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Abstract. Let R be a commutative ring with identity and let M be a unitary R−module. A
proper submodule N of M is said to be primary compactly packed if for each family {Pα}α∈4
of primary submodules of M with N ⊆

⋃
α∈4 Pα, N ⊆ Pβ for some β ∈ 4. A module

M is called primary compactly packed if every proper submodule of M is primary compactly
packed. This concept was introduced in [11]. In this paper we generalize the concept of primary
compactly packed modules to the concept of primal compactly packed modules. We say that a
proper submodule N of M is priaml compactly packed if for each family {Pα}α∈4 of primal
submodules of M with N ⊆

⋃
α∈4 Pα, N ⊆ Pβ for some β ∈ 4. A module M is called

priaml compactly packed if every proper submodule of M is priaml compactly packed. We also
generalize the Primary Avoidance Theorem for modules that was proved in [12] to the Primal
Avoidance Theorem for modules.

1 Introduction

Let R be a commutative ring with identity and M be a unitary R−module. A proper submodule
N of M is said to be prime (resp. primary) if rm ∈ N for r ∈ R and m ∈M implies that either
m ∈ N or rM ⊆ N (resp. or rnM ⊆ N for some positive integer n).

A proper submodule N of M is said to be primal if the set adj(N) = {r ∈ R | rm ∈ N for some
m ∈M −N} forms an ideal of R.
It was known that every prime submodule is primary, and every primary submodule is primal.

Many studies were done on concepts related to prime submodule, one of these important con-
cepts is the concept of compactly packed modules. A proper submodule N of M is compactly
packed if for each family {Pα}α∈4 of prime submodules of M with N ⊆

⋃
α∈4 Pα, N ⊆ Pβ

for some β ∈ 4. A module M is called compactly packed if every proper submodule of M is
compactly packed. This concept was introduced in [23] and generalized to primary compactly
packed modules by El-Atrash and Ashour (see [11]).
This paper is concerned with the properties of primal submodule, and generalizing the concept
of primary compactly packed modules to the concept of primal compactly packed modules.
We introduce the concept of primal compactly packed modules as follows: A proper submodule
N ofM is said to be primal compactly packed if for each family {Pα}α∈4 of primal submodules
of M with N ⊆

⋃
α∈4 Pα, N ⊆ Pβ for some β ∈ 4.

A module M is primal compactly packed if every proper submodule of M is primal compactly
packed.
Then we prove that a module M is primal compactly packed if and only if every proper submod-
ule of M is cyclic.

We also generalize the Primary Avoidance Theorem for modules to the Primal Avoidance
Theorem for modules as follows: Let M be an R-module, L1, L2, ..., Lk a finite number of sub-
modules of M and L a submodule of M such that L ⊆ L1 ∪ L2 ∪ ... ∪ Lk. Assume that at most
two of the Li,s are not primal, and that (Li : M) * adj(Lj) whenever i 6= j, Then L ⊆ Lm for
some m ∈ {1, 2, ..., k}.

We assume throughout this paper that all rings will be commutative with identity and all
modules will be unitary.
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2 Preliminaries

Definition 2.1. [18] Let M be an R−module. A proper submodule N of M is prime if rm ∈ N
for r ∈ R and m ∈M implies that either m ∈ N or rM ⊆ N .

Definition 2.2. [24] LetM be anR−module. A proper submoduleN ofM is primary if rm ∈ N
for r ∈ R and m ∈M implies that either m ∈ N or rnM ⊆ N for some positive integer n.

It is clear directly from the definitions that every prime submodule is primary.

Definition 2.3. [17] Let N be a submodule of an R−module M . The residual of N by M ,
denoted (N : M), is the ideal (N : M) = {r ∈ R | rM ⊆ N}.

