condition shows that the shear on the contact surface depends on the bonding field and on
the tangential displacement, but as long as it does not exceed the bond length L. The frictional
tangential traction is assumed to be much smaller than the adhesive one and, therefore, omitted.

Next, the equation (2.10) represents the ordinary differential equation which describes the
evolution of the bonding field and it was already used in [3], see also [24, 25] for more details.
Here, besides γν , two new adhesion coefficients are involved, γτ and εa.Notice that in this model
once debonding occurs bonding cannot be reestablished since, as it follows from (2.10), β̇ ≤ 0.
Boundary condition (2.11) describes a homogeneous Neumann boundary condition where ∂ζ`

∂ν` is
the normal derivative of ζ`. (2.12) and (2.13) represent the electric boundary conditions. (2.14)
represents the initial displacement field, the initial velocity and the initial damage. Finally (2.15)
represents the initial condition in which β0 is the given initial bonding field.
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3 Variational Formulation and Preliminaries

In this section, we list the assumptions on the data and derive a variational formulation for the
contact problem. To this end, we need to introduce some notation and preliminary material. Here
and below, Sd represent the space of second-order symmetric tensors on Rd. We recall that the
inner products and the corresponding norms on Sd and Rd are given by

u`.v` = u`i .v
`
i ,

∣∣v`∣∣ = (v`.v`)
1
2 , ∀u`,v` ∈ Rd,

σ`.τ ` = σ`ij .τ
`
ij ,

∣∣τ `∣∣ = (τ `.τ `)
1
2 , ∀σ`, τ ` ∈ Sd.

Here and below, the indices i and j run between 1 and d and the summation convention over
repeated indices is adopted. Now, to proceed with the variational formulation, we need the
following function spaces:

H` = {v` = (v`i ); v
`
i ∈ L2(Ω`)}, H`

1 = {v` = (v`i ); v
`
i ∈ H1(Ω`)},

H` = {τ ` = (τ `ij); τ
`
ij = τ `ji ∈ L2(Ω`)}, H`1 = {τ ` = (τ `ij) ∈ H`; divτ ` ∈ H`}.

The spacesH`,H`
1 ,H` andH`1 are real Hilbert spaces endowed with the canonical inner products

given by

(u`,v`)H` =

∫
Ω`

u`.v`dx, (u`,v`)H`
1
=

∫
Ω`

u`.v`dx+

∫
Ω`

∇u`.∇v`dx,

(σ`, τ `)H` =

∫
Ω`

σ`.τ `dx, (σ`, τ `)H`
1
=

∫
Ω`

σ`.τ `dx+

∫
Ω`

divσ`.Div τ `dx

and the associated norms ‖.‖H` , ‖.‖H`
1
, ‖.‖H` , and ‖.‖H`

1
respectively. Here and below we use

the notation

∇u` = (u`i,j), ε(u
`) = (εij(u

`)), εij(u
`) =

1
2
(u`i,j + u`j,i), ∀u` ∈ H`

1 ,

Divσ` = (σ`ij,j), ∀σ` ∈ H`1.

For every element v` ∈ H`
1 , we also use the notation v` for the trace of v` on Γ` and we

denote by v`ν and v`τ the normal and the tangential components of v` on the boundary Γ` given
by

v`ν = v`.ν`, v`τ = v` − v`νν`.

LetH ′
Γ` be the dual ofHΓ` = H

1
2 (Γ`)d and let (., .)− 1

2 ,
1
2 ,Γ

` denote the duality pairing between
H ′

Γ` and HΓ` . For every element σ` ∈ H`1 let σ`ν` be the element of H ′
Γ` given by

(σ`ν`,v`)− 1
2 ,

1
2 ,Γ

` = (σ`, ε(v`))H` + (Divσ`,v`)H` ∀v` ∈ H`
1 .

Denote by σ`ν and σ`τ the normal and the tangential traces of σ` ∈ H`1, respectively. If σ` is
continuously differentiable on Ω` ∪ Γ`, then

σ`ν = (σ`ν`).ν`, σ`τ = σ`ν` − σ`νν`,

(σ`ν`,v`)− 1
2 ,

1
2 ,Γ

` =

∫
Γ`

σ`ν`.v`da

fore all v` ∈ H`
1 , where da is the surface measure element.

To obtain the variational formulation of the problem (2.1)–(2.15), we introduce for the bond-
ing field the set

Z =
{
θ ∈ L∞

(
0, T ;L2(Γ3)

)
; 0 ≤ θ(t) ≤ 1 ∀t ∈ [0, T ], a.e. on Γ3

}
,

and for the displacement field we need the closed subspace of H`
1 defined by

V ` =
{
v` ∈ H`

1 ; v` = 0 on Γ
`
1
}
.
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Since measΓ`1 > 0, the following Korn’s inequality holds :

‖ε(v`)‖H` ≥ cK‖v`‖H`
1
∀v` ∈ V `, (3.1)

where the constant cK denotes a positive constant which may depends only on Ω`, Γ`1 (see [19]).
Over the space V ` we consider the inner product given by

(u`,v`)V ` = (ε(u`), ε(v`))H` , ∀u`,v` ∈ V `, (3.2)

and let ‖.‖V ` be the associated norm. It follows from Korn’s inequality (3.1) that the norms
‖.‖H`

1
and ‖.‖V ` are equivalent on V `. Then (V `, ‖.‖V `) is a real Hilbert space. Moreover, by

the Sobolev trace theorem and (3.2), there exists a constant c0 > 0, depending only on Ω`, Γ`1
and Γ3 such that

‖v`‖L2(Γ3)d ≤ c0‖v`‖V ` ∀v` ∈ V `. (3.3)

We also introduce the spaces

E`0 = L2(Ω`), E`1 = H1(Ω`), W ` =
{
ψ` ∈ E`1; ψ` = 0 on Γ

`
a

}
,

W` =
{
D` = (D`

i ); D
`
i ∈ L2(Ω`), divD` ∈ L2(Ω`)

}
.

Since measΓ`a > 0, the following Friedrichs-Poincaré inequality holds:

‖∇ψ`‖L2(Ω`)d ≥ cF ‖ψ`‖H1(Ω`) ∀ψ` ∈W `, (3.4)

where cF > 0 is a constant which depends only on Ω`, Γ`a.
Over the space W `, we consider the inner product given by

(ϕ`, ψ`)W ` =
∫

Ω` ∇ϕ`.∇ψ`dx

and let ‖.‖W ` be the associated norm. It follows from (3.4) that ‖.‖H1(Ω`) and ‖.‖W ` are equiv-
alent norms on W ` and therefore (W `, ‖.‖W `) is areal Hilbert space. On the spaceW`, we use
the inner product

(D`,Ψ`)W` =

∫
Ω`

D`.Ψ`dx+

∫
Ω`

divD`. div Ψ`dx,

where divD` = (D`
i,i), and the associated norm ‖.‖W` .

