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Abstract Some common fixed point results satisfying a generalized weak contractive condi-
tion in the framework of convex metric spaces are derived. As applications, we also obtained
some results on the set of best approximation for such class of mappings. The proved results
generalize and extend various known results in the literature.

1 Introduction and Preliminaries

Fixed point theory is an old and rich branch of analysis and has a large number of applications.
Fixed points satisfying some contractive or nonexpansive type conditions have been studied by
many researchers and applied to various mathematical problems (see e.g. [1]- [26] and references
cited therein). Alber and Guerre-Delabriere [2] introduced the concept of weakly contractive
mappings and proved the existence of fixed points for single-valued weakly contractive mappings
in Hilbert spaces. Thereafter, in 2001, Rhoades [24] proved the fixed point theorem which
is one of the generalizations of Banach’s Contraction Mapping Principle, because the weakly
contractions contains contractions as a special case and he also showed that some results of [2]
are true for any Banach space. In fact, weakly contractive mappings are closely related to the
mappings of Boyd and Wong [5] and of Reich types [23]. The present work is also a step in this
direction in the frame work of convex metric spaces.

First, we recall some basic definitions and notations.
For a metric space (X, d), a continuous mapping W : X × X × [0, 1] → X is said to be a

convex structure on X if for all x, y ∈ X and λ ∈ [0, 1],

d(u,W (x, y, λ)) ≤ λd(u, x) + (1− λ)d(u, y)

holds for all u ∈ X . The metric space (X, d) together with a convex structure is called a convex
metric space [26].

A subset K of a convex metric space (X, d) is said to be a convex set [26] if W (x, y, λ) ∈ K
for all x, y ∈ K and λ ∈ [0, 1]. The set K is said to be p-starshaped [18] where p ∈ K, provided
W (x, p, λ) ∈ K for all x ∈ K and λ ∈ [0, 1] i.e. the segment

[p, x] = {W (x, p, λ) : λ ∈ [0, 1]}

joining p to x is contained in K for all x ∈ K. