On Generalized Ricci-Recurrent (ϵ, δ) -trans-Sasakian manifolds

Mohd. Danish Siddiqi, Abdul Haseeb and Mobin Ahmad

Communicated by Zafar Ahsan

MSC 2010 Classifications: 53C21, 53C25, 53C05.

Keywords and phrases: (ϵ, δ) -trans-Sasakian manifolds, Generalized Ricci-recurrent, Cyclic Ricci Tensor, Einstein manifolds.

Abstract A study of generalized Ricci-recurrent (ϵ, δ) -trans-Sasakian manifold has been made and it is shown that a generalized Ricci-recurrent cosymplectic manifold is always recurrent. Also, generalized Ricci-recurrent (ϵ, δ) -trans-Sasakian of dimension greater or equal to 5 are locally classified . Moreover, it is shown that if M is one of (ϵ) -Sasakian and (δ) -Kenmotsu manifold, then M is an Einstien manifold under certain conditions.

1 Introduction

In 1993, Bejancu and Duggal (cf.[2]) introduced the concept of (ϵ) -Sasakian manifolds which later on showed by Xufeng and Xiaolic [11] that these manifolds are real hypersurfaces of indefinite Kahlerian manifolds. (ϵ) -almost para contact manifolds were introduced by Tripathi et al [10]; while the concept of (ϵ) -Kenmotsu manifolds was introduced by De and A. Sarkar [3] who showed that the existence of new structure on indefinite metrics influences the curvarure. The curvature properties of (ϵ) -Sasakian manifolds were studied by Kumar et al [6]. In 2012, Nagaraja et al [8] generalized the notion of (ϵ) -Sasakian and (δ) -Kenmotsu manifolds by introducing the concept of (ϵ, δ) -trans-Sasakian manifolds. On the other hand Jeong-Sik-Kim et al [9] have studied the generalized Ricci-recurrent trans-Sasakian manifolds. Motivated by the above discussions, we plan to study generalized Ricci-recurrent (ϵ, δ) -trans-Sasakian manifolds. The paper is organised as follows. Section 2, contains necessary details about (ϵ, δ) trans-Sasakian manifolds. Section 3, is concerned with the study of generalized Ricci-recurrent (ϵ, δ) -trans-Sasakian manifolds, where a relation among others, between the 1-forms A and B is established. It is proved that a generalized Ricci-recurrent cosymplectic manifold is always Ricci-recurrent. Generalized Ricci-recurrent (ϵ, δ) -trans-Sasakian manifolds of dimension ≥ 5 are also classified. An expression for Ricci-recurrent of a generalized (ϵ, δ) -trans-Sasakian manifold with cyclic Ricci tensor is obtained in the final section. Here it is proved that if M is one of α -Sasakian or (ϵ) -Sasakian, β -Kenmotsu or (δ) -Kenmotsu manifolds which is generalized Ricci tensor and non zero $A(\xi)$ everywhere, then M is a an Einstein manifold. An example of (ϵ,δ) -trans-Sasakian manifolds has also been discussed in detail.

A non-flat Riemannian manifold M is called a generalized Ricci-recurrent manifold ([4]) if its Ricci tensor S satisfies the following condition.

$$(1.1) \qquad (\nabla_X S)(Y, Z) = A(X)S(Y, Z) + B(X)q(Y, Z),$$

where ∇ is Levi-Civita connection of the Riemannian metric g and A, B are 1-forms on M. In particular if 1-form B vanishes identically, then manifold M reduces to the Ricci-recurrent manifold.

Let \bar{M} be an almost contact metric manifold with an almost contact metric structure (ϕ, ξ, η, g) , where ϕ is a (1,1) tensor field, ξ is a vector field, η is a 1-form and g is a compatiable Riemannian metric such that

(2.1)
$$\phi^2 = -I + \eta \otimes \xi, \ \phi \xi = 0, \ \eta \circ \phi = 0, \ \eta(\xi) = 1,$$

(2.2)
$$g(\phi X, \phi Y) = g(X, Y) - \epsilon \eta(X) \eta(Y),$$

$$(2.3) g(\xi, \xi) = \epsilon$$

(2.4)
$$g(X, \phi Y) = -g(\phi X, Y), \quad \epsilon g(X, \xi) = \eta(X)$$

for all vector fields X, Y on $T\bar{M}$, where $\epsilon = g(\xi, \xi) = \pm 1$. An (ϵ) - almost contact metric manifold is called an (ϵ, δ) -trans Sasakian manifold if

$$(2.5) \quad (\bar{\nabla}_X \phi)(Y) = \alpha(g(X, Y)\xi - \epsilon \eta(Y)X) + \beta(g(\phi X, Y)\xi - \delta \eta(Y)\phi X)$$

for some smooth functions α and β on \bar{M} and $\epsilon=\pm 1$, $\delta=\pm 1$. For $\beta=0$, $\alpha=1$, an (ϵ,δ) -trans-Sasakian manifolds reduces to (ϵ) -Sasakian and for $\alpha=0$, $\beta=1$ it reduces to a (δ) -Kenmotsu manifolds.

2 (ϵ, δ) -trans Sasakian manifolds

Let \bar{M} be an almost contact metric manifold with an almost contact metric structure (ϕ, ξ, η, g) , where ϕ is a (1,1) tensor field, ξ is a vector field, η is a 1-form and g is a compatiable Riemannian metric such that

(2.1)
$$\phi^2 = -I + \eta \otimes \xi, \ \phi \xi = 0, \ \eta \circ \phi = 0, \ \eta(\xi) = 1,$$

(2.2)
$$g(\phi X, \phi Y) = g(X, Y) - \epsilon \eta(X) \eta(Y),$$

$$(2.3) g(\xi, \xi) = \epsilon$$

(2.4)
$$g(X, \phi Y) = -g(\phi X, Y), \quad \epsilon g(X, \xi) = \eta(X)$$

for all vector fields X, Y on $T\bar{M}$, where $\epsilon = g(\xi, \xi) = \pm 1$. An (ϵ) - almost contact metric manifold is called an (ϵ, δ) -trans Sasakian manifold if

$$(2.5) \quad (\bar{\nabla}_X \phi)(Y) = \alpha(g(X, Y)\xi - \epsilon \eta(Y)X) + \beta(g(\phi X, Y)\xi - \delta \eta(Y)\phi X)$$

for some smooth functions α and β on \bar{M} and $\epsilon=\pm 1$, $\delta=\pm 1$. For $\beta=0$, $\alpha=1$, an (ϵ,δ) -trans-Sasakian manifolds reduces to (ϵ) -Sasakian and for $\alpha=0$, $\beta=1$ it reduces to a (δ) -Kenmotsu manifolds.

3 Generalized Ricci-recurrent (ϵ, δ) -trans-Sasakian manifolds

Let M be a n-dimensional (ϵ, δ) -trans Sasakian manifold. From (2.5) it is easy to follows that

$$\bar{\nabla}_X \xi = -\epsilon \alpha \phi X - \beta \delta \phi^2 X.$$

From (2.6), it follows that

(3.2)
$$(\bar{\nabla}_X \eta) Y = \delta \beta (\epsilon g(X, Y) - \eta(X) \eta(Y)) - \alpha g(X, Y).$$

In view of (2.5), (3.1) and (3.2) we are able to state the following lemma.

Lemma 3.1. ([8]) In a n dimensional (ϵ, δ) -trans Sasakian manifold we have

(3.3)
$$R(X,Y)\xi = \epsilon((Y\alpha)\phi X - (X\alpha)\phi Y) + (\beta^2 - \alpha^2)(\eta(X)Y - \eta(Y)X)$$

$$-\delta((X\beta\phi^{2}Y - (Y\beta\phi^{2}X) + 2\delta\epsilon\alpha\beta(\eta(Y))(\phi X) - \eta(X)\phi Y) + 2\alpha\beta(\delta - \epsilon)g(\phi X, Y)\xi,$$

(3.4)
$$S(X,\xi) = (n-1) \{ (\epsilon \alpha^2 - \beta^2 \delta - \xi \beta) \} \eta(X) - (n-2)(X\beta) - (\phi X)\alpha,$$

$$(3.5) Q\xi = (n-1)\left\{\left(\epsilon\alpha^2 - \beta^2\delta - \xi\beta\right)\right\}\xi - (n-2)grad\beta + \phi(grad\alpha),$$

where R and S are curvature and Ricci curvature, while Q is Ricci operator given by S(X,Y) = g(QX,Y). In particular we have

(3.6)
$$S(\xi,\xi) = (n-1)\{(\epsilon\alpha^2 - \beta^2\delta)\} - (2n-3)(\xi\beta).$$

Now, we prove the following

Theorem 3.2. (a) Let S be a semigroup, and let $x \in S$ be a nongenerator of Let M be a n dimensional generalized Ricci-recurrent (ϵ, δ) -trans Sasakian manifold. Then, the 1-froms A and B are related by

(3.7)
$$B(X) = \frac{(n-1)}{\epsilon} \left\{ X(\epsilon \alpha^2 - \beta^2 \delta) - (\epsilon \alpha^2 - \beta^2 \delta) A(X) \right\}$$
$$+ \frac{(2n-3)}{\epsilon} \left\{ (\xi \beta) A(X) - X(\xi \beta) \right\}$$
$$+ \frac{2(n-2)}{\epsilon} \left\{ (\alpha \phi X + \beta \phi^2 X) \beta \delta \right\} + \frac{2}{\epsilon} \beta \phi X - \alpha \phi^2 X) \epsilon \alpha \right\}.$$

In particular, we get

(3.8)
$$B(\xi) = \frac{(n-1)}{\epsilon} \left\{ \xi(\epsilon \alpha^2 - \beta^2 \delta) - (\epsilon \alpha^2 - \beta^2 \delta) A(\xi) \right\} + \frac{(2n-3)}{\epsilon} \left\{ (\xi \beta) A(\xi) - \xi(\xi \beta) \right\}.$$

Proof. Using equation (1.1) in the following equation

$$(3.9) \qquad (\nabla_X S)(Y, Z) = XS(Y, Z) - S(\nabla_X Y, Z) - S(Y, \nabla_X Z)$$

we get

$$A(X)S(Y,Z) + B(X)g(Y,Z) = XS(Y,Z) - S(\nabla_X Y, Z) - S(Y, \nabla_X Z).$$

Putting $Y = Z = \xi$, in the above equation, we obtain

$$A(X)S(\xi,\xi) + B(X)\epsilon = XS(\xi,\xi) - 2S(\nabla_X \xi,\xi),$$

in view of (3.6), (2.4) and (3.1), we get (3.7). Then equation (3.8) is obvious from (3.7). Let A^* and B^* be the associated vector fileds of A and B, that is $\epsilon g(X, A^*) = A(X)$ and $\epsilon g(X, B^*) = B(X)$, where $\epsilon = \pm 1$.

Corollary 3.3. In a n-dimensional generalized Ricci-recurrent α -Sasakian (resp. (ϵ) -Sasakian) manifold, we have

(3.8)
$$B = -\frac{(n-1)}{\epsilon} \alpha^2 \epsilon A \qquad \text{(resp. B} = -(n-1)\epsilon A)$$

Thus, the associated vector fields A^* and B^* are in opposite direction.

Proof. An (ϵ, δ) -trans Sasakian manifold of type $(\alpha, 0)$ is (α) -Sasakian ([5]) (resp. (ϵ) -Sasakian ([8, 11])). In case $\alpha = 1$, then from the equation (3.7), the proof follows immediately.

Corollary 3.4. In a n-dimensional generalized Ricci-recurrent normal indifinite almost cosymplectic f-structure (or f-Kenmotsu) manifold, we have

(3.9)
$$B(X) = \frac{(n-1)}{\epsilon} \left\{ (f^2 \delta) A(X) - X(f^2 \delta) \right\} + \frac{(2n-3)}{\epsilon} \left\{ (\xi f) A(X) - X(\xi f) \right\} + \frac{2(n-2)}{\epsilon} (\phi^2 X) f \delta$$

Proof. An (ϵ, δ) -trans Sasakian structure with $\alpha = 0$ and $\beta = f$, is normal almost cosymplectic f-structure([7]) (or f-Kenmotsu structure). Thus putting $\alpha = 0$ and $\beta = f$ in (3.7), we get (3.9).

Corollary 3.5. For a n-dimensional generalized Ricci-recurrent (β) -Kenmotsu (resp. (δ) -Kenmotsu) manifold, we have

(3.10)
$$B = \frac{(n-1)}{\epsilon} \beta^2 \delta A \qquad \left(resp. \ B = \frac{(n-1)}{\epsilon} \delta A \right)$$

Thus, the associated vector fields A^* and B^* are in same direction.

Proof. (ϵ, δ) -trans Sasakian structure reduces to (β) -Kenmotsu ([5]) (resp. (δ) -Kenmotsu ([8, 3])) if $\alpha = 0$ and $\beta = constant$. In particular 1-Kenmotsu structure is a Kenmotsu for $f = \beta = constant$ (resp. f = 1) from (3.9), we obtain (3.10).

An (ϵ, δ) -trans-Sasakian structures of type (0,0) is cosymplectic ([1]). Thus, putting $\alpha = 0 = \beta$ in (3.7), we get B = 0. Hence, we have the following

Theorem 3.6. (a) A generalized Ricci-recurrent indefinite cosymplectic manifold M is always Ricci-recurrent.

Now, we give the following classification for generalized Ricci-recurrent (ϵ, δ) - trans-Sasakian manifold of dimension ≥ 5 locally.

Theorem 3.7. Let M be generalized Ricci-recurrent (ϵ, δ) -trans-Sasakian manifold of dimemsion $n \geq 5$. Then

- (1) either M is Ricci recurrent,
- (2) $B + (n-1)\alpha^2 A = 0$,
- (3) $B \frac{(n-1)}{\epsilon} \beta^2 A = 0$,

where α and β are non-zero constants.

Proof. We know that locally an (ϵ, δ) - trans-Sasakian manifold of dimension ≥ 5 is either cosymplectic or (α) -Sasakian (resp. (ϵ) -Sasakian) or β -Kenmotsu (resp. (δ) -Kenmotsu) manifolds. Hence in view of corollaries (3.3), (3.5) and theorem (3.6) the proof of the theorem completes.

4 4. Generalized Ricci-recurrent (ϵ, δ) - trans-Sasakian manifold with Cyclic Ricci tensor A Riemannian manifold is said to admit cyclic Ricci tensor if

$$(\nabla_X S)(Y, Z) + (\nabla_Y S)(Z, X) + (\nabla_Z S)(X, Y) = 0.$$

(4.1)

Now, we prove the following.

Theorem 4.1. In a n-dimensional generalized Ricci-recurrent (ϵ, δ) - trans-Sasakian manifold with Cyclic Ricci tensor, the Ricci tensor satisfies

$$A(\xi)S(X,Y)(4.2)$$

$$= \frac{(n-1)}{\epsilon} \left\{ (\epsilon\alpha^2 - \beta^2\delta)A(\xi) - \xi(\left\{ (\epsilon\alpha^2 - \beta^2\delta) \right\})g(X,Y) \right.$$

$$\left. + \frac{(2n-3)}{\epsilon} \left\{ (\xi\beta)A(\xi) - \xi(\xi\beta) \right\}g(X,Y) \right.$$

$$\left. + (n-2) \left\{ A(X)(Y\beta) + A(Y)(X\beta) \right\} \right.$$

$$\left. + (n-1)(\xi\beta) \left\{ \eta(Y)A(X) + \eta(X)A(Y) \right\} \right.$$

$$\left. + \frac{(2n-3)}{\epsilon} \left\{ (\xi\beta)\eta(Y)A(X) - X(\xi\beta)\eta(Y) \right\} \right.$$

$$\left. - \frac{(n-1)}{\epsilon} \left\{ \eta(X)Y(\epsilon\alpha^2 - \beta^2\delta) + \eta(Y)X(\epsilon\alpha^2 - \beta^2\delta) \right\} \right.$$

$$\left. + \frac{2(n-2)}{\epsilon} \left\{ \eta(X)(\alpha\phi Y + \beta\phi^2)\delta + \eta(Y)(\alpha\phi X + \beta\phi^2 X)\beta\delta \right\} \right.$$

$$\left. + \frac{2(n-2)}{\epsilon} \left\{ \eta(X)(\phi^2 Y - \beta\phi Y)\epsilon\alpha + \eta(Y)(\alpha\phi^2 X - \phi X)\epsilon\alpha \right\} \right.$$

Proof. (Suppose that M is a generalized Ricci symmetric manifold admitting cyclic Ricci tensor. Then in view of (1.1) and (4.1), we get

$$0 = A(X)S(Y,Z) + A(Y)S(X,Z) + A(Z)S(X,Y) + B(X)g(Y,Z) + B(Y)g(X,Z) + B(Z)g(X,Y).$$

Moreover, if M is (ϵ, δ) - trans-Sasakian manifold, then by putting $Z = \xi$, in the above equation, we get

$$A(\xi)S(X,Y) = -B(\xi)g(X,Y) - A(X)S(Y,\xi) - A(Y)S(\xi,X) - B(X)\eta(Y) - B(Y)\eta(X),$$

which in view of (3.8) and (3.4) gives (4.2). \Box

Corollary 4.2. For a n-dimensional generalized Ricci-recurrent manifold M with cyclic Ricci tensor, we have the following statements

1. If M is an (α) -Sasakian manifold, then

$$A(\xi)S(X,Y) = \frac{(n-1)}{\epsilon}\epsilon\alpha^2 A(\xi)g(X,Y).$$

2. If M is (ϵ) -Sasakian manifold, then

$$A(\xi)S(X,Y) = \frac{(n-1)}{\epsilon}\epsilon A(\xi)g(X,Y).$$

3. If M is a f-Kenmotsu manifold, then

$$\begin{split} A(\xi)S(X,Y) &= \frac{(n-1)}{\epsilon} \left\{ \xi(f^2\delta - (f^2\delta)A(\xi)) \right\} g(X,Y) \\ &+ \frac{(2n-3)}{\epsilon} \left\{ (\xi f)A(\xi) - \xi(\xi f) \right\} g(X,Y) \\ &+ (n+2) \left\{ A(X)(Yf) + A(Y)(Xf) \right\} \\ &+ \frac{(2n-3)}{\epsilon} \left\{ (\xi f)\eta(Y)A(X) - X(\xi f)\eta(Y) \right\} \\ &- \frac{(n-1)}{\epsilon} \left\{ \eta(X)Y(f^2\delta) + \eta(Y)X(f^2\delta) \right\} \\ &- \frac{(2n-3)}{\epsilon} \left\{ \eta(X)(f\phi^2Y)f\delta + \eta(Y)(f\phi^2X)f\delta \right\} . \end{split}$$