In order to simplify the notations, we define the product spaces

V = V 1 × V 2, H = H1 ×H2, H1 = H1
1 ×H2

1 , H = H1 ×H2,

H1 = H1
1 ×H2

1, E0 = E1
0 × E2

0 , E1 = E1
1 × E2

1 ,W =W 1 ×W 2,W =W1 ×W2.

The spaces V , E1, W andW are real Hilbert spaces endowed with the canonical inner products
denoted by (., .)V , (., .)E1 , (., .)W , and (., .)W . The associate norms will be denoted by ‖.‖V ,
‖.‖E1 , ‖.‖W and ‖.‖W , respectively.

Finally, for any real Hilbert spaceX,we use the classical notation for the spaces Lp(0, T ;X),
W k,p(0, T ;X), where 1 ≤ p ≤ ∞, k ≥ 1. We denote by C(0, T ;X) and C1(0, T ;X) the space
of continuous and continuously differentiable functions from [0, T ] to X, respectively, with the
norms

‖f‖C(0,T ;X) = max
t∈[0,T ]

‖f(t)‖X ,

‖f‖C1(0,T ;X) = max
t∈[0,T ]

‖f(t)‖X + max
t∈[0,T ]

‖ḟ(t)‖X ,

respectively. Moreover, we use the dot above to indicate the derivative with respect to the time
variable and, for areal number r, we use r+ to represent its positive part, that is r+ = max{0, r}.
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In the study of the Problem P, we consider the following assumptions:
we assume that the viscosity operator A` : Ω` × Sd → Sd satisfies:

(a) There exists C1
A` , C

2
A` > 0 such that,

|A`(x, ξ)| ≤ C1
A` |ξ|+ C2

A` ∀ ξ ∈ Sd, a.e. x ∈ Ω`.

(b) There exists mA` > 0 such that
(A`(x, ξ1)−A`(x, ξ2)) · (ξ1 − ξ2) ≥ mA` |ξ1 − ξ2|2

∀ ξ1, ξ2 ∈ Sd, a.e. x ∈ Ω`.

(c) The mapping x 7→ A`(x, ξ) is Lebesgue measurable on Ω`,

for any ξ ∈ Sd.
(d) The mapping ξ 7→ A`(x, ξ) is continuous on Sd, a.e. x ∈ Ω`.

(3.5)

The elasticity operator G` : Ω` × Sd → Sd satisfies:

(a) There exists LG` > 0 such that
|G`(x, ξ1)− G`(x, ξ2)| ≤ LG` |ξ1 − ξ2|
∀ ξ1, ξ2 ∈ Sd, a.e. x ∈ Ω`.

(b) The mapping x 7→ G`(x, ξ) is Lebesgue measurable on Ω`,

for any ξ ∈ Sd.
(c) The mapping x 7→ G`(x, 0) belongs to H`.

(3.6)

The viscoplasticity operator F` : Ω` × Sd × Sd ×R→ Sd satisfies:

(a) There exists LF` > 0 such that
|F`(x,η1, ξ1, d1)−F`(x,η2, ξ2, d2)| ≤ LF`

(
|η1 − η2|+ |ξ1 − ξ2|

+ |d1 − d2|
)
, ∀η1,η2, ξ1, ξ2 ∈ Sd, ∀d1, d2 ∈ R, a.e. x ∈ Ω`.

(b) The mapping x 7→ F`(x,η, ξ, d) is Lebesgue measurable in Ω`,

for any η, ξ ∈ Sd, d ∈ R.
(c) The mapping x 7→ F`(x, 0, 0, 0) belongs to H`.

(3.7)

The damage source function φ` : Ω` × Sd × Sd ×R→ R satisfies:

(a) There exists Lφ` > 0 such that
|φ`(x,η1, ξ1, α1)− φ`(x,η2, ξ2, α2)| ≤ Lφ`

(
|η1 − η2|+ |ξ1 − ξ2|

+ |α1 − α2|
)
, ∀η1,η2, ξ1, ξ2 ∈ Sd and α1, α2 ∈ R a.e. x ∈ Ω`.

(b) The mapping x 7→ φ`(x,η, ξ, α) is Lebesgue measurable on Ω`,

for any η, ξ ∈ Sd and α ∈ R.
(c) The mapping x 7→ φ`(x, 0, 0, 0) belongs to L2(Ω`).

(3.8)

The piezoelectric tensor E` : Ω` × Sd → Rd satisfies:{
(a) E`(x, τ) = (e`ijk(x)τjk), ∀τ = (τij) ∈ Sd a.e. x ∈ Ω`.

(b) e`ijk = e`ikj ∈ L∞(Ω`), 1 ≤ i, j, k ≤ d.
(3.9)

Recall also that the transposed operator (E`)∗ is given by (E`)∗ = (e`,∗ijk) where e`,∗ijk = e`kij and
the following equality hold

E`σ.v = σ.(E`)∗v ∀σ ∈ Sd, ∀v ∈ Rd.

The electric permittivity operator B` = (b`ij) : Ω` ×Rd → Rd verifies:
(a) B`(x,E) = (b`ij(x)Ej) ∀E = (Ei) ∈ Rd, a.e. x ∈ Ω`.

(b) b`ij = b`ji, b
`
ij ∈ L∞(Ω`), 1 ≤ i, j ≤ d.

(c) There exists mB` > 0 such that B`E.E ≥ mB` |E|2

∀E = (Ei) ∈ Rd, a.e. x ∈ Ω`.

(3.10)
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The normal compliance functions pν : Γ3 ×R→ R+ satisfies:
(a) ∃Lν > 0 such that |pν(x, r1)− pν(x, r2)| ≤ Lν |r1 − r2|
∀ r1, r2 ∈ R, a.e. x ∈ Γ3.

(b) The mapping x 7→ pν(x, r) is measurable on Γ3, ∀r ∈ R.
(c) pν(x, r) = 0, for all r ≤ 0, a.e. x ∈ Γ3.

(3.11)

The tangential compliance functions pτ : Γ3 ×R→ R+ satisfies:

(a) ∃Lτ > 0 such that |pτ (x, d1)− pτ (x, d2)| ≤ Lτ |d1 − d2|
∀ d1, d2 ∈ R, a.e. x ∈ Γ3.

(b) ∃Mτ > 0 such that |pτ (x, d)| ≤Mτ ∀ d ∈ R, a.e. x ∈ Γ3.

(c) The mapping x 7→ pτ (x, d) is measurable on Γ3, ∀d ∈ R.
(d) The mapping x 7→ pτ (x, 0) ∈ L2(Γ3).

