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Abstract In this paper, the correlation measure of neutrosophic refined(multi-) sets is pro-
posed. The concept of this correlation measure of neutrosophic refined sets is the extension of
correlation measure of neutrosophic sets and intuitionistic fuzzy multi-sets. Finally, using the
correlation of neutrosophic refined set measure, the application of medical diagnosis and pattern
recognition are presented.

1 Introduction

Recently, several theories have been proposed to deal with uncertainty, imprecision and vague-
ness such as; probability set theory, fuzzy set theory [60], intuitionistic fuzzy set theory [8],
interval intuitionistic fuzzy set theory [7], soft set theory [38], FP-soft set theory [21, 22], IFP-
soft set theory [25] etc. But, all these above theories failed to deal with indeterminate and
inconsistent information which exist in beliefs system, therefore, Smarandache [46] developed a
new concept called neutrosophic set (NS) which generalizes fuzzy sets and intuitionistic fuzzy
sets and so on. Then, Wang et al. [53] introduced an instance of neutrosophic sets known as
single valued neutrosophic sets (SVNS), which were motivated from the practical point of view
and that can be used in real scientific and engineering application, and provide the set theo-
retic operators and various properties of SVNSs. This theory and their hybrid structures have
proven useful in many different fields such as control theory [1], databases [4, 5], medical diag-
nosis problem [2], decision making problem [20, 34, 36, 58], physics [40], topology [35], etc.
The works on neutrosophic set, in theories and applications, have been progressing rapidly (e.g.
[3, 6, 12, 16, 17, 24, 55, 56]).

Combining neutrosophic set models with other mathematical models has attracted the atten-
tion of many researchers. Maji et al. [37] presented the concept of neutrosophic soft sets which
is based on a combination of the neutrosophic set and soft set [38] models, Broumi and Smaran-
dache [9, 13] introduced the concept of the intuitionistic neutrosophic soft set by combining the
intuitionistic neutrosophic sets and soft sets. Also, Broumi et al. presented the concept of rough
neutrosophic set [18] which is based on a combination of neutrosophic sets and rough set mod-
els. The works on neutrosophic sets combining with soft sets, in theories and applications, have
been progressing rapidly (e.g. [10, 14, 15, 27, 28, 29, 30]).

The multi-set theory was formulated first in [54] by Yager as generalization of the concept of
set theory and then the multi-set was developed in [19] by Calude et al. Several authors from time
to time made a number of generalizations of the multi-set theory. For example, Sebastian and
Ramakrishnan [49, 50] introduced a new notion called multi fuzzy sets which is a generalization
of the multi-set. Since then, several researchers [39, 48, 52] discussed more properties on multi
fuzzy set. And they [31, 51] made an extension of the concept of fuzzy multi-sets to an intu-
itionstic fuzzy set which was called intuitionstic fuzzy multi-sets (IFMS). Since then in the study
on IFMS, a lot of excellent results have been achieved by researchers [23, 41, 42, 43, 44, 45].
An element of a multi fuzzy set can occur more than once with possibly the same or different
membership values whereas an element of intuitionistic fuzzy multi-set allows the repeated oc-
currences of membership and non membership values. The concepts of FMS and IFMS fail to
deal with indeterminacy. In 2013 Smarandache [47] extended the classical neutrosophic logic
to n-valued refined neutrosophic logic, by refining each neutrosophic component T, I, F into re-
spectively T1, T2, ..., Tm and I1, I2, ..., Ip, and F1, F2, ..., Fr. Recently, Deli et al.[26]and Ye
and Ye [59] used the concept of neutrosophic refined(multi-set) sets and studied some of their
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basic properties. The concept of neutrosophic the refined set (NRS) is a generalization of fuzzy
multi-sets and intuitionistic fuzzy multi-sets.

Rajarajeswari and Uma [45] put forward the correlation measure for IFMS. Recently, Broumi
and Smarandache defined the Hausdorff distance between neutrosophic sets and some similarity
measures based on the distance such as; set theoretic approach and matching function to calculate
the similarity degree between neutrosophic sets. In the same year, Broumi and Smarandache [11]
also proposed the correlation coefficient between interval neutrosphic sets. In other research, Ye
[57] proposed three vector similarity measure for SNSs, an instance of SVNS and INS, including
the Jaccard, Dice, and cosine similarity measures for SVNS and INSs, and applied them to
multi-criteria decision-making problems with simplified neutrosophic information. Hanafy et
al. [32] proposed the correlation coefficients of neutrosophic sets and studied some of their
basic propperties. Based on centroid method, Hanafy et al. [33], introduced and studied the
concepts of correlation and correlation coefficient of neutrosophic sets and studied some of their
properties.

