Vol. 4(2) (2015), 380-385

Strongly FI-δ**-**Lifting Modules

Y. Talebi, M. Hosseinpour and S. Khajvand Sany

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 16D10; Secondary 16D70, 16D80.

Keywords and phrases: FI- δ -lifting module, Strongly FI- δ -lifting modules.

Abstract Let R be a ring and M a right R-module. We call a module M is FI- δ -lifting if every fully invariant submodule A of M contains a direct summand B of M such that $A/B \ll_{\delta} M/B$. In this paper several properties of these modules are studied. We show that a ring R is FI- δ -lifting as an R-module if and only if R/I has a projective δ -cover for every two sided ideal I of R.

1 Introduction

Throughout this paper R is an associative ring with unity and all modules are unital right Rmodules. A submodule K of a module M is denoted by $K \leq M$. Let M be an R-module and $S \leq M$. S is called a small submodule of M (denoted by $S \ll M$) if for every submodule T of M with M = S + T, then M = T. Let M be an R-module and $N \leq M$. If any submodule K of M is minimal with the property that M = N + K, then the submodule K is called a supplement of N in M. K is a supplement (weak supplement) of N in M if and only if M = N + K and $N \cap K \ll K$ $(N \cap K \ll M)$. The module M is said to be a *lifting* module if for any submodule N of M there exists $A \leq N$ such that $M = A \oplus B$ and $N \cap B \ll B$. As a generalization of small submodules, a submodule N of M is called δ -small in M, denoted by $N \ll_{\delta} M$, if M = N + K with M/K singular implies M = K. Every small submodule of M is δ -small in M and the converse is true whenever M is singular. The sum of all δ -small submodules of a module M is denoted by $\delta(M)$, which defines a preradical on the category of R-modules, $\delta(M) = \Sigma \{ L \leq M \mid L \ll_{\delta} M \}$ (See [12]). A module M is called δ -lifting if for any $N \leq M$, there exists a decomposition $M = A \oplus B$ such that $A \leq N$ and $N \cap B$ is δ -small in M. An epimorphism $f: P \longrightarrow N$ is called a δ -cover of N if $Ker(f) \ll_{\delta} P$ and if moreover P is projective, then it is called a projective δ -cover. A submodule K of M is called *fully invariant* if $\lambda(K) \subseteq K$ for all $\lambda \in End_R(M)$. In [2] and [4] FI-lifting defined and studied and also several properties of FI-lifting investigated. We say that a module M is $FI-\delta$ -lifting if every fully invariant submodule A of M contains a direct summand B of M such that $A/B \ll_{\delta} M/B$. Also, for the other definition and notation in this paper we refer to [1], [3].

2 FI- δ -Lifting Modules

In this section we define FI- δ -lifting modules. We show that this class of modules is closed under finite direct sums. We prove that ring R is FI- δ -lifting module as an R-module if and only if R/I has a projective cover for every two sided ideal I of R (Corollary 2.7).

Lemma 2.1. Let M be a module. Then:

(1) Any sum or intersection of fully invariant submodules of M is again a fully invariant submodule of M (in fact the fully invariant submodules form a complete modular sublattice of the lattice of submodules of M).

(2) If $X \subseteq Y \subseteq M$ such that Y is a fully invariant submodule of M and X is a fully invariant submodule of Y, then X is a fully invariant submodule of M.

(3) If $M = \bigoplus_{i \in I} X_i$ and S is a fully invariant submodule of M, then $S = \bigoplus_{i \in I} \pi_i(S) = \bigoplus_{i \in I} (X_i \cap S)$, where π_i is the *i*-th projection homomorphism of M.

Proof. See [1, Lemma 1.1].

We note that if $M = \bigoplus_{i=1}^{n} M_i$ and N is a fully invariant submodule of M, then $N = \bigoplus_{i=1}^{n} (N \cap M_i)$ and $N \cap M_i$ is a fully invariant submodule of M_i .