Definition 2.4. [6] Let M be an R−module and N a submodule of M . An element a ∈ R is
called prime to N if am ∈ N (m ∈ M ) implies that m ∈ N . We denote adj(N) to be the set of
all elements of R that are not prime to N . A proper submodule N of M is said to be primal if
adj(N) forms an ideal of R, this ideal is called the adjoint ideal of N. Note that if N is a primal
submodule of M , then adj(N) is a prime ideal, for if ab ∈ adj(N) with a /∈ adj(N), there exists
m ∈M −N with abm ∈ N , so bm ∈ N implies that b ∈ adj(N).

If there exists an elementm0 ∈M−N such that rm0 ∈ N for all r ∈ adj(N), then adj(N) is
an ideal ofR and henceN is primal. In this case we say thatN is a uniformly primal submodule.

Proposition 2.5. [6] Let N be a proper submodule of an R−module M , then (N : M) ⊆
adj(N).

Definition 2.6. [17] Let M be an R−module. A proper submodule N of M is said to be irre-
ducible if N is not the intersection of two submodules of M that properly contain it.

Definition 2.7. [2] Let M be an R−module. A proper submodule N of M is said to be com-
pletely irreducible (or strongly irreducible) if for any family {Nα}α∈4 of submodules ofM with
N =

⋂
α∈4Nα, N = Nβ for some β ∈ 4. On other words, N is not the intersection of any

collection of submodules of M each properly containing N .

Proposition 2.8. [10] Let N be a proper submodule of an R−module M . Then N is a prime
submodule of M if and only if adj(N) = (N : M).

Proposition 2.9. [10] Let M be an R−module. Then

(i) Every prime submodule of M is uniformly primal.

(ii) Every irreducible submodule of M is primal.

(iii) Every completely irreducible submodule of M is uniformly primal.

Proposition 2.10. [9] Let M be an R−module. Then every primary submodule of M is primal.

Proposition 2.11. Let N be a proper submodule of an R−module M . If adj(N) is a principle
ideal of R, then N is uniformly primal.

Proof. By assumption adj(N) = Ra for some a ∈ R, then a is not prime to N , so there exists
an element u ∈M −N with au ∈ N , thus adj(N)u = Rau ⊆ N , and as a consequence, adj(N)
is uniformly not prime to N , and N is uniformly primal.

Corollary 2.12. Let R be a principal ideal ring, and M an R−module. Then every primal
submodule is uniformly primal.

Proposition 2.13. Let R be a Boolean ring and M be an R−module. Then Every primal sub-
module of M is prime.

Proof. Let N be a primal submodule of M . By Propositions 2.8 and 2.5, it suffices to show
that adj(N) ⊆ (N : M). Let a ∈ adj(N), then 1 − a /∈ adj(N), for otherwise, 1 = (1 −
a) + a ∈ adj(N) which is a contradiction. That is 1 − a is prime to N , hence for all m ∈ M ,
(1− a)am = 0 ∈ N implies am ∈ N . Therefore a ∈ (N : M).
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The following corollaries follows immediately from Proposition 2.13.

Corollary 2.14. Let R be a Boolean ring and M be an R−module. Then Every primary sub-
module of M is prime.

Corollary 2.15. Every primal ideal of a Boolean ring is prime.

Corollary 2.16. Every primary ideal of a Boolean ring is prime.

Definition 2.17. [11] Let N be a submodule of an R−module M . If there exist primary submod-
ules which contain N , then the intersection of all primary submodules containing N is called
the primary radical of N and denoted by prad(N). If there is no primary submodule containing
N , then prad(N) = M . In particular prad(M) = M. We say that a submodule N is a primary
radical submodule if prad(N) = N.

Definition 2.18. [11] LetM be anR-module. A proper submoduleN ofM is primary compactly
packed (PCP) if for each family {Pα}α∈4 of primary submodules of M with N ⊆

⋃
α∈4 Pα,

N ⊆ Pβ for some β ∈ 4. A module M is called PCP if every proper submodule of M is PCP.

Theorem 2.19. [11] Let M be an R−module. The following statements are equivalent:

(i) M is PCP module.