The purpose of this paper is an attempt to extend the correlation measure of neutrosophic
sets to neutrosophic refined(multi) sets (NRS). This paper is arranged in the following manner.
In section 2, we present some definitions and notion about neutrosophic set and neutrosophic
refined (multi-) set theory which help us in later section. In section 3, we study the concept of
correlation measure of neutrosophic refined set. In section 4, we present an application of cor-
relation measure of neutrosophic refined set to medical diagnosis problem. Finally, we conclude
the paper.

2 PRELIMINARIES

In this section, we present the basic definitions and results of intuitionistic fuzzy set theory [8],
intuitionistic fuzzy multi-set theory [41], neutrosophic set theory [46, 53], neutrosophic refined
(multi-) set theory [26, 59] and correlation measure of intuitionistic fuzzy multi-sets [44] that
are useful for subsequent discussions. See especially [2, 3, 4, 5, 6, 12, 20, 26, 27, 34, 35, 40] for
further details and background.

Definition 2.1. [8] Let E be a universe. An intuitionistic fuzzy set I on E can be defined as
follows:

I = {< x, µI(x), γI(x) >: x ∈ E}

where, µI : E → [0, 1] and γI : E → [0, 1] such that 0 ≤ µI(x) + γI(x) ≤ 1 for any x ∈ E.
Here, µI(x) and γI(x) is the degree of membership and degree of non-membership of the

element x, respectively.

Definition 2.2. [41] Let E be a universe. An intuitionistic fuzzy multi-set K on E can be defined
as follows:

K = {< x, (µ1
K(x), µ2

K(x), ..., µP
K(x)), (γ1

K(x), γ2
K(x), ..., γPK(x)) >: x ∈ E}

where, µ1
K(x), µ2

K(x), ..., µP
K(x) : E → [0, 1] and γ1

K(x), γ2
K(x), ..., γPK(x) : E → [0, 1] such

that 0 ≤ µi
K(x)+ γiK(x) ≤ 1(i = 1, 2, ..., P ) and µ1

K(x) ≤ µ2
K(x) ≤ ... ≤ µP

K(x) for any x ∈ E.
Here, (µ1

K(x), µ2
K(x), ..., µP

K(x)) and (γ1
K(x), γ2

K(x), ..., γPK(x)) is the membership sequence
and non-membership sequence of the element x, respectively.

We arrange the membership sequence in decreasing order but the corresponding non mem-
bership sequence may not be in decreasing or increasing order.

Definition 2.3. [45] LetE be a universe andK = {< x, (µ1
K(x), µ2

K(x), ..., µP
K(x)), (γ1

K(x), γ2
K(x),

..., γPK(x)) >: x ∈ E}, L = {< x, (µ1
L(x), µ

2
L(x), ..., µ

P
L(x)), (γ

1
L(x), γ

2
L(x), ..., γ

P
L (x)) >:

x ∈ E} be two intuitionistic fuzzy multi-sets consisting of the membership and non membership
functions, then the correlation co efficient of K and L defined as follows:

ρIFMS(K,L) =
CIFMS(K,L)√

CIFMS(K,K) ∗ CIFMS(L,L)

where

CIFMS(K,L) =
P∑
j=1

(
n∑

i=1

(µj
K(xi)µ

j
L(xi) + γjK(xi)γ

j
L(xi)))

,
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CIFMS(K,K) =
P∑
j=1

(
n∑

i=1

(µj
K(xi)µ

j
K(xi) + γjK(xi)γ

j
K(xi)))

and

CIFMS(L,L) =
P∑
j=1

(
n∑

i=1

(µj
L(xi)µ

j
L(xi) + γjL(xi)γ

j
L(xi)))

Expresses the so-called informational energy of neutrosophic sets A and B.