Example 2.2. Let R be a right semisimple ring and M a nonzero right R-module. Then M is semisimple and nonsingular. For any nonzero $N \le M$, N is a direct summand of M and hence

is not small in M, but every submodule of M(even M itself) is δ -small in M. So M is δ -lifting but is not lifting

The following Proposition introduces an equivalent condition for a FI- δ -lifting module.

Proposition 2.3. Let M be an R-module. Then the following are equivalent:

(1) *M* is FI- δ -lifting module;

(2) For every fully invariant submodule A of M there is a decomposition $A = N \oplus S$ where N is a dirct summand of M and S, δ -small in M.

Proof. (1) \implies (2) Let A be a fully invariant submodule of M. Since M is FI- δ -lifting, there exists a decomposition $M = M_1 \oplus M_2$ such that $M_1 \leq A$ and $M_2 \cap A \delta$ -small in M_2 . Therefore $A = M_1 \oplus (A \cap M_2)$.

(2) \implies (1) Assume that every fully invariant submodule has the stated decomposition. Let A be a fully invariant submodule of M. By hypothesis, there exists a direct summand N of M and a δ -small submodule S of M such that $A = N \oplus S$. Now let $M = N \oplus N'$ for some submodule N' of M. Consider the natural epimorphism $\pi : M \longrightarrow M/N$. Then $\pi(S) = (S + N)/N = A/N \ll_{\delta} M/N$. Therefore, M is FI- δ -lifting

Theorem 2.4. Let $M = \bigoplus_{i=1}^{n} M_i$ be a finite direct sum of FI- δ -lifting modules. Then M is FI- δ -lifting.

Proof. Let N be a fully invariant submodule of M. Then $N = \bigoplus_{i=1}^{n} (N \cap M_i)$ and $N \cap M_i$ is a fully invariant submodule of M_i . Since each M_i is FI- δ -lifting, by Proposition 2.3, $N \cap M_i = L_i \oplus S_i$ where L_i is a direct summand of M_i and $S_i \ll_{\delta} M_i$. Set $L = \bigoplus_{i=1}^{n} L_i$ and $S = \bigoplus_{i=1}^{n} S_i$. Then $N = L \oplus S$ where L is a direct summand of M and $S \ll_{\delta} M$.

Corollary 2.5. If M is a finite direct sum of δ -lifting modules, then M is FI- δ -lifting.

Proposition 2.6. Let P be a projective module. Then P is FI- δ -lifting if and only if P/A has a projective δ -cover for every fully invariant submodule A of P.

Proof. Suppose P is a projective FI- δ -lifting module and A a fully invariant submodule of P. Then $A = X \oplus S$ where X is a direct summand of P and $S \ll_{\delta} P$. Let $P = X \oplus Y$ for some $Y \leq P$. As $S \ll_{\delta} P$, $(X + S)/X \ll_{\delta} P/X$. Hence the natural map $f : P/X \to P/(X + S) = P/A$ is a projective δ -cover.

Conversely, suppose for every fully invarient submodule A of P, P/A has a projective δ -cover. Let $f: Q \to P/A$ be a projective δ -cover of P/A. Then there exists a map $h: P \to Q$ such that $fh = \eta$ where $\eta: P \to P/A$ is the natural map. As $Kerf \ll_{\delta} Q$ and η is an epimorphism, h is an epimorphism and hence h splits. Suppose $P = Kerh \oplus B$ for some submodule B of P. Then $A = Kerh \oplus (A \cap B)$ and $A \cap B \ll_{\delta} P$. Thus P is FI- δ -lifting. \Box

Corollary 2.7. Let R be a ring. The module R_R is FI- δ -lifting if and only if R/I has a projective δ -cover for every two sided ideal I of R.

Proposition 2.8. Let R be a ring and M FI- δ -lifting. Then every fully invariant submodule of the module $M/\delta(M)$ is a direct summand.

Proof. Let $N/\delta(M)$ be a fully invariant submodule of $M/\delta(M)$. Then N is fully invariant submodule of M by [7, Lemma 3.2]. By hypothesis, there exists a decomposition $M = M_1 \oplus M_2$ such that $M_1 \leq N$ and $N \cap M_2 \ll_{\delta} M_2$. Since $M_2 \cap N$ is also δ -small in $M, N \cap M_2 \leq \delta(M)$. Thus $M/\delta(M) = (N/\delta(M)) \oplus ((M_2 + \delta(M))/\delta(M))$.