(ii) For each proper submodule N of M there exists a ∈ N such that prad(N) = prad(Ra).

(iii) For each proper submodule N of M, if {Nα}α∈4 is a family of submodules of M and
N ⊆

⋃
α∈4Nα, then N ⊆ prad(Nβ) for some β ∈ 4.

(iv) For each proper submoduleN ofM, if {Nα}α∈4 is a family of primary radical submodules
of M and N ⊆

⋃
α∈4Nα, then N ⊆ Nβ for some β ∈ 4.

3 Primal Avoidance Theorem for Modules

The Primary Avoidance Theorem for modules in ref. [12] states as follows: Let M be an
R−module, L1, L2, · · · , Ln a finite number of submodules of M and L a submodule of M such
that L ⊆ L1 ∪ L2 ∪ · · · ∪ Ln. Assume that at most two of the Li,s are not primary, and that
(Lj : M) *

√
(Lk : M) whenever j 6= k, Then L ⊆ Lk for some k ∈ {1, 2, · · · , n}. We con-

sider a generalization of this theorem to the Primal Avoidance Theorem for modules.
Let L,L1, L2, . . . , Ln be a submodules of an R−module M . Following [14], The covering
L ⊆ L1 ∪ L2 ∪ · · · ∪ Ln of L is called efficient if L is not contained in the union of any n − 1
of the submodules Li,s. Analogously we shall say L = L1 ∪ L2 ∪ · · · ∪ Ln is an efficient union
if none of the Li,s may be excluded. Any cover or union consisting of submodules of M can be
reduced to an efficient one, called an efficient reduction, by deleting any unnecessary terms.
It is well-known that if L,L1 and L2 are submodules of an R−module M such that L ⊆ L1∪L2,
then either L ⊆ L1 or L ⊆ L2. Consequently, a covering of a submodule by two submodules
of a module is never efficient. Thus L ⊆ L1 ∪ L2 ∪ · · · ∪ Lm may be efficient cover only when
m > 2 or m = 1.

Lemma 3.1. [19] Let L = L1∪L2∪· · ·∪Ln be an efficient union of submodules of an R-module
M where n > 2. Then

⋂
j 6=k Lj =

⋂n
j=1 Lj for all k ∈ {1, 2, . . . , n}.

Corollary 3.2. Let L ⊆ L1 ∪ L2 ∪ · · · ∪ Ln be an efficient cover of submodules of an R-module
M where n > 2. Then L ∩

⋂
j 6=k Lj ⊆ Lk for all k ∈ {1, 2, . . . , n}.

Proof. Since L ⊆ L1∪L2∪· · ·∪Ln is an efficient covering, L = (L∩L1)∪(L∩L2)∪· · ·∪(L∩Ln)
is an efficient union. Now apply the previous lemma to get, L ∩

⋂
j 6=k Lj =

⋂
j 6=k(L ∩ Lj) ⊆

(L ∩ Lk) ⊆ Lk.

Proposition 3.3. Let N and L be proper submodules of an R−module M , and I be an ideal of
R. If IL ⊆ N then either L ⊆ N or I ⊆ adj(N).

Proof. Assume L * N , then there is m ∈ L−N . For each a ∈ I , am ∈ IL ⊆ N while m /∈ N ,
therefore a ∈ adj(N).

Lemma 3.4. Let L ⊆ L1 ∪L2 ∪ · · · ∪Ln be an efficient covering of submodules of an R−module
M where n > 2, then for all j ∈ {1, 2, . . . , n},

⋂
i 6=j(Li : M) ⊆ adj(Lj).
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Proof. Let j ∈ {1, 2, . . . , n}, put Ij =
⋂
i 6=j(Li : M). Then Ij = (

⋂
i 6=j Li : M), hence

IjM ⊆
⋂
i 6=j Li, and in particular IjL ⊆

⋂
i 6=j Li. On other hand IjL ⊆ L. Then IjL ⊆

L ∩ (
⋂
i 6=j Li) ⊆ Lj by Corollary 3.2. Therefore either L ⊆ Lj or Ij ⊆ adj(Lj). But L * Lj ,

then we must have Ij ⊆ adj(Lj).