Definition 2.4. [46] Let U be a space of points (objects), with a generic element in U denoted
by u. A neutrosophic set(N-set) A in U is characterized by a truth-membership function TA, a
indeterminacy-membership function IA and a falsity-membership function FA. TA(x), IA(x)
and FA(x) are real standard or nonstandard subsets of ]−0, 1+[.

It can be written as

A = {< x, (TA(x), IA(x), FA(x)) >: x ∈ U, TA(u), IA(x), FA(x) ⊆ [0, 1]}.

There is no restriction on the sum of TA(u); IA(u) and FA(u), so −0 ≤ supTA(u) +
supIA(u) + supFA(u) ≤ 3+.

Here, 1+= 1+ε, where 1 is its standard part and ε its non-standard part. Similarly, −0= 1+ε,
where 0 is its standard part and ε its non-standard part.

For application in real scientific and engineering areas,Wang et al.[53] proposed the con-
cept of an SVNS, which is an instance of neutrosophic set. In the following, we introduce the
definition of SVNS.

Definition 2.5. [53] Let U be a space of points (objects), with a generic element in U denoted
by u. An SVNS A inX is characterized by a truth-membership function TA(x), a indeterminacy-
membership function IA(x) and a falsity-membership function FA(x), where TA(x), IA(x), and
FA(x) belongs to [0,1] for each point u in U. Then, an SVNS A can be expressed as

A = {< u, (TA(x), IA(x), FA(x)) >: x ∈ E, TA(x), IA(x), FA(x) ∈ [0, 1]}.

There is no restriction on the sum of TA(x); IA(x) and FA(x), so 0 ≤ supTA(x)+supIA(x)+
supFA(x) ≤ 3.

Definition 2.6. [26, 59] Let E be a universe. A neutrosophic refined (multi-) set(NRs) A on E
can be defined as follows:

A = {< x, (T 1
A(x), T

2
A(x), ..., T

P
A (x)), (I1

A(x), I
2
A(x), ..., I

P
A (x)), (F 1

A(x), F
2
A(x), ..., F

P
A (x)) >: x ∈ E}

where,

T 1
A(x), T

2
A(x), ..., T

P
A (x) : E → [0, 1],

I1
A(x), I

2
A(x), ..., I

P
A (x) : E → [0, 1],

and
F 1
A(x), F

2
A(x), ..., F

P
A (x) : E → [0, 1]

such that
0 ≤ supT i

A(x) + supIiA(x) + supF i
A(x) ≤ 3

(i = 1, 2, ..., P ) and

T 1
A(x) ≤ T 2

A(x) ≤ ... ≤ TP
A (x)

for any x ∈ E.
(T 1

A(x), T
2
A(x), ..., T

P
A (x)), (I1

A(x), I
2
A(x), ..., I

P
A (x)) and (F 1

A(x), F
2
A(x), ..., F

P
A (x)) is the

truth-membership sequence, indeterminacy-membership sequence and falsity-membership se-
quence of the element x, respectively. Also, P is called the dimension(cardinality) of Nms A,
denoted d(A). We arrange the truth-membership sequence in decreasing order but the corre-
sponding indeterminacy-membership and falsity-membership sequence may not be in decreasing
or increasing order.

The set of all Neutrosophic neutrosophic (multi-)sets on E is denoted by NRS(E).
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Definition 2.7. [26, 59] Let A,B ∈ NRS(E). Then,

(i) A is said to be Nm-subset of B is denoted by A⊆̃B if T i
A(x) ≤ T i

B(x), I
i
A(x) ≥ IiB(x)

,F i
A(x) ≥ F i

B(x), ∀x ∈ E and i = 1, 2, ..., P .

(ii) A is said to be neutrosophic equal of B is denoted by A = B if T i
A(x) = T i

B(x), I
i
A(x) =

IiB(x) ,F i
A(x) = F i

B(x), ∀x ∈ E and i = 1, 2, ..., P .

(iii) The union of A and B is denoted by A∪̃B = C and is defined by

C = {< x, (T 1
C(x), T

2
C(x), ..., T

P
C (x)), (I1

C(x), I
2
C(x), ..., I

P
C (x)), (F 1

C(x), F
2
C(x), ..., F

P
C (x)) >: x ∈ E}

where T i
C = T i

A(x) ∨ T i
B(x), I

i
C = IiA(x) ∧ IiB(x) ,F i

C = F i
A(x) ∧ F i

B(x), ∀x ∈ E and
i = 1, 2, ..., P .