(3.12)

We suppose that the mass density satisfies

ρ` ∈ L∞(Ω`) and ∃ρ0 > 0 such that ρ`(x) ≥ ρ0 a.e. x ∈ Ω
`, ` = 1, 2. (3.13)

The following regularity is assumed on the density of volume forces, traction, volume electric
charges and surface electric charges:

f `0 ∈ L2(0, T ;L2(Ω`)d), f `2 ∈ L2(0, T ;L2(Γ`2)
d),

q`0 ∈ C(0, T ;L2(Ω`)), q`2 ∈ C(0, T ;L2(Γ`b)),
(3.14)

q`2(t) = 0 on Γ3 ∀t ∈ [0, T ]. (3.15)

The adhesion coefficients γν , γτ and εa satisfy the conditions

γν , γτ ∈ L∞(Γ3), εa ∈ L2(Γ3), γν , γτ , εa ≥ 0, a.e. on Γ3. (3.16)

The microcrack diffusion coefficient verifies

κ` > 0, (3.17)

and, finally, the initial data satisfy

u`0 ∈ V
`, v`0 ∈ H`, ζ`0 ∈ K`, ` = 1, 2,

β0 ∈ L2(Γ3), 0 ≤ β0 ≤ 1, a.e. on Γ3.
(3.18)

where K` is the set of admissible damage functions defined in (1.5).

Let a : E1 × E1 → R, be the bilinear form

a(ζ, ξ) =

2∑
`=1

κ`
∫

Ω`

∇ζ`.∇ξ`dx. (3.19)

We will use a modified inner product on H, given by

((u,v))H =
2∑
`=1

(ρ`u`,v`)H` , ∀u,v ∈ H,

that is, it is weighted with ρ`, and we let |||.|||H be the associated norm, i.e.,

|||v|||H = ((v,v))
1
2
H , ∀v ∈ H.
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It follows from assumption (3.13) that |||.|||H and ‖.‖H are equivalent norms on H, and the inclu-
sion mapping of (V , ‖.‖V ) into (H, |||.|||H) is continuous and dense. We denote by V ′ the dual
of V . Identifying H with its own dual, we can write the Gelfand triple

V ⊂ H ⊂ V ′.

Using the notation (., .)V ′×V to represent the duality pairing between V ′ and V we have

(u,v)V ′×V = ((u,v))H , ∀u ∈ H,∀v ∈ V .

Finally, we denote by ‖.‖V ′ the norm on V ′. Using the Riesz representation theorem, we define
the linear mappings f : [0, T ]→ V ′ and q : [0, T ]→W as follows:

(f(t),v)V ′×V =
2∑
`=1

∫
Ω`

f `0 (t) · v` dx+
2∑
`=1

∫
Γ`

2

f `2 (t) · v` da ∀v ∈ V , (3.20)

(q(t), ζ)W =
2∑
`=1

∫
Ω`

q`0(t)ζ
` dx−

2∑
`=1

∫
Γ`
b

q`2(t)ζ
` da ∀ζ ∈W. (3.21)

Next, we denote by jad : L∞(Γ3)× V × V → R the adhesion functional defined by

jad(β,u,v) =

∫
Γ3

(
− γνβ2Rν([uν ])[vν ] + pτ (β)Rτ ([uτ ])[vτ ]

)
da. (3.22)

In addition to the functional (3.22), we need the normal compliance functional

jνc(u,v) =

∫
Γ3

pν([uν ])[vν ] da. (3.23)

Keeping in mind (3.11) and (3.12), we observe that the integrals (3.22) and (3.23) are well
defined and we note that conditions (3.14) imply

f ∈ L2(0, T ;V ′), q ∈ C(0, T ;W ). (3.24)

By a standard procedure based on Green’s formula, we derive the following variational formula-
tion of the mechanical (2.1)–(2.15).

Problem PV. Find a displacement field u : [0, T ] → V , a stress field σ : [0, T ] → H, an
electric potential field ϕ : [0, T ] → W, a damage field ζ : [0, T ] → E1, a bonding field
β : [0, T ]→ L∞(Γ3) and a electric displacement field D : [0, T ]→W such that

σ` = A`ε(u̇`) + G`ε(u`)+(E`)∗∇ϕ`+∫ t

0
F`
(
σ`(s)−A`ε(u̇`(s))− (E`)∗∇ϕ`(s), ε(u`(s)), ζ`(s)

)
ds

in Ω
` × (0, T ) (3.25)

D` = E`ε(u`)− B`∇ϕ` in Ω
` × (0, T ), (3.26)

(ü, v)V ′×V +
2∑
`=1

(σ`, ε(v`))H` + jad(β(t),u(t),v) + jνc(u(t),v)

= (f(t),v)V ′×V ∀v ∈ V , a.e. t ∈ (0, T ),

(3.27)

ζ(t) ∈ K,
2∑
`=1

(ζ̇`(t), ξ` − ζ`(t))L2(Ω`) + a(ζ(t), ξ − ζ(t)) ≥

2∑
`=1

(
φ`
(
σ`(t)−A`ε(u̇`(t))− (E`)∗∇ϕ`(s), ε(u`(t)), ζ`(t)

)
, ξ` − ζ`(t)

)
L2(Ω`)

,

∀ξ ∈ K, a.e. t ∈ (0, T ),

(3.28)



A DYNAMIC PROBLEM IN ELECTRO-ELASTO-VISCOPLASTIC 207

2∑
`=1

(B`∇ϕ`(t),∇φ`)H`−
2∑
`=1

(E`ε(u`(t)),∇φ`)H` = (q(t), φ)W , (3.29)

∀φ ∈W, a.e. t ∈ (0, T ),

β̇(t) = −
(
β(t)

(
γν(Rν([uν(t)]))

2 + γτ |Rτ ([uτ (t)])|2
)
− εa

)
+

a.e. (0, T ), (3.30)

u(0) = u0, u̇(0) = v0, ζ(0) = ζ0, β(0) = β0, (3.31)

where K = K1 ×K2.
We notice that the variational Problem PV is formulated in terms of a displacement field, a stress
field, an electrical potential field, a bonding field and a electric displacement field. The existence
of the unique solution of Problem PV is stated and proved in the next section.

Remark 3.1. We note that, in Problem P and in Problem PV, we do not need to impose explicitly
the restriction 0 ≤ β ≤ 1. Indeed, equation (3.30) guarantees that β(x, t) ≤ β0(x) and, therefore,
assumption (3.18) shows that β(x, t) ≤ 1 for t ≥ 0, a.e. x ∈ Γ3. On the other hand, if β(x, t0) =
0 at time t0, then it follows from (3.30) that β̇(x, t) = 0 for all t ≥ t0 and therefore, β(x, t) = 0
for all t ≥ t0, a.e. x ∈ Γ3. We conclude that 0 ≤ β(x, t) ≤ 1 for all t ∈ [0, T ], a.e. x ∈ Γ3.