4. If M is β -Kenmotsu manifold, then

$$A(\xi)S(X,Y) = -\frac{(n-1)}{\epsilon}\beta^2 A(\xi)g(X,Y).$$

5. If M is an (δ) -Kenmotsu manifold, then

$$A(\xi)S(X,Y) = -\frac{(n-1)}{\epsilon}\delta A(\xi)g(X,Y).$$

6. If M is Cosymplectic manifolds, then

$$A(\xi)S(X,Y) = 0.$$

A Riemannian manifold is an Einstein manifold if

$$S(X,Y) = \rho \epsilon q(X,Y).$$

Therefore, in view of corollary (4.2), we are able to state the following.

Theorem 4.3. Let M be generalized Ricci-recurrent manifold with cyclic Ricci tensor and M is one of (ϵ) -Sasakian, α -Sasakian, (δ) -Kenmotsu and β -Kenmotsu manifolds with non-zero $A(\xi)$ everywhere, then M is Einstein manifold.

Example: Consider the three dimensional manifold $M = \{(x, y, z) \in \mathbb{R}^3 | z \neq 0\}$, where (x, y, z) are the cartesian coordinates in \mathbb{R}^3 and let the vector fields are

$$e_1 = \frac{e^x}{z^2} \frac{\partial}{\partial x}, \quad e_2 = \frac{e^y}{z^2} \frac{\partial}{\partial y}, \quad e_3 = \frac{-(\epsilon + \delta)}{2} \frac{\partial}{\partial z},$$

where e_1, e_2, e_3 are linearly independent at each point of M. Let g be the Riemannain metric defined by

$$g(e_1, e_1) = g(e_2, e_2) = g(e_3, e_3) = \epsilon$$
, $g(e_1, e_3) = g(e_2, e_3) = g(e_1, e_2) = 0$, where $\epsilon = \pm 1$.

Let η be the 1-form defined by $\eta(X) = \epsilon g(X, \xi)$ for any vector field X on M, let ϕ be the (1,1) tensor field defined by $\phi(e_1) = e_2, \ \phi(e_2) = -e_1, \ \phi(e_3) = 0.$

Then by using the linearty of ϕ and g, we have $\phi^2 X = -X + \eta(X)\xi$, with $\xi = e_3$.

Further $g(\phi X, \phi Y) = g(X, Y) - \epsilon \eta(X) \eta(Y)$ for any vector fields X and Y on M. Hence for $e_3 = \xi$, the structure defines an (ϵ) -almost contact structure in R^3 . Let ∇ be the Levi-Civita connection with respect to the metric g, then we have

$$2g(\nabla_X Y, Z) = Xg(Y, Z) + Yg(Z, X) - Zg(X, Y) - g(X, [Y, Z])(4.3)$$
$$-g(Y, [X, Z]) + g(Z, [X, Y]),$$

which is know as Koszul's formula.

We, also have

$$\nabla_{e1}e_3 = -\frac{(\epsilon+\delta)}{z}e_1, \quad \nabla_{e2}e_3 = -\frac{(\epsilon+\delta)}{z}e_2, \quad \nabla_{e1}e_2 = 0,$$

using the above relation, for any vector X on M, we have

 $\nabla_X \xi = -\epsilon \alpha \phi X - \beta \delta \phi^2 X$, where $\alpha = \frac{1}{z}$ and $\beta = -\frac{1}{z}$. Hence (ϕ, ξ, η, g) structure defines the (ϵ, δ) -tran-Sasakian structure in R^3 .