(iv) The intersection of A and B is denoted by A∩̃B = D and is defined by

D = {< x, (T 1
D(x), T

2
D(x), ..., T

P
D (x)), (I1

D(x), I
2
D(x), ..., I

P
D(x)), (F 1

D(x), F
2
D(x), ..., F

P
D (x)) >: x ∈ E}

where T i
D = T i

A(x) ∧ T i
B(x), I

i
D = IiA(x) ∨ IiB(x) ,F i

D = F i
A(x) ∨ F i

B(x), ∀x ∈ E and
i = 1, 2, ..., P .

3 Correlation Measure of two Neutrosophic refined sets

In this section, we give correlation measure of two neutrosophic refined sets. Some of it is quoted
from [32, 33, 44, 45, 58].

Following the correlation measure of two intuitionistic fuzzy multi-sets defined by Rajara-
jeswari and Uma in [45]. In this section, we extend these measures to neutrosophic refined sets.

Definition 3.1. Let X = {x1, x2, x3, ....xn} be the finite universe of discourse and A = {<
T j
A(xi), I

j
A(xi), F

j
A(xi) > |xi ∈ X}, B =

{
< T j

B(xi), I
j
B(xi), F

j
B(xi) > |xi ∈ X

}
be two neu-

trosophic refined sets consisting of the membership, indeterminate and non-membership func-
tions. Then the correlation coefficient of A and B

ρNRS(A,B) =
CNRS(A,B)√

CNRS(A,A) ∗ CNRS(B,B)

where

CNRS(A,B) =
1
p

p∑
j=1

n∑
i=1

{
T j
A(xi)T

j
B(xi) + IjA(xi)I

j
B(xi) + F j

A(xi)F
j
B(xi)

}
,

CNRS(A,A) =
1
p

p∑
j=1

n∑
i=1

{
T j
A(xi)T

j
A(xi) + IjA(xi)I

j
A(xi) + F j

A(xi)F
j
A(xi)

}
and

CNRS(B,B) =
1
p

p∑
j=1

n∑
i=1

{
T j
B(xi)T

j
B(xi) + IjB(xi)I

j
B(xi) + F j

B(xi)F
j
B(xi)

}
Proposition 3.2. The defined correlation measure between NRS A and NRS B satisfies the fol-
lowing properties

(i) 0 ≤ ρNRS(A,B) ≤ 1

(ii) ρNRS(A,B) =1 if and only if A =B

(iii) ρNRS(A,B) =ρNRS(B,A).

Proof

(i) 0 ≤ ρNRS(A,B)(A,B) ≤ 1

As the membership, indeterminate and non-membership functions of the NRS lies between
0 and 1, ρNRS(A,B) also leis between 0 and
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(ii) ρNRS(A,B) =1 if and only if A =B

a. Let the two NRS A and B be equal (i.e A= B). Hence for any

T j
A(xi) = T j

B(xi), I
j
B(xi) = IjB(xi) andF

j
A(xi) = F j

B(xi),

then

CNRS(A,A) = CNRS(B,B) =
1
p

p∑
j=1

n∑
i=1

{
T j
A(xi)T

j
A(xi) + IjA(xi)I

j
A(xi) + F j

A(xi)F
j
A(xi)

}

and

CNRS(A,B) =
1
p

p∑
j=1

n∑
i=1

{
T j
A(xi)T

j
B(xi) + IjA(xi)I

j
B(xi) + F j

A(xi)F
j
B(xi)

}

= 1
p

∑p
i=1

∑n
i=1

{
T j
A(xi)T

j
A(xi) + IjA(xi)I

j
A(xi) + F j

A(xi)F
j
A(xi)

}
=CNRS(A,A)

Hence

ρNRS(A,B) =
CNRS(A,B)√

CNRS(A,A) ∗ CNRS(B,B)
=

CNRS(A,A)√
CNRS(A,A) ∗ CNRS(A,A)

= 1

b. Let the ρNRS(A,B) =1. Then, the unite measure is possible only if

CNRS(A,B)√
CNRS(A,A) ∗ CNRS(B,B)