4 Existence and Uniqueness Result

Now, we propose our existence and uniqueness result

Theorem 4.1. Assume that (3.5)–(3.18) hold. Then there exists a unique solution {u,σ, ϕ, ζ, β,D}
to Problem PV, Moreover, the solution satisfies

u ∈ H1(0, T ;V ) ∩ C1(0, T ;H), ü ∈ L2(0, T ;V ′), (4.1)

σ ∈ L2(0, T ;H), (Divσ1,Divσ2) ∈ L2(0, T ;V ′), (4.2)

ϕ ∈ C(0, T ;W ), (4.3)

ζ ∈ H1(0, T ;E0) ∩ L2(0, T ;E1), (4.4)

β ∈W 1,∞(0, T ;L2(Γ3)) ∩ Z, (4.5)

D ∈ C(0, T ;W). (4.6)

The functions u,ϕ, ζ, σ, D and β which satisfy (3.25)-(3.31) are called a weak solution of
the contact Problem P. We conclude that, under the assumptions (3.5)– (3.18), the mechanical
problem (2.1)–(2.15) has a unique weak solution satisfying (4.1)–(4.6). We turn now to the proof
of Theorem 4.1 which will be carried out in several steps and is based on arguments of nonlinear
equations with monotone operators, a classical existence and uniqueness result on parabolic
inequalities and fixed point arguments. We assume in what follows that assumptions of Theorem
4.1 hold, and we consider that C is a generic positive constant which depends on Ω`, Γ`1, Γ`1, Γ3,
pν , pτ , A`, B`, G`, F`, E`, γν , γτ , φ`, κ`, and T. but does not depend on t nor of the rest of input
data, and whose value may change from place to place. Let a η ∈ L2(0, T ;V ′) be given. In the
first step we consider the following variational problem.

Problem PVu
η . Find a displacement field uη : [0, T ]→ V such that

(üη(t), v)V ′×V +
2∑
`=1

(A`ε(u̇`(t)), ε(v`))H` + (η(t), v)V ′×V

= (f(t),v)V ′×V ∀v ∈ V , a.e. t ∈ (0, T ),

(4.7)

u`(0) = u`0, u̇
`(0) = v`0 in Ω

`. (4.8)

To solve Problem PVu
η , we apply an abstract existence and uniqueness result which we recall

now, for the convenience of the reader. Let V and H denote real Hilbert spaces such that V is
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dense in H and the inclusion map is continuous, H is identified with its dual and with a subspace
of the dual V ′ of V , i.e., V ⊂ H ⊂ V ′, and we say that the inclusions above define a Gelfand
triple. The notations ‖.‖V , ‖.‖V ′ and (., .)V ′×V represent the norms on V and on V ′ and the
duality pairing between V ′ them, respectively. The following abstract result may be found in
[25, p.48].

Theorem 4.2. Let V , H be as above, and let A : V → V ′ be a hemicontinuous and monotone
operator which satisfies

(Av,v)V ′×V ≥ w‖v‖2
V + λ ∀v ∈ V , (4.9)

‖Av‖V ′ ≤ C(‖v‖V + 1) ∀v ∈ V , (4.10)

for some constants w > 0, C > 0 and λ ∈ R. Then, given u0 ∈ H and f ∈ L2(0, T ;V ′), there
exists a unique function u which satisfies

u ∈ L2(0, T ;V ) ∩ C(0, T ;H), u̇ ∈ L2(0, T ;V ′),

u̇(t) +Au(t) = f(t) a.e. t ∈ (0, T ),

u(0) = u0

We have the following result for the problem.

Lemma 4.3. There exists a unique solution to Problem PVuη and it has its regularity expressed
in (4.1).

Proof. We define the operator A : V → V ′ by

(Au,v)V ′×V =
2∑
`=1

(A`ε(u`), ε(v`))H` ∀u,v ∈ V . (4.11)

Using (4.11), (3.2) and (3.5) it follows that

‖Au−Av‖2
V ′ ≤

2∑
`=1

‖A`ε(u`)−A`ε(v`)‖2
H` ∀u,v ∈ V ,

and keeping in mind the Krasnoselski Theorem (see [13, p.60]), we deduce that A : V → V ′ is
a continuous operator. Now, by (4.11), (3.2) and (3.5), we find

(Au−Av,u− v)V ′×V ≥ m‖u− v‖2
V ∀u,v ∈ V , (4.12)

where the positive constant m = min{mA1 ,mA2}. Choosing v = 0 in (4.12) we obtain

(Au,u)V ′×V ≥ m‖u‖2
V − ‖Ao‖2

V ′‖u‖V

≥ 1
2
m‖u‖2

V −
1

2m
‖Ao‖2

V ′ ∀u ∈ V ,

which implies that A satisfies condition (4.9) with ω = m
2 and λ = − 1

2m‖Ao‖
2
V ′ . Moreover, by

(4.11) and (3.5) we find

‖Au‖V ′ ≤ C1‖u‖V + C2 ∀u ∈ V .

where C1 = max{C1
A1 , C

1
A2} and C2 = max{C2

A1 , C
2
A2}. This inequality and (3.2) imply that

A satisfies condition (4.10). Finally, we recall that by (3.14) and (3.20) we have f − η ∈
L2(0, T ;V ′) and v0 ∈ H.
It follows now from Theorem 4.2 that there exists a unique function vη which satisfies

vη ∈ L2(0, T ;V ) ∩ C(0, T ;H), v̇η ∈ L2(0, T ;V ′), (4.13)

v̇η(t) +Avη(t) + η(t) = f(t), a.e. t ∈ [0, T ] (4.14)

vη(0) = v0. (4.15)
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Let uη : [0, T ]→ V be the function defined by

uη(t) =

∫ t

0
vη(s)ds+ u0 ∀t ∈ [0, T ]. (4.16)

It follows from (4.11) and (4.13)–(4.16) that uη is a unique solution of the variational problem
PVu

η . and it satisfies the regularity expressed in (4.1).

In the second step, let η ∈ L2(0, T ;V ′), we use the displacement field uη obtained in Lemma
4.3 and we consider the following variational problem.

Problem PVϕ
η . Find the electric potential field ϕη : [0, T ]→W such that

2∑
`=1

(B`∇ϕ`η(t),∇φ`)H` −
2∑
`=1

(E`ε(u`η(t)),∇φ`)H` = (q(t), φ)W (4.17)

∀φ ∈W, a.e. t ∈ (0, T ).