Theorem 3.5. Let L be a submodule of an R−module M . If L1, L2, . . . , Ln are submodules of
M such that L ⊆ L1 ∪ L2 ∪ · · · ∪ Ln, and that

⋂
i 6=j(Li : M) * adj(Lj) for all j = 1, 2, . . . , n

except possibly for at most two of the j,s, then L ⊆ Lk for some k ∈ {1, 2, . . . , n}.

Proof. For the given covering L ⊆ L1 ∪ L2 ∪ · · · ∪ Ln, let L ⊆ Lα1 ∪ Lα2 ∪ · · · ∪ Lαm
be its

efficient reduction. Then 1 ≤ m ≤ n and m 6= 2. If m > 2, then there exists at least one Lαj

satisfying
⋂
i 6=j(Lαi

: M) * adj(Lαj
). This is impossible in view of Lemma 3.4. Hence m = 1

and L ⊆ Lα1 = Lk for some k ∈ {1, 2, . . . , n}.

If A and B are ideals of a ring R, and P is a prime ideal of R such that A ∩ B ⊆ P , then
A ⊆ P or B ⊆ P . This statement explains the following remark.

Remark 3.6. If Lj is a primal submodule (so adj(Lj) is a prime ideal), then the following two
conditions are equivalent:

(i)
⋂
i 6=j(Li : M) * adj(Lj).

(ii) (Li : M) * adj(Lj) whenever i 6= j.

The following Theorem, which follows immediately from Theorem 3.5 and Remark 3.6, is a
generalization of the Primary Avoidance Theorem for modules.

Theorem 3.7. (Primal Avoidance Theorem for modules)
Let L be a submodule of an R−module M and L1, L2, . . . , Ln are submodules of M such that
L ⊆ L1 ∪ L2 ∪ · · · ∪ Ln. Assume that at most two of the Li,s are not Primal, and (Li : M) *
adj(Lj) whenever i 6= j, then L ⊆ Lk for some k ∈ {1, 2, . . . , n}.

Definition 3.8. Let M be an R−module. A proper submodule N of M is called primal weakly
compactly packed (PLWCP ) if for each finite set {L1, L2, . . . , Ln} of primal submodules of M
with N ⊆

⋃n
i=1 Li, N ⊆ Lj for some j ∈ {1, 2, . . . , n}. A module M is called PLWCP if every

proper submodule is PLWCP .

The following theorem follows immediately from the Primal Avoidance Theorem for mod-
ules.

Theorem 3.9. Let M be an R−module and assume that for any primal submodules L and K of
M we have:

L * K and K * L implies (L : M) * adj(K),

then M is PLWCP .

4 Primal Compactly Packed Modules

In this section we introduce the concept of primal compactly packed modules and study various
properties of primal compactly packed modules.

Definition 4.1. Let N be a proper submodule of an R-module M .

(i) N is said to be primal compactly packed (PLCP ) if for each family {Pα}α∈4 of primal
submodules of M with N ⊆

⋃
α∈4 Pα, N ⊆ Pβ for some β ∈ 4.

(ii) N is said to be primal finitely compactly packed (PLFCP ) if for each family {Pα}α∈4 of
primal submodules of M with N ⊆

⋃
α∈4 Pα, there exist α1, α2, . . . , αn in 4 such that

N ⊆
⋃n
i=1 Pαi .

(iii) A moduleM is called PLCP (resp. PLFCP ) if every proper submodule ofM is PLCP (resp.
PLFCP ).
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Evidently, a module M is PLCP if and only if M is PLFCP and PLWCP . The next
example shows that a PLWCP module need not be PLFCP .