= 1

this refers that

T j
A(xi) = T j

B(xi), I
j
B(xi) = IjB(xi) andF

j
A(xi) = F j

B(xi)

for all i, j values. Hence A = B

(iii) If ρNRS (A,B) =ρNRS (B,A), it obvious that

CNRS(A,B)√
CNRS(A,A) ∗ CNRS(B,B)

=
CNRS(B,A)√

CNRS(A,A) ∗ CNRS(B,B)
= ρNRS(B,A)

as

CNRS(A,B) = 1
p

∑p
j=1

∑n
i=1

{
T j
A(xi)T

j
B(xi) + IjA(xi)I

j
B(xi) + F j

A(xi)F
j
B(xi)

}
= 1

p

∑p
j=1

∑n
i=1

{
T j
B(xi)T

j
A(xi) + IjB(xi)I

j
A(xi) + F j

B(xi)F
j
A(xi)

}
=CNRS(B,A)

4 Application

In this section, we give some applications of NRS in medical diagnosis and pattern recognition
problems using the correlation measure. Some of it is quoted from [44, 45, 51].

From now on, we use

A = {< x, (T 1
A(x), I

1
A(x), F

1
A(x)), (T

2
A(x), I

2
A(x), F

2
A(x)), ..., (T

P
A (x), IPA (x), FP

A (x)) >: x ∈ E}

instead of

A = {< x, (T 1
A(x), T

2
A(x), ..., T

P
A (x)), (I1

A(x), I
2
A(x), ..., I

P
A (x)), (F 1

A(x), F
2
A(x), ..., F

P
A (x)) >: x ∈ E}
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4.1 Medical Diagnosis via NRS Theory

In what follows, let us consider an illustrative example adopted from Rajarajeswari and Uma [44]
and typically considered in [45, 51]. Obviously, the application is an extension of intuitionistic
fuzzy multi sets [44].

"As Medical diagnosis contains lots of uncertainties and increased volume of information
available to physicians from new medical technologies, the process of classifying different set of
symptoms under a single name of disease becomes difficult. In some practical situations, there
is the possibility of each element having different truth membership, indeterminate and false
membership functions. The proposed correlation measure among the patients Vs symptoms and
symptoms Vs diseases gives the proper medical diagnosis. The unique feature of this proposed
method is that it considers multi truth membership, indeterminate and false membership. By
taking one time inspection, there may be error in diagnosis. Hence, this multi time inspection,
by taking the samples of the same patient at different times gives best diagnosis" [44].

Now, an example of a medical diagnosis will be presented.

Example 4.1. Let P = {P1, P2, P3} be a set of patients, D = {V iral Fever, Tuberculosis,
Typhoid, Throat disease} be a set of diseases and S = {Temperature, cough, throat pain,
headache, bodypain} be a set of symptoms. Our solution is to examine the patient at differ-
ent time intervals (three times a day), which in turn give arise to different truth membership,
indeterminate and false membership function for each patient.

Table I: Q (the relation Beween Patient and Symptoms)
Q Temparature Cough Throat pain Headache Body Pain

P1

(0.4, 0.3, 0.4)
(0.3, 0.4, 0.6)
(0.2, 0.5, 0.5)

(0.5, 0.4, 0.4)
(0.4, 0.1, 0.3)
(0.3, 0.4, 0.5)

(0.3, 0.5, 0.5)
(0.2, 0.6, 0.4)
(0.1, 0.6, 0.3)

(0.5, 0.3, 0.4)
(0.5, 0.4, 0.7)
(0.3, 0.3, 0.6)

(0.5, 0.2, 0.4)
(0.2, 0.3, 0.5)
(0.1, 0.4, 0.3)

P2

(0.6, 0.3, 0.5)
(0.5, 0.5, 0.2)
(0.4, 0.4, 0.5)

(0.6, 0.3, 0.7)
(0.4, 0.4, 0.2)
(0.2, 0.4, 0.5)

(0.6, 0.3, 0.3)
(0.3, 0.5, 0.4)
(0.1, 0.4, 0.5)

(0.6, 0.3, 0.1)
(0.4, 0.5, 0.8)
(0.2, 0.4, 0.3)

(0.4, 0.4, 0.5)
(0.3, 0.2, 0.7)
(0.1, 0.5, 0.5)

P3

(0.8, 0.3, 0.5)
(0.7, 0.5, 0.4)
(0.6, 0.4, 0.4)