We have the following result.

Lemma 4.4. Problem PVϕη has a unique solution ϕη which satisfies the regularity (4.3).

Proof. We define a bilinear form: b(., .) : W ×W → R such that

b(ϕ, φ) =
2∑
`=1

(B`∇ϕ`,∇φ`)H` ∀ϕ, φ ∈W. (4.18)

We use (3.4), (3.10) and (4.18) to show that the bilinear form b(., .) is continuous, symmetric and
coercive on W, moreover using (3.21) and the Riesz Representation Theorem we may define an
element qη : [0, T ]→W such that

(qη(t), φ)W = (q(t), φ)W +
2∑
`=1

(E`ε(u`η(t)),∇φ`)H` ∀φ ∈W, t ∈ (0, T ).

We apply the Lax-Milgram Theorem to deduce that there exists a unique element ϕη(t) ∈ W
such that

b(ϕη(t), φ) = (qη(t), φ)W ∀φ ∈W. (4.19)

We conclude that ϕη(t) is a solution of Problem PVϕ
η . Let t1, t2 ∈ [0, T ], it follows from (4.17)

that

‖ϕη(t1)− ϕη(t2)‖W ≤ C
(
‖uη(t1)− uη(t2)‖V + ‖q(t1)− q(t2)‖W

)
,

and the previous inequality, the regularity of uη and q imply that ϕη ∈ C(0, T ;W ).

In the third step we use the displacement field uη obtained in Lemma4.3 and we consider the
following initial-value problem.

Problem PVβ
η . Find the adhesion field βη : [0, T ]→ L2(Γ3) such that

β̇η(t) = −
(
βη(t)

(
γν(Rν([uην(t)]))

2 + γτ |Rτ ([uητ (t)])|2
)
− εa

)
+
, a.e. t ∈ (0, T ), (4.20)

βη(0) = β0. (4.21)

We have the following result.

Lemma 4.5. There exists a unique solution βη ∈W 1,∞(0, T ;L2(Γ3)) ∩ Z to Problem PVβη .
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Proof. For the simplicity we suppress the dependence of various functions on Γ3, and note that
the equalities and inequalities below are valid a.e. on Γ3. Consider the mapping Fη : [0, T ] ×
L2(Γ3)→ L2(Γ3) defined by

Fη(t, β) = −
(
β
[
γν(Rν([uην(t)]))

2 + γτ |Rτ ([uητ (t)])|2
]
− εa

)
+
,

for all t ∈ [0, T ] and β ∈ L2(Γ3). It follows from the properties of the truncation operator
Rν and Rτ that Fη is Lipschitz continuous with respect to the second variable, uniformly in
time. Moreover, for all β ∈ L2(Γ3), the mapping t → Fη(t, β) belongs to L∞(0, T ;L2(Γ3)).
Thus using the Cauchy-Lipschitz theorem (see, [25, p.48]), we deduce that there exists a unique
function βη ∈ W 1,∞(0, T ;L2(Γ3)) solution to the Problem PVβ

η . Also, the arguments used in
Remark 3.1 show that 0 ≤ βη(t) ≤ 1 for all t ∈ [0, T ], a.e. on Γ3. Therefore, from the definition
of the set Z, we find that βη(t) ∈ Z, which concludes the proof of the lemma.

In the fourth step, we let θ ∈ L2(0.T ;E0) be given and consider the following variational
problem for the damage field.

Problem PVζ
θ . Find a damage field ζθ = (ζ1

θ , ζ
2
θ) : [0, T ]→ E such that

ζθ(t) ∈ K,
2∑
`=1

(ζ̇`θ(t), ξ
` − ζ`θ(t))L2(Ω`) + a(ζθ(t), ξ − ζθ(t)) ≥

2∑
`=1

(
θ`(t), ξ` − ζ`(t)

)
L2(Ω`)

, ∀ξ ∈ K, a.e. t ∈ (0, T ).

(4.22)

The following abstract result for parabolic variational inequalities (see, e.g., [25, p.47])

Theorem 4.6. Let X ⊂ Y = Y ′ ⊂ X ′ be a Gelfand triple. Let F be a nonempty, closed, and
convex set of X. Assume that a(., .) : X ×X → R is a continuous and symmetric bilinear form
such that for some constants α > 0 and c0,

a(v, v) + c0‖v‖2
Y ≥ α‖v‖2

X ∀v ∈ X.

Then, for every u0 ∈ F and f ∈ L2(0, T ;Y ), there exists a unique function u ∈ H1(0, T ;Y ) ∩
L2(0, T ;X) such that u(0) = u0, u(t) ∈ F ∀t ∈ [0, T ], and

(u̇(t), v − u(t))X′×X + a(u(t), v − u(t)) ≥ (f(t), v − u(t))Y ∀v ∈ F a.e. t ∈ (0, T ).

We prove next the unique solvability of Problem PVζ
θ .

Lemma 4.7. There exists a unique solution ζθ of Problem PVζθ and it satisfies

ζθ ∈ H1(0, T ;E0) ∩ L2(0, T ;E1).

Proof. The inclusion mapping of (E1, ‖.‖E1) into (E0, ‖.‖E0) is continuous and its range is
dense. We denote by E′1 the dual space of E1 and, identifying the dual of E0 with itself, we
can write the Gelfand triple

E1 ⊂ E0 = E′0 ⊂ E′1.

We use the notation (., .)E′1×E1 to represent the duality pairing between E′ and E1. We have

(ζ, ξ)E′1×E1 = (ζ, ξ)E0 ∀ζ ∈ E0, ξ ∈ E1,

and we note that K is a closed convex set in E1. Then, using (3.17), (3.19) and the fact that
ζ0 ∈ K in (3.18), it is easy to see that Lemma 4.7 is a straight consequence of Theorem 4.6.

Now we use the displacement field uη obtained in Lemma 4.3, ϕη obtained in Lemma 4.4
and ζθ obtained in Lemma 4.7 to construct the following Cauchy problem for the stress field.
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Problem PVσ
ηθ. Find a stress field σηθ = (σ1

ηθ,σ
2
ηθ) : [0, T ]→ H such that

σ`ηθ(t) = G`ε(u`η(t)) +
∫ t

0
F`(σ`ηθ(s), ε(u`η(s)), ζ`θ(s)) ds, ` = 1, 2, (4.23)

for all t ∈ [0, T ].
In the study of Problem PVσ

ηθ we have the following result.