Lemma 2.9. [11, 41.14] The following are equivalent for a module $M = M' \oplus M''$:

(1) M' is M''-projective.

(2) For each submodule N of M with M = N + M'', there exists a submodule $N' \leq N$ such that $M = N' \oplus M''$.

Theorem 2.10. Let M_1 and M_2 be two modules such that M_1 is semisimple and M_2 is FI- δ -lifting. If M_1 and M_2 be relatively projective, then $M = M_1 \oplus M_2$ is FI- δ -lifting.

Proof. Let $0 \neq N \leq M$ be fully invariant. Let $K = M_1 \cap (N + M_2)$. We divide the proof into two cases:

Case (1): Let $K \neq 0$. Then $M_1 = K \oplus K_1$ for some submodule K_1 of M_1 and so $M = K \oplus K_1 \oplus M_2 = N + (M_2 \oplus K_1)$. Hence, K is $(M_2 \oplus K_1)$ -projective. By Lemma 2.9, there exists a submodule N_1 of N such that $M = N_1 \oplus (M_2 \oplus K_1)$. We may assume $N \cap (M_2 \oplus K_1) \neq 0$.

Then $N \cap (L + K_1) = L \cap (N + K_1)$ for any submodule L of M_2 . Since M_2 is FI- δ -lifting, there exists a submodule X of $M_2 \cap (N + K_1) = N \cap (M_2 \oplus K_1)$ such that $M_2 = X \oplus Y$ and $Y \cap (N + K_1)$ is δ -small in M_2 . Hence, $M = (N_1 \oplus X) \oplus (Y \oplus K_1)$. Since $N_1 \oplus X \leq N$ and $N \cap (Y \oplus K_1) = Y \cap (N + K_1), N \cap (Y \oplus K_1) = Y \cap (N + K_1)$ is δ -small in $Y \oplus K_1$ by [12, Lemma 1.3]. So M is FI- δ -lifting.

Case (2): Let K = 0. Then $N \leq M_2$. Since M_2 is FI- δ -lifting, there exists a submodule X of N such that $M_2 = X \oplus Y$ and $N \cap Y$ is δ -small in Y for some submodule Y of M_2 . Hence, $M = X \oplus (M_1 \oplus Y)$ and $N \cap (M_1 \oplus Y) = N \cap Y$ is δ -small in Y. By [12, Lemma 1.3], $N \cap (M_1 \oplus Y) \ll_{\delta} M_1 \oplus Y$.

Example 2.11. Let $M_{\mathbb{Z}} = \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z}$. Then $M_{\mathbb{Z}}$ is FI- δ -lifting by Corollary 2.5. But $M_{\mathbb{Z}}$ is not δ -lifting by [8, Example 2.8].

Proposition 2.12. *Let M* be a module. The following are equivalent:

(1) *M* is FI- δ -lifting;

(2) every fully invariant submodule of M has a direct summand δ -supplement;

(3) for each fully invariant submodule X of M, there is a coclosed submodule K of M and a direct summand δ -supplement L of K such that $K \subseteq X$, $X/K \ll_{\delta} M/K$ and every homomorphism $f: M \longrightarrow M/L \cap K$ can be lifted to an endomorphism $g: M \longrightarrow M$, that is, such that $g(m) + (L \cap K) = f(m)$ for all $m \in M$.

Proof. (1) \iff (2) Let X be a fully invariant submodule of M. First assume that M is FI- δ -lifting. Then there exists a decomposition $M = M_1 \oplus M_2$ such that $M_1 \leq X$ and $M_2 \cap X \ll_{\delta} M_2$. Then $M = X + M_2$ and M_2 is a direct summand δ -supplement of X. Conversely, let K be a direct summand δ -supplement of X in M. Then $M = K + X = K \oplus K'$ and $K \cap X \ll_{\delta} K$ for some submodule K' of M. Consider the natural projection map $\phi : M \longrightarrow K'$. Since X is fully invariant, $\phi(X) = (X + K) \cap K' = M \cap K' = K' \leq X$. Thus, M is FI- δ -lifting.