Here ∇ be the Levi-Civita connection with respect to the metric g, then we have

(4.4)
$$[e_1, e_2] = 0$$
, $[e_1, e_3] = -\frac{(\epsilon + \delta)}{z}e_1$, $[e_2, e_3] = -\frac{(\epsilon + \delta)}{z}e_2$. Using (4.3) and (4.4), we have

$$2g(\nabla_{e_1}e_3, e_1) = 2g\left(-\frac{(\epsilon + \delta)}{z}e_1, e_1\right) + 2g(e_2, e_1)$$
$$= 2g\left(-\frac{(\epsilon + \delta)}{z}e_1 + e_2, e_1\right),$$

since $g(e_1, e_2) = 0$. Thus we have

(4.5)
$$\nabla_{e_1} e_3 = -\frac{(\epsilon + \delta)}{z} e_1 + e_2.$$

Again using (4.3), we get

$$2g(\nabla_{e_2}e_3, e_2) = 2g\left(-\frac{(\epsilon + \delta)}{z}e_2, e_2\right) - 2g(e_1, e_2)$$
$$= 2g\left(-\frac{(\epsilon + \delta)}{z}e_2 - e_1, e_2\right),$$

since $(e_1, e_2) = 0$. Therefore we have

(4.6)
$$\nabla_{e_2} e_3 = -\frac{(\epsilon + \delta)}{z} e_2 - e_1.$$

Again from (4.3), we have

(4.7)
$$\nabla_{e_{3}}e_{3} = 0, \quad \nabla_{e_{1}}e_{1} = -\frac{(\epsilon + \delta)}{z}e_{1}, \quad \nabla_{e_{1}}e_{2} = 0$$

$$\nabla_{e_{2}}e_{1} = 0, \quad \nabla_{e_{2}}e_{2} = -\frac{(\epsilon + \delta)}{z}e_{2}, \quad \nabla_{e_{2}}e_{3} = -\frac{(\epsilon + \delta)}{z}e_{2} - e_{1}$$

$$\nabla_{e_{3}}e_{1} = 0, \quad \nabla_{e_{3}}e_{2} = 0, \quad \nabla_{e_{1}}e_{3} = -\frac{(\epsilon + \delta)}{z}e_{1} + e_{2}.$$

The manifold M satisfies (2.5) with $\alpha = \frac{1}{z}$ and $\beta = -\frac{1}{z}$. Hence M is an (ϵ, δ) -trans-Sasakian manifolds. Using (4.5), (4.6) and (4.7) the non-vanishing components of the curvature tensor are computed as follows

(4.8)
$$R(e_1, e_3)e_3 = \frac{(\epsilon + \delta)}{z^2}e_1, \quad R(e_3, e_1)e_3 = -\frac{(\epsilon + \delta)}{z^2}e_1,$$

$$R(e_2, e_3)e_3 = \frac{(\epsilon + \delta)}{z^2}e_1, \quad R(e_3, e_2)e_3 = -\frac{(\epsilon + \delta)}{z^2}e_1$$

 $R(e_2,e_3)e_3=rac{(\epsilon+\delta)}{z^2}e_1,\quad R(e_3,e_2)e_3=-rac{(\epsilon+\delta)}{z^2}e_1,$ The vectors e_1,e_2,e_3 form a basis of M and therefore any vector X can be written as $X = b_1e_1 + b_2e_2 + b_3e_3$, where $b_i \in \mathbb{R}^3$, i = 1, 2, 3. Now, from (4.8), we have

$$(\nabla_X R)(e_1, e_3)e_3 = -2\frac{(\epsilon^2 + \delta\epsilon)}{z^3}b_3e_1,$$

$$(\nabla_X R)(e_2, e_3)e_3 = -2\frac{(\epsilon^2 + \delta\epsilon)}{z^3}b_3e_2,$$

where $A(X) = -2\frac{(\epsilon^2 + \delta \epsilon)}{z^3}b_3$, is a non-vanishing 1-form.