Example 4.2. Let R be the set of all sequences (an) of elements of Z2, such that for some
n0, depending on the sequence, an = ano

for all n ≥ n0. If we define operations on R by
(an) + (bn) = (an + bn) and (an)(bn) = (anbn), then R is a Boolean ring. For each k > 0,
let Pk = {(an) ∈ R | ak = 0}, and let P0 = {(an) ∈ R | for some n0, depending on the
sequence, an = 0 for all n ≥ n0}. It is easily checked that Pk,s (k ≥ 0) are prime ideals of R.
By Corollary 2.15, An ideal of R is primal if and only if it is prime. By the Prime Avoidance
Theorem for rings, R is PLWCP . Since P0 ⊆ P1 ∪ P2 ∪ . . . , and P0 * Pk for all k > 0, then
R is not PLCP . Finally, R is not PLFCP , for if R were PLFCP , then R is PLCP (as R is
PLWCP ) which is a contradiction.

Since every primary submodule is primal, then we have the following proposition:

Proposition 4.3. Every PLFCP (resp. PLCP ) module is PFCP (resp. PCP).

primal, uniformly primal, irreducible, completely irreducible submodules meets in the fol-
lowing theorem:

Theorem 4.4. Let N be a submodule of an R−module M . The following statements are equiva-
lent:

(i) N is PLCP .

(ii) If {Nα}α∈4 is a family of irreducible submodules of M and N ⊆
⋃
α∈4Nα, then N ⊆ Nβ

for some β ∈ 4.

(iii) If {Nα}α∈4 is a family of uniformly primal submodules of M and N ⊆
⋃
α∈4Nα, then

N ⊆ Nβ for some β ∈ 4.

(iv) If {Nα}α∈4 is a family of completely irreducible submodules of M and N ⊆
⋃
α∈4Nα,

then N ⊆ Nβ for some β ∈ 4.

(v) N is cyclic.

(vi) If {Nα}α∈4 is a family of submodules of M and N ⊆
⋃
α∈4Nα, then N ⊆ Nβ for some

β ∈ 4.

Proof. Since every irreducible submodule is primal, and every completely irreducible submod-
ule is irreducible, then we have (1→ 2→ 4).
Since every uniformly primal submodule is primal, and every completely irreducible submodule
is uniformly primal, then we have (1→ 3→ 4).
(4 → 5) It is clear that Ra ⊆ N for each a ∈ N. Suppose that N * Ra for each a ∈ N. By
[10], every proper submodule of M is the intersection of all completely irreducible submodules
containing it. Hence for each a ∈ N there exists a completely irreducible submodule Pa for
which Ra ⊆ Pa and N * Pa. However, N =

⋃
a∈N Ra ⊆

⋃
a∈N Pa, which contradicts (4).

(5 → 6) Let {Nα}α∈4 be a family of submodules of M such that N ⊆
⋃
α∈4Nα by (5) there

exists a ∈ N such that N = Ra, then a ∈
⋃
α∈4Nα and hence a ∈ Nβ for some β ∈ 4, so that

Ra ⊆ Nβ and hence N ⊆ Nβ .
(6→ 1) is clear.

Corollary 4.5. LetM be anR−module. ThenM is PLCP if and only if every proper submodule
of M is cyclic.

Theorem 4.6. If M is a PLCP module which has at least one maximal submodule, then M
satisfies the (ACC) on submodules.

Proof. Let N1 ⊆ N2 ⊆ · · · be an ascending chain of submodules of M . If Nk = M for some
k, then the result follows immediately, so assume that none of Nk,s is M , and let L =

⋃∞
i=1 Ni.

We claim that L is a proper submodule of M . Assume on contrary that L = M and let H be a
maximal submodule of M , then H ⊆

⋃∞
i=1 Ni. Since M is PLCP , by Theorem 4.4, there exist a

positive integerm such thatH ⊆ Nm. ThereforeH = Nm, henceNm is maximal, andNi = Nm
for all i ≥ m. Therefor Nm =

⋃∞
i=1 Ni =M which is impossible, thus L is a proper submodule

of M . Since M is PLCP , L ⊆ Nj for some j and hence Ni ⊆ Nj for all i, thus Ni = Nj for all
i ≥ j. Therefore the (ACC) is satisfied for submodules.
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Theorem 4.7. If M is a PLFCP which has at least one maximal submodule, then M satisfies
the (ACC) on primal submodules.