 $(2) \Longrightarrow (3)$ Let X be a fully invariant submodule of M. Since M is FI- δ -lifting, there exists a decomposition $M = L \oplus K$ such that $K \leq X$ and $X/K \ll_{\delta} M/K$. Since $L \cap K = 0$, clearly any homomorphism $f : M \longrightarrow M/(L \cap K)$ lifts to a $g : M \longrightarrow M$.

(3) \implies (1) Let X be a fully invariant submodule of M. By (3), there is a coclosed submodule K of M and a direct summand δ -supplement L of K such that $K \leq X$ and $X/K \ll_{\delta} M/K$. Since K is a δ -supplement in M by [4, Proposition 3], it follows from [5, Lemma 2.2] that K is a direct summand of M. Thus, M is FI- δ -lifting.

A module M is called a *duo* module provided that every submodule of M is fully invariant.

Proposition 2.13. Let M be a module. Consider the following statements:

(1) *M* is δ -lifting;

(2) *M* is \oplus - δ -supplemented;

(3) *M* is *FI*- δ -lifting. Then (1) \Longrightarrow (2) \Longrightarrow (3). If *M* is a duo module, then (3) \Longrightarrow (1).

Proof. $(1) \Longrightarrow (2)$ This is clear.

 $(2) \Longrightarrow (3)$ This is clear by Proposition 2.12.

Proposition 2.14. Let $M = M_1 \oplus M_2$. Then M_2 is FI- δ -lifting if and only if for every fully invariant submodule N/M_1 of M/M_1 , there exists a direct summand K of M such that $K \leq M_2$, M = K + N and $N \cap K \ll_{\delta} M$.

Proof. Suppose that M_2 is FI- δ -lifting. Let N/M_1 be any fully invariant submodule of M/M_1 . It is easy to see that $N \cap M_2$ is fully invariant in M_2 . Since M_2 is FI- δ -lifting, there exists a decomposition $M_2 = K \oplus K'$ such that $M_2 = (N \cap M_2) + K$ and $N \cap K \ll_{\delta} K$. Clearly, M = N + K.

Conversely, suppose that M/M_1 has the stated property. Let H be a fully invariant submodule of M_2 . It is easy to see that $(H \oplus M_1)/M_1$ is fully invariant in M/M_1 . By hypothesis, there exists a direct summand L of M such that $L \leq M_2$, $M = L + H + M_1$ and $L \cap (H + M_1) \ll_{\delta} M$. By modularity, $M_2 = L + H$. It follows easily that L is a δ -supplement of H in M_2 . Therefore, M_2 is FI- δ -lifting by Proposition 2.12.

We define a module to be *H*- δ -supplemented if for every submodule *N* of *M* there exists a direct summand *D* of *M* such that $(N + D)/N \ll_{\delta} M/N$ and $(N + D)/D \ll_{\delta} M/D$.

Proposition 2.15. Let $M = M_1 \oplus M_2$, where M_1 is a fully invariant submodule of M. If M is H- δ -supplemented, then M_1 and M_2 are H- δ -supplemented.

Proof. Similar to [9, Corollary 2.4], M_2 is H- δ -supplemented. Next we show that M_1 is H- δ -supplemented. Let K be a submodule of M_1 . Since M is H- δ -supplemented, there exists a direct summand D of M such that $(K + D)/K \ll_{\delta} M/K$ and $(K + D)/D \ll_{\delta} M/D$. Write $M = D \oplus D', D' \leq M$. Then M = K + D'. Since M_1 is a fully invariant submodule of M, $M_1 = (M_1 \cap D) \oplus (M_1 \cap D')$. Hence $M = M_1 + D' = (M_1 \cap D) \oplus D'$. Thus $D = D \cap M_1$ and so $D \leq M_1$. Now $(K + D)/K \ll_{\delta} M_1/K$ and $(K + D)/D \ll_{\delta} M_1/D$. Therefore, M_1 is H- δ -supplemented.