From the above expresion of the curvature tensor we can also obtain

$$S(e_1, e_1) = g(R(e_1, e_3)e_3, e_1) = g\left(\frac{(\epsilon + \delta)}{z^2}e_1, e_1\right)$$
$$= g\left(\frac{(\epsilon + \delta)}{z^2}e_1, e_1\right)$$
$$S(e_1, e_1) = \frac{(\epsilon + \delta)}{z^2}\epsilon$$

or

$$S(e_1, e_1) = \frac{(\epsilon^2 + \delta \epsilon)}{z^2}.$$

Similarly, we get

$$S(e_2, e_2) = S(e_3, e_3) = \frac{(\epsilon^2 + \delta \epsilon)}{z^2}$$

also

$$(\nabla_X S)(e_1, e_3)e_3 = (\nabla_X S)(e_1, e_2)e_2 = 0,$$

since $g(e_1, e_3) = g(e_1, e_2) = 0$.

This implies that there exist a Ricci-recurrent (ϵ, δ) -trans-Sasakian manifold of dimension 3. Since

$$S(e_i, e_i) = \frac{(\epsilon + \delta)}{2} \epsilon,$$

or

$$S(e_1, e_1) + S(e_2, e_3) + S(e_3, e_3) = -3\frac{(\epsilon^2 + \delta\epsilon)}{z^2}.$$

Therefore, we have

$$S(e_i, e_i) = -\frac{(\epsilon + \delta)}{2}g(e_i, e_i),$$

for i=1,2,3 , and $\alpha=\frac{1}{z},\,\beta=-\frac{1}{z}.$ Hence from theorem (4.3), M is an Einstein manifold.

References

- [1] Blair, D. E., Contact manifolds in Riemannian geometry, Lecture notes in Math ematics 509, Springer Verlag, Berlin-New York, 1976.
- [2] Bejancu, A. Duggal, K. L., Real Hypersurfaces on indefinite Kahler manifolds. ,Int. Math. Math. Sci,16(3),(1993), 545-556.
- [3] De, U. C., Sarkar, A., On (ϵ) Kenmotsu manifolds, *Hadronic journal*, **32** (2009), 231-242.
- [4] De, U. C., Guha, N. and Kamilya, D., On generalized Ricci-recurrent manifolds, *Tensor (N.S)*, **56** (1995), no. 3, 312-317.
- [5] Janssens, D. and Vanhecke, L., Almost contact structures and curvature tensors, Kodai. Math. J, 4 (1981), no. 1, 1-27.
- [6] Kumar, R., Rani, R. and Nagaich, R. K., On sectional curvarture of (ϵ) -Sasakian manifolds, Int. J. Math. Math. Sci. (2007), ID. 93562.

- [7] Matsomoto, K., Mihai, I. and Rosca, R., A certain locally conformal almost cosymplectic manifold and its application, *Tensor (N.S.)*, **51** (1992), no. 1, 91-102.
- [8] Nagaraja, H. G., Premalatha, C. R. and Somashekara, G., On an (ϵ, δ) -trans-Sasakian manifolds, *Proced. Estonian Acced. Sci.* **1** (61), (2012), 20-28.
- [9] Sik-Kim, J., Parsad, R. and Tripathi, M. M., On generalized Ricci-recurrent trans-Sasakian manifold, *J. Korean. Math. Soc.* **39** (2002), no. 6, 953-961.
- [10] Tripathi, M. M., Erol, K. E., Perktas, S. Y. and Keles, S., Indefinite almost paracontact manifolds, Int. J. Math. Math. Sci. (2010), Art. ID: 846195, DOI, 10.1155/2010/846195.
- [11] Xufeng, X. and Xiaolic, C., Two theorems on (ϵ) -Sasakian manifolds, *Int. J. Math. Math. Sci.*, **21** (2), 249-254, (1998).

Author information

Mohd. Danish Siddiqi, Abdul Haseeb and Mobin Ahmad, Department of Mathematics, Jazan University, College of Science, Kingdom of Saudi Arabia.

E-mail: mohammedanall@gmail.com; malikhaseeb80@gmail.com; mobinahmad68@gmail.com

Received: February 7, 2014.

Accepted: May 23, 2014.