Proof. LetN1 ⊆ N2 ⊆ · · · be an ascending chain of primal submodules ofM , and L =
⋃∞
i=1 Ni.

We claim that L is a proper submodule of M . Assume on contrary that L = M and let H be a
maximal submodule of M, then H ⊆

⋃∞
i=1 Ni. Since M is PLFCP , there exist n1, n2, . . . , nk

such that H ⊆
⋃k
j=1 Nnj = Nm where m = max{n1, n2, . . . , nk}. Therefore H = Nm, hence

Nm is maximal, and Ni = Nm for all i ≥ m. Therefor Nm =
⋃∞
i=1 Ni = M which contradicts

Nm is primal, thus L is a proper submodule of M . Then, since M is PLFCP , there exist
m1,m2, . . . ,ms such that L ⊆

⋃s
j=1 Nmj = Nt where t = max{m1,m2, . . . ,ms}. hence

Ni ⊆ Nt for all i, thus Ni = Nt for all i ≥ t. Therefore the (ACC) is satisfied for primal
submodules.

Now we recall the following definition:

Definition 4.8. [23] A moduleM is called a Bezout module if every finitely generated submodule
of M is cyclic.

Proposition 4.9. Let M be a Bezout R−module. If M satisfies the (ACC) on submodules, then
M is PLCP .

Proof. LetN be a prober submodule ofM . By [15], p. 375, Theorem 1.9,N is finitely generated
submodule and hence it is cyclic, since M is Bezout module. By Corollary 4.5, M is PLCP .

Proposition 4.3, says every PLCP module is PCP. We investigate when the converse is true.

Definition 4.10. [2] AnR−moduleM is said to be with primary decomposition (resp. Laskerian)
if each of its proper submodules is an intersection, possibly infinite, (resp. a finite intersection)
of primary submodules of M .

By [17], p. 40, Theorem 2.7, every module satisfying the (ACC) on submodules is Laskerian.
And every Laskerian module is a module with primary decomposition. The following result is

trivial, and follows immediately from the definitions.

Proposition 4.11. An R−module M is a module with primary decomposition if and only if
prad(N) = N for all submodules N of M .

If we combine Theorem 2.19 and Proposition 4.11, we obtain the following result:

Theorem 4.12. Let M be an R-module with primary decomposition. The following statements
are equivalent:

(i) M is PCP.

(ii) Every proper submodule of M is cyclic.

(iii) M is PLCP .

Corollary 4.13. Let M be an R−module satisfying the (ACC) on submodules. The following
statements are equivalent:

(i) M is PCP.

(ii) Every proper submodule of M is cyclic.

(iii) M is PLCP .

In order to create another module which is PCP if and only if it is PLCP , we need the
following lemma:

Lemma 4.14. [2] Let R be a Noetherian ring and M an R−module. Then every irreducible
submodule of M is primary.

Theorem 4.15. Let R be a Noetherian ring and M an R−module. If M is PCP, then M is
PLCP .
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Proof. By Lemma 4.14, every irreducible submodule of M is primary. Hence if M is PCP, then
M satisfies the statement 2 of Theorem 4.4 for all submodules N of M , which is equivalent to
M is PLCP .

Corollary 4.16. Let R be a Noetherian ring and M an R−module. Then M is PCP if and only
if every proper submodule of M is cyclic.

Theorem 4.17. Let M be a PCP module which has at least one maximal submodule. Then M is
PLCP if and only if M satisfies the (ACC) on submodules.

Proof. See Theorem 4.6 and Corollary 4.13.
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