Lemma 4.8. There exists a unique solution of Problem PVσηθ and it satisfies σηθ ∈ L2(0, T ;H).
Moreover, if σi, ui and ζi represent the solutions of problems PVσηiθi , PVuηi and PVζθi respec-
tively, for (ηi, θi) ∈ L2(0, T ;V ′ × E0), i = 1, 2, then there exists c > 0 such that

‖σ1(t)− σ2(t)‖2
H ≤ c

(
‖u1(t)− u2(t)‖2

V +

∫ t

0
‖u1(s)− u2(s)‖2

V ds

+

∫ t

0
‖ζ1(s)− ζ2(s)‖2

E0
ds
)
∀t ∈ [0, T ]. (4.24)

Proof. Let Ληθ = (Λ1
ηθ,Λ

2
ηθ) : L2(0, T ;H)→ L2(0, T ;H) be the operator given by

Λ
`
ηθσ(t) = G`ε(u`η(t)) +

∫ t

0
F`
(
σ`(s), ε(u`η(s)), ζ

`
θ

)
ds, ` = 1, 2 (4.25)

for all σ = (σ1,σ2) ∈ L2(0, T ;H) and t ∈ [0, T ]. For σ1, σ2 ∈ L2(0, T ;H) we use (4.25) and
(3.7) to obtain

‖Ληθ σ1(t)− Ληθ σ2(t)‖H ≤ max(LF1 , LF2)

∫ t

0
‖σ1(s)− σ2(s)‖H ds

for all t ∈ [0, T ]. It follows from this inequality that for p large enough, a power Λ
p
ηθ of the op-

erator Ληθ is a contraction on the Banach space L2(0, T ;H) and, therefore, there exists a unique
element σηθ ∈ L2(0, T ;H) such that Ληθσηθ = σηθ. Moreover, σηθ is the unique solution of
Problem PVσ

ηθ.

Consider now (η1, θ1), (η2, θ2),∈ L2(0, T ;V ′ × E0) and, for i = 1, 2, denote uηi = ui,
σηiθi = σi and ζθi = ζi. We have

σ`i(t) = G`ε(u`i(t)) +
∫ t

0
F`
(
σ`i(s), ε(u

`
i(s)), ζ

`
i (s)

)
ds, ` = 1, 2 ∀t ∈ [0, T ],

and, using the properties (3.6) and (3.7) of F`, and G` we find

‖σ1(t)− σ2(t)‖2
H ≤ c

(
‖u1(t)− u2(t)‖2

V +

∫ t

0
‖σ1(s)− σ2(s)‖2

H ds

+

∫ t

0
‖u1(s)− u2(s)‖2

V ds+

∫ t

0
‖ζ1(s)− ζ2(s)‖2

E0
ds
)
∀t ∈ [0, T ].

Using now a Gronwall argument in the previous inequality we deduce (4.24), which concludes
the proof.

Finally as a consequence of these results and using the properties of the operator G`, the
operator E`, the operatorF`, the functional jad, the function jνc and the function φ` for t ∈ [0, T ],
we consider the element

Λ(η, θ)(t) =
(
Λ

1(η, θ)(t), Λ
2(η, θ)(t)

)
∈ V ′ × E0, (4.26)

defined by the equations

(Λ1(η, θ)(t),v)V ′×V =
2∑
`=1

(
G`ε(u`η(t)), ε(v`)

)
H`

+
2∑
`=1

(
(E`)∗∇ϕ`η, ε(v`)

)
H` +

2∑
`=1

(∫ t

0
F`
(
σ`ηθ, ε(u

`
η(s)), ζθ(s)

)
ds, ε(v`)

)
H`

+jad(βη(t),uη(t),v) + jνc(uη(t),v), ∀v ∈ V , (4.27)
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Λ
2(η, θ)(t) =

(
φ1(σ1

ηθ(t), ε(u
1
η(t)), ζ

1
θ(t)

)
, φ2(σ2

ηθ(t), ε(u
2
η(t)), ζ

2
θ(t)

))
. (4.28)

Here, for every (η, θ) ∈ L2(0, T ;V ′ × E0), uη, ϕη, βη ζθ, and σηθ represent the displacement
field, the stress field, the the potential electric field and bonding field obtained in Lemmas 4.3,
4.4, 4.5, 4.7 and 4.8 respectively. We have the following result.

Lemma 4.9. The operator Λ has a unique fixed point (η∗, θ∗) ∈ L2(0, T ;V ′ × E0).

Proof. We show that, for a positive integer n, the mapping Λn is a contraction on L2(0, T ;V ′ ×
E0). To this end, we suppose that (η1, θ1) and (η2, θ2) are two functions in L2(0, T ;V ′×E0) and
denote uηi = ui, u̇ηi = vi, σηiθi = σi, ϕηi = ϕi, ζθi = ζi and βηi = βi for i = 1, 2. We use
(3.6), (3.7), (3.9), (3.11) and (3.12), the definition of Rν ,Rτ and Remark 3.1, we have

‖Λ1(η1, θ1)(t)− Λ
1(η2, θ1)(t)‖2

V ′ ≤
2∑
`=1

‖G`ε(u`1(t))− G`ε(u`2(t))‖2
H`

+
2∑
`=1

∫ t

0

∥∥F`(σ`1(s), ε(u`1(s)), ζ`1(s))−F`(σ`2(s), ε(u`2(s)), ζ`2(s))∥∥2
H` ds

+
2∑
`=1

‖(E`)∗∇ϕ`1(t)− (E`)∗∇ϕ`2(t)‖2
H`

+C‖pν([u1ν(t)])− pν([u2ν(t)])‖2
L2(Γ3)

+C‖β2
1(t)Rν([u1ν(t)])− β2

2(t)Rν([u2ν(t)])‖2
L2(Γ3)

+C‖pτ (β1(t))Rτ ([u1τ (t)])− pτ (β2(t))Rτ ([u2τ (t)])‖2
L2(Γ3)

.

Therefore,

‖Λ1(η1, θ1)(t)− Λ
1(η2, θ1)(t)‖2

V ′ ≤ C
(
‖u1(t)− u2(t)‖2

V

+

∫ t

0
‖u1(s)− u2(s))‖2

V ds+

∫ t

0
‖σ1(s)− σ2(s))‖2

H ds+∫ t

0
‖ζ1(s)− ζ2(s))‖2

E0
ds+ ‖ϕ1(t)− ϕ2(t)‖2

W + ‖β1(t)− β2(t)‖2
L2(Γ3)

)
.

We use estimate (4.24) to obtain

‖Λ1(η1, θ1)(t)− Λ
1(η2, θ1)(t)‖2

V ′ ≤ C
(
‖u1(t)− u2(t)‖2

V

+

∫ t

0
‖u1(s)− u2(s))‖2

V ds+

∫ t

0
‖ζ1(s)− ζ2(s))‖2

E0
ds

+‖ϕ1(t)− ϕ2(t)‖2
W + ‖β1(t)− β2(t)‖2

L2(Γ3)

)
.