Theorem 2.16. Let $M = M_1 \oplus M_2$ be a direct sum of modules. If M_1 is M_2 -projective and M is H- δ -supplemented, then M_2 is H- δ -supplemented.

Proof. Let Y be a submodule of M_2 . Considering the submodule $Y \oplus M_1$ of M. Since M is H- δ -supplemented, there exists a submodule X of M and a direct summand D of M such that $X/(Y \oplus M_1) \ll_{\delta} M/(Y \oplus M_1)$ and $X/D \ll_{\delta} M/D$. Then $M = X + M_2$ and so $M = D + M_2$. Since M_1 is M_2 -projective, there exists a submodule D' of D such that $M = D' \oplus M_2$. Hence $D = D' \oplus (D \cap M_2), (X \cap M_2)/(D \cap M_2) \ll_{\delta} M/(D \cap M_2)$, and $(X \cap M_2)/Y \ll_{\delta} M/Y$. Thus M_2 is H- δ -supplemented.

In [10], Özcan defined the submodule $\overline{Z}_{\delta}(M)$ of M as $\overline{Z}_{\delta}(M) = \bigcap \{Kerg \mid g : M \to N, N \text{ is a } \delta \text{-small module} \}$. Any module M is called a $\delta \text{-cosingular}$ (non- $\delta \text{-cosingular}$) module if $\overline{Z}_{\delta}(M) = 0$ ($\overline{Z}_{\delta}(M) = M$).

Proposition 2.17. Let M be an amply supplemented module. Then M is H- δ -supplemented if and only if $M = \overline{Z}_{\delta}^2(M) \oplus M'$, where $\overline{Z}_{\delta}^2(M)$ and M' are H- δ -supplemented, where $\overline{Z}_{\delta}^2(M) = \overline{Z}_{\delta}(\overline{Z}_{\delta}(M))$.

Proof. Let M be an H- δ -supplemented module. Note that $\overline{Z}_{\delta}^2(M)$ is a fully invariant coclosed submodule of M. Since M is FI- δ -lifting, $M = \overline{Z}_{\delta}^2(M) \oplus M'$, where $\overline{Z}_{\delta}^2(M)$ and M' are H- δ -supplemented by Proposition 2.15. Conversely, let M be an amply supplemented module. Then $\overline{Z}_{\delta}^2(M)$ is M'-projective by the proof [10, Theorem 2.19]. Therefore, M is H- δ -supplemented by Theorem 2.16.

Proposition 2.18. Let M be an indecomposable R-module. If M is FI- δ -lifting, then for every fully invariant submodule A of M, $\delta(A) \ll_{\delta} M$.

Proof. Let A be a fully invariant submodule of M. Since $\delta(A)$ is a fully invariant submodule of A, then $\delta(A)$ is a fully invariant submodule of M, by [2, lemma 2.1]. Hence $\delta(A) = B \oplus L$, where B is a direct summand of M and $L \ll_{\delta} M$. But M is an indecomposable, therefore B = 0. Thus $\delta(A) = L$ and hence $\delta(A) \ll_{\delta} M$.

3 Strongly FI- δ -lifting Modules

In this section we define strongly FI- δ -lifting. This class of modules is properly contained in the class of FI- δ -lifting. We show that a finite direct sum of copies of a strongly FI- δ -lifting module is strongly FI- δ -lifting and if M is \mathcal{T} - δ -noncosingular, then FI- δ -lifting and strongly FI- δ -lifting are same (Proposition 3.6).

We say that a module M is strongly FI- δ -lifting if every fully invariant submodule A of M contains a fully invariant direct summand B of M such that $A/B \ll_{\delta} M/B$.

Proposition 3.1. The following are equivalent for an *R*-module *M*:

(1) *M* is a strongly FI- δ -lifting module;

(2) Every fully invariant submodule A of M can be written as $A = B \oplus S$, where B is a fully invariant direct summand of M and $S \ll_{\delta} M$.

Proposition 3.2. Let *M* be an FI- δ -lifting with $\delta(M) = 0$. Then every fully invariant submodule (in particular *M*) is strongly FI- δ -lifting.