(0.5, 0.5, 0.3)
(0.3, 0.4, 0.3)
(0.1, 0.6, 0.4)

(0.3, 0.3, 0.6)
(0.2, 0.5, 0.7)
(0.1, 0.4, 0.5)

(0.6, 0.2, 0.5)
(0.5, 0.3, 0.6)
(0.2, 0.2, 0.6)

(0.6, 0.4, 0.5)
(0.3, 0.3, 0.4)
(0.2, 0.2, 0.6)

Let the samples be taken at three different timings in a day (in 08:00,16:00,24:00)

Table II: R (the relation among Symptoms and Diseases)
R Viral Fever Tuberculosis Typhoid Throat diseas

Temerature (0.2,0.5,0.6) (0.4,0.6,0.5) (0.6,0.4,0.5) (0.3,0.7,0.8)
Cough (0.6,0.4,0.6) (0.8,0.2,0.3) (0.3,0.2,0.6) (0.2,0.4,0.1)

Throat Pain (0.5,0.2,0.3) (0.4,0.5,0.3) (0.4,0.5,0.5) (0.2,0.6,0.2)
Headache (0.6,0.8,0.2) (0.2,0.3,0.6) (0.1,0.6,0.3) (0.2,0.5,0.5)
Body Pain (0.7,0.4,0.4) (0.2,0.3,0.4) (0.2,0.3,0.4) (0.2,0.2,0.3)

Table III: The Correlation Measure between NRS Q and R
Correlation measure Viral Fever Tuberculosis Typhoid Throat diseas

P1 0.846 0.910 0.884 0.880
P2 0.849 0.868 0.892 0.809
P3 0.792 0.853 0.872 0.822

The highest correlation measure from the Table III gives the proper medical diagnosis. There-
fore, patient P1 suffers from Tuberculosis, patient P2 and P3 suffers from Typhoid.
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4.2 Pattern Recognition of NRS using proposed correlation mesure

In what follows, let us consider an illustrative example adopted from Rajarajeswari and Uma [44]
and typically considered in [45, 51]. Obviously, the application is an extension of intuitionistic
fuzzy multi sets [44].

Example 4.2. LetX = {A1, A2, A3, ....An}withA = {A1, A2, A3, A4, A5} andB = {A2, A5, A7, A8, A9}
are the NRS defined as

Pattern I = {< A1, (0.4, 0.5, 0.6), (0.2, 0.3, 0.5) >,< A2, (0.5, 0.5, 0.2), (0.3, 0.2, 0.7) >,
< A3, (0.6, 0.3, 0.4), (0.6, 0.5, 0.3) >,< A4, (0.7, 0.4, 0.5), (0.5, 0.4, 0.6) >,
< A5 : (0.3, 0.7, 0.2), (0.3, 0.2, 0.5) >}

and

Pattern II = {< A2, (0.5, 0.2, 0.4), (0.3, 0.4, 0.6) >,< A5, (0.7, 0.3, 0.1), (0.6, 0.1, 0.4) >,
< A7 : (0.7, 0.2, 0.4), (0.4, 0.5, 0.3) >,< A8, (0.8, 0.1, 0.4), (0.3, 0.5, 0.7) >,
A9, (0.6, 0.3, 0.1), (0.2, 0.6, 0.1) >}

Then the testing NRS patern II be {A6, A7, A8, A9, A10} such that

Pattern III = {< A6, (0.6, 0.4, 0.2), (0.4, 0.3, 0.7) >,< A7, (0.9, 0.1, 0.1), (0.8, 0.3, 0.3) >,
< A8, (0.6, 0.7, 0.1), (0.3, 0.8, 0.2) >,< A9, (0.3, 0.8, 0.5, (0.2, 0.7, 0.2) >,
A10, (0.4, 0.5, 0.6), (0.3, 0.7, 0.2) >}

Then, the correlation measure between pattern I and III is 0.8404, pattern II and III is 0.8286.
Therefore; the testing pattern III belogns to pattern I type.

5 Conclusion

In this paper, we have firstly defined the correlation measure of neutrosophic refined sets and
proved some of their basic properties. We have present an application of correlation measure of
neutrosophic refined sets in medical diagnosis and pattern recognition. In The future work, we
will extend this correlation measure to the case of interval neutrosophic refined sets.
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