Recall that above u`ην and u`ητ denote the normal and the tangential component of the function
u`η respectively. By similar arguments, from (4.24), (4.28) and (3.8) it follows that

‖Λ2(η1, θ1)(t)− Λ
2(η2, θ1)(t)‖2

E0
≤ C

(
‖u1(t)− u2(t)‖2

V

+‖ϕ1(t)− ϕ2(t)‖2
W +

∫ t

0
‖u1(s)− u2(s))‖2

V ds+ ‖ζ1(t)− ζ2(t))‖2
E0
+∫ t

0
‖ζ1(s)− ζ2(s))‖2

E0
ds

)
.
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Also, since

u`i(t) =

∫ t

0
v`i(s)ds+ u

`
0, t ∈ [0, T ], ` = 1, 2,

we have

‖u1(t)− u2(t)‖V ≤
∫ t

0
‖v1(s)− v2(s))‖V ds

which implies

‖u1(t)− u2(t)‖2
V +

∫ t

0
‖u1(s)− u2(s))‖2

V ds ≤ c
∫ t

0
‖v1(s)− v2(s))‖2

V ds. (4.29)

Therefore

‖Λ(η1, θ1)(t)− Λ(η2, θ1)(t)‖2
V ′×E0

≤ C
(
‖u1(t)− u2(t)‖2

V

+

∫ t

0
‖u1(s)− u2(s))‖2

V ds+ ‖ζ1(t)− ζ2(t))‖2
E0

+

∫ t

0
‖ζ1(s)− ζ2(s))‖2

E0
ds

+‖ϕ1(t)− ϕ2(t)‖2
W + ‖β1(t)− β2(t)‖2

L2(Γ3)

)
. (4.30)

Moreover, from (4.7) we obtain

(v̇1 − v̇2,v1 − v2)V ′×V +
2∑
`=1

(A`ε(v`1)−A`ε(v`2), , ε(v`1 − v`2))H`

+(η1 − η2,v1 − v2)V ′×V = 0.

We integrate this equality with respect to time, use the initial conditions v1(0) = v2(0) = v0
and condition (3.5) to find

min(mA1 ,mA2)

∫ t

0
‖v1(s)− v2(s))‖2

V ds ≤

−
∫ t

0
(η1(s)− η2(s),v1(s)− v2(s))V ′×V ds,

for all t ∈ [0, T ]. Then, using the inequality 2ab ≤ a2

m +mb2 we obtain∫ t

0
‖v1(s)− v2(s))‖2

V ds ≤ C
∫ t

0
‖η1(s)− η2(s)‖2

V ′ ds ∀t ∈ [0, T ]. (4.31)

On the other hand, from the Cauchy problem (4.20)–(4.21) we can write

βi(t)=β0−
∫ t

0

(
βi(s)

(
γν(Rν([uiν(s)]))

2 + γτ |Rτ ([uiτ (s)])|2
)
− εa

)
+
ds

and then ∥∥β1(t)−β2(t)
∥∥
L2(Γ3)

≤C
∫ t

0

∥∥β1(s)Rν([u1ν(s)])
2−β2(s)Rν([u2ν(s)])

2∥∥
L2(Γ3)

ds

+ C

∫ t

0

∥∥β1(s) |Rτ ([u1τ (s)])|
2 − β2(s) |Rτ ([u2τ (s)])|

2 ∥∥
L2(Γ3)

ds.

Using the definition of Rν and Rτ and writing β1 = β1 − β2 + β2, we get∥∥β1(t)− β2(t)
∥∥
L2(Γ3)

≤

C
(∫ t

0
‖β1(s)− β2(s)‖L2(Γ3)ds+

∫ t

0

∥∥u1(s)− u2(s)
∥∥
L2(Γ3)d

ds
)
.
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Next, we apply Gronwall’s inequality to deduce

‖β1(t)− β2(t)‖L2(Γ3) ≤ C
∫ t

0
‖u1(s)− u2(s)‖L2(Γ3)dds.

and from the relation (3.3) we obtain

‖β1(t)− β2(t)‖2
L2(Γ3)

≤ C
∫ t

0
‖u1(s)− u2(s)‖2

V ds. (4.32)

We use now (4.17), (3.4), (3.9) and (3.10) to find

‖ϕ1(t)− ϕ2(t)‖2
W ≤ C‖u1(t)− u2(t)‖2

V . (4.33)

We substitute (4.29), (4.32) and (4.33) in (4.30) to obtain

‖Λ(η1, θ1)(t)− Λ(η2, θ1)(t)‖2
V ′×E0

(4.34)

≤ C
(∫ t

0
‖v1(s)− v2(s))‖2

V ds+ ‖ζ1(t)− ζ2(t))‖2
E0

+

∫ t

0
‖ζ1(s)− ζ2(s))‖2

E0
ds

)
.

On the other hand, from (4.22) we deduce that

(ζ̇1 − ζ̇2, ζ1 − ζ2)E0 + a(ζ1 − ζ2, ζ1 − ζ2) ≤(
θ1 − θ2, ζ1 − ζ2

)
E0
, a.e. t ∈ (0, T ).

Integrating the previous inequality with respect to time, using the initial conditions ζ1(0) =
ζ2(0) = ζ0 and inequality a(ζ1 − ζ2, ζ1 − ζ2) ≥ 0, to find

1
2
‖ζ1(t)− ζ2(t)‖2

E0
≤
∫ t

0

(
θ1(s)− θ2(s), ζ1(s)− ζ2(s)

)
E0
ds,

which implies that

‖ζ1(t)− ζ2(t)‖2
E0
≤
∫ t

0
‖θ1(s)− θ2(s)‖2

E0
ds+

∫ t

0
‖ζ1(s)− ζ2(s)‖2

E0
ds.

This inequality, combined with Gronwall’s inequality, leads to

‖ζ1(t)− ζ2(t)‖2
E0
≤ C

∫ t

0
‖θ1(s)− θ2(s)‖2

E0
ds ∀t ∈ [0, T ]. (4.35)

We substitute (4.31) and (4.35) in (4.34) to obtain

‖Λ(η1, θ1)(t)− Λ(η2, θ1)(t)‖2
V ′×E0

≤ C
∫ t

0
‖(η1, θ1)(s)− (η2, θ1)(s)‖2

V ′×E0
ds.

Reiterating this inequality n times we obtain

‖Λn(η1, θ1)− Λ
n(η2, θ1)‖2

L2(0,T ;V ′×E0)
≤ CnTn

n!
‖(η1, θ1)− (η2, θ1)‖2

L2(0,T ;V ′×E0)
.

Thus, for n sufficiently large, Λn is a contraction on the Banach space L2(0, T ;V ′×E0), and so
Λ has a unique fixed point.