Proof. Let $A \leq N \leq M$ such that A is fully invariant in N and N is fully invariant in M. Then A is fully invariant in M [7, Lemma 3.2]. As M is FI- δ -lifting, $A = B \oplus S$ where B is a direct summand of M and $S \ll_{\delta} M$ by Proposition 2.3. Since $\delta(M) = 0$, S = 0 and so A is a direct summand of M and hence of N. Thus, N is strongly FI- δ -lifting.

Theorem 3.3. Let $M = \bigoplus_{i=1}^{n} M_i$ be a finite direct sum of strongly FI- δ -lifting modules such that $M_i \cong M_j$ for all *i* and *j*. Then *M* is a strongly FI- δ -lifting module.

Proof. There exist isomorphisms $f_i : M_1 \to M_i$ for $i = 2, \dots, n$. If A is a fully invariant submodule of M, then it is easy to see that $A = A_1 \oplus f_2(A_1) \oplus \dots \oplus f_n(A_1)$ where $A_1 = M_1 \cap A$.

As M_1 is strongly FI- δ -lifting and A_1 is a fully invariant submodule of M_1 , we have $A_1 = L_1 \oplus S_1$ where L_1 is a fully invariant direct summand of M_1 and $S_1 \ll_{\delta} M_1$ by proposition 3.1. Put $L := L_1 \oplus f_2(L_1) \oplus \cdots \oplus f_n(L_1)$ and $S := S_1 \oplus f_2(S_1) \oplus \cdots \oplus f_n(S_1)$. Then $A = L \oplus S$ such that L is a fully invariant direct summand of M and $S \ll_{\delta} M$. Hence, M is strongly FI- δ -lifting.

Example 3.4. (1) Consider the module M given in Example 2.11. Consider the submodule $N = \mathbb{Z}/p\mathbb{Z} \oplus p^2\mathbb{Z}/p^3\mathbb{Z}$ of M. N is not small in M and since N is singular, N is not δ -small in M and contains no nonzero fully invariant direct summand of M. Hence M is not strongly FI- δ -lifting. But M is FI- δ -lifting.

(2) Consider the \mathbb{Z} -module $M = \mathbb{Z}/p\mathbb{Z} \oplus \mathbb{Z}/p^2\mathbb{Z}$. *M* is lifting by [3, 23.20] and so δ -lifting. For, consider the fully invariant submodule $N = \mathbb{Z}/p\mathbb{Z} \oplus p\mathbb{Z}/p^2\mathbb{Z}$ of *M*. *N* is a fully invariant submodule of *M* which is not δ -small in *M*. But *N* does not contain any nonzero fully invariant direct summand of *M*. Thus *M* is not strongly FI- δ -lifting.

(3) The only fully invariant submodules of \mathbb{Q} are 0 and \mathbb{Q} . Therefore, \mathbb{Q} is strongly FI- δ -lifting. On the other hand, \mathbb{Q} is not \oplus -supplemented and since every torsion \mathbb{Z} -module is singular, so \mathbb{Q} is not \oplus - δ -supplemented.

Following [6], the module M is called \mathcal{T} -noncosingular if, for every nonzero endomorphism φ of M, $Im\varphi$ is not small in M. We define \mathcal{T} - δ -noncosingular, we say M is \mathcal{T} - δ -noncosingular if, for every nonzero endomorphism φ of M, $Im\varphi$ is not δ -small in M.

Proposition 3.5. Let M be a \mathcal{T} - δ -noncosingular module and X fully invariant in M. Let $N \leq X$ such that $X/N \ll_{\delta} M/N$ and N a direct summand of M. Then N is (unique) fully invariant in M.

Proof. Let P be a submodule of M such that $M = N \oplus P$. Assume that N is not fully invariant in M. Then there exist an endomorphism φ of M and $x \in N$ such that $\varphi(x)inN$. Let $\psi = \pi_P \varphi \pi_N : M \longrightarrow P$, where $\pi_N : M \longrightarrow N$ and $\pi_N : M \longrightarrow P$ are the projections. Note that $\psi \neq 0(\varphi(x) \in N)$ and $Im\psi \subseteq X \cap P \ll_{\delta} M$. This contradicts the fact that M is \mathcal{T} - δ noncosingular. Thus, N is fully invariant in M.