Now, we have all the ingredients to prove Theorem 4.1.
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Proof. Existence. Let (η∗, θ∗) ∈ L2(0, T ;V ′ × E0) be the fixed point of Λ defined by (4.26)–
(4.28) and denote by

u∗ = uη∗ , ϕ∗ = ϕη∗ , ζ∗ = ζθ∗ , β∗ = βη∗ . (4.36)

Let by σ∗ = (σ1
∗,σ

2
∗) : [0, T ]→ H and D∗ = (D1

∗,D
2
∗) : [0, T ]→ H the functions defined by

σ`∗ = A`ε(u̇`∗) + (E`)∗∇ϕ`∗ + σ`η∗θ∗ , ` = 1, 2, (4.37)

D`
∗ = E`ε(u`∗)− B`∇ϕ`∗, ` = 1, 2. (4.38)

We prove that the {u∗,σ∗, ϕ∗, ζ∗, β∗,D∗} satisfies (3.25)–(3.31) and the regularites (4.1)–(4.6).
Indeed, we write (4.7) for η = η∗ and use (4.36) to find

(ü∗(t), v)V ′×V +
2∑
`=1

(A`ε(u̇`∗(t)), ε(v`))H` + (η∗(t), v)V ′×V

= (f(t),v)V ′×V ∀v ∈ V , a.e. t ∈ [0, T ]. (4.39)

We use equalities Λ1(η∗, θ∗) = η∗ and Λ2(η∗, θ∗) = θ∗ it follows that

(η∗(t), v)V ′×V =
2∑
`=1

(
G`ε(u`∗(t)), ε(v`)

)
H` +

2∑
`=1

(
(E`)∗∇ϕ`∗, ε(v`)

)
H`

+
2∑
`=1

(∫ t

0
F`
(
σ`∗(s)−A`ε(u̇`∗(s))− (E`)∗∇ϕ`∗(s), ε(u`∗(s)), ζ`∗(s)

)
ds, ε(v`)

)
H`

+jad(β∗(t),u∗(t),v) + jνc(u∗(t),v), ∀v ∈ V . (4.40)

θ`∗(t) = φ`
(
σ`∗(t)−A`ε(u̇`∗(t))− (E`)∗∇ϕ`∗(t), ε(u`∗(t)), ζ`∗(t)

)
, ` = 1, 2. (4.41)

We now substitute (4.40) in (4.39) to obtain

(ü∗(t), v)V ′×V +
2∑
`=1

(A`ε(u̇`∗(t)), ε(v`))H` +
2∑
`=1

(
G`ε(u`∗(t)), ε(v`)

)
H`

+
2∑
`=1

(
(E`)∗∇ϕ`∗, ε(v`)

)
H`

+
2∑
`=1

(∫ t

0
F`
(
σ`∗(s)−A`ε(u̇`∗(s))− (E`)∗∇ϕ`∗(s), ε(u`∗(s)), ζ`∗(s)

)
ds, ε(v`)

)
H`

+jad(β∗(t),u∗(t),v) + jνc(u∗(t),v) = (f(t), v)V ′×V , ∀v ∈ V , (4.42)

and we substitute (4.41) in (4.22) to have

ζ∗(t) ∈ K,
2∑
`=1

(ζ̇`∗(t), ξ
` − ζ`∗(t))L2(Ω`) + a(ζ(t), ξ − ζ(t)) ≥

2∑
`=1

(
φ`
(
σ`∗(t)−A`ε(u̇`∗(t))− (E`)∗∇ϕ`(t), ε(u`∗(t)), ζ`∗(t)

)
, ξ` − ζ`∗(t)

)
L2(Ω`)

,

∀ξ ∈ K, a.e. t ∈ [0, T ]. (4.43)

We write now (4.17) for η = η∗ and use (4.36) to see that

2∑
`=1

(B`∇ϕ`∗(t),∇φ`)H` −
2∑
`=1

(E`ε(u`∗(t)),∇φ`)H` = (q(t), φ)W , (4.44)

∀φ ∈W, a.e. t ∈ [0, T ].
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Additionally, we use uη∗ in (4.20) and (4.36) to find

β̇∗(t) = −
(
β∗(t)

(
γν(Rν([u∗ν(t)]))

2 + γτ |Rτ ([u∗τ (t)])|2
)
− εa

)
+
, a.e. t ∈ [0, T ]. (4.45)

The relations (4.36), (4.37), (4.38), (4.42), (4.43), (4.44) and (4.45) allow us to conclude now
that {u∗,σ∗, ϕ∗, ζ∗, β∗,D∗} satisfies (3.25)–(3.30). Next, (3.31) and the regularity (4.1), (4.3),
(4.4) and (4.5) follow from Lemmas 4.3, 4.4, 4.7 and 4.5. Since u∗ and ϕ∗ satisfy (4.1) and
(4.5), it follows from lemma 4.8 and (4.37) that

σ∗ ∈ L2(0, T ;H). (4.46)

We choose v = (v1, v2) with v` = ω` ∈ D(Ω`)d and v3−` = 0 in (4.42) and by (4.36) and (3.20):

ρ`ü`∗ = Divσ`∗ + f
`
0, a.e. t ∈ [0, T ], ` = 1, 2.

Also, by (3.13), (3.14), (4.1) and (4.46) we have:

(Divσ1
∗,Divσ2

∗) ∈ L2(0, T ;V ′)

Let t1, t2 ∈ [0, T ], by (3.4), (3.9), (3.10) and (4.38), we deduce that

‖D∗(t1)−D∗(t2)‖H ≤ C (‖ϕ∗(t1)− ϕ∗(t2)‖W + ‖u∗(t1)− u∗(t2)‖V ) .

The regularity of u∗ and ϕ∗ given by (4.1) and (4.3) implies

D∗ ∈ C(0, T ;H). (4.47)

We choose φ = (φ1, φ2) with φ` ∈ D(Ω`)d and φ3−` = 0 in (4.44) and using (3.21), (4.38) we
find

divD`
∗(t) = q`0(t) ∀t ∈ [0, T ], ` = 1, 2,

and, by (3.14), (4.47), we obtain

D∗ ∈ C(0, T ;W).

Finally we conclude that the weak solution {u∗,σ∗, ϕ∗, ζ∗, β∗,D∗} of the piezoelectric contact
problem PV has the regularity (4.1)–(4.6), which concludes the existence part of Theorem 4.1.

Uniqueness. The uniqueness of the solution is a consequence of the uniqueness of the fixed point
of the operator Λ defined by (4.27)-(4.28) and the unique solvability of the Problems PVu

η , PVϕ
η ,

PVβ
η , PVζ

θ and PVσ
ηθ.
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