Proposition 3.6. Let M be a \mathcal{T} - δ -noncosingular module. Then M is FI- δ -lifting if and only if M is strongly FI- δ -lifting.

Proof. Let M be FI- δ -lifting and X a fully invariant submodule of M. Then there exists a direct summand N of M such that $X/N \ll_{\delta} M/N$. By Proposition 3.5, N is fully invariant in M. Thus, M is strongly FI- δ -lifting. The converse is clear.

Corollary 3.7. Let M be a δ -noncosingular module. Then M is FI- δ -lifting if and only if M is strongly FI- δ -lifting.

Proposition 3.8. Let M be an FI- δ -lifting module and X a fully invariant submodule of M. If one of the following conditions is satisfied, then M/X is strongly FI- δ -lifting:

(1) M/X is indecomposable;

(2) M/X is \mathcal{T} - δ -noncosingular.

Proof. By [7, Proposition 3.3], M/X is FI- δ -lifting. (1) Clearly, indecomposable FI- δ -lifting modules are strongly FI- δ -lifting. (2) This follows from Proposition 3.5.

Proposition 3.9. Let M be a δ -lifting (respectively δ -noncosingular weakly δ -supplemented FI- δ -lifting) module such that every δ -small submodule is fully invariant. Then every factor module of M is δ -lifting (respectively strongly FI- δ -lifting).

Proof. Let X, Y be submodules of M such that M = X + Y and $X \cap Y \ll_{\delta} M$. Note that $M/(X \cap Y) = X/(X \cap Y) \oplus Y/(X \cap Y)$. By hypothesis, $X \cap Y$ is fully invariant in M. If M is δ -lifting, then $M/(X \cap Y)$ is δ -lifting by [1, 22.2]. Since the δ -lifting property is inherited by direct summands, M/X is δ -lifting. Now assume that M is a δ -noncosingular weakly δ -supplemented FI- δ -lifting module. Then the result follows from [7, Proposition 3.3], Corollary 3.7 and the fact that any direct summand of a strongly FI- δ -lifting module is strongly FI- δ -lifting.

References

- [1] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York, (1992).
- [2] G. F. Birkenmeier, B. J. Müller and S. T. Rizvi, Modules in which every fully invariant submodule is essential in a direct summand, *Comm. Algebra*, **30**, 1395-1415 (2002).
- [3] J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, *Lifting Modules*, Frontiers in Mathematics, Birkhäuser Verlag, (2006).
- [4] T. Inoue, Sum of hollow modules, Osaka J. Math. 20, 331-336 (1983).
- [5] D. Keskin, Discrete and quasi-discrete modules, Comm. Algebra, 30(11), 5273-5282 (2002).
- [6] D. Keskin and R. Tribak, On \mathcal{T} -noncosingular modues. Bull Aust Math Soc, 80, 462-471 (2009).
- [7] M. T. Kosan, The lifting condition and fully invariant submodules, *East-West J. Math.* 7(1), 99-106 (2005).
- [8] M. T. Kosan, δ -lifting and δ -supplemented modules, *Algebra Colloq.* **14**(1), 53-60 (2007).
- [9] M. T. Kosan and D. Keskin, H-supplemented duo modules. J. Algebra Appl. 6, 965-971 (2007).
- [10] A. C. Özcan, The torsion theory cogenerated by δ -M-small modules and GCO-modules, *Comm. Algebra*, **35**, 623-633 (2007).
- [11] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Reading, (1991).
- [12] Y. Zhou, Generalizations of perfect, semiperfect, and semiregular rings, *Algebra Colloq.* 7(3), 305-318 (2000).

Author information

Y. Talebi, M. Hosseinpour and S. Khajvand Sany, Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran. E-mail: talebi@umz.ac.ir, m.hpour@umz.ac.ir, s_khaajvand@yahoo.com

Received: March 16, 2014.

Accepted: October 22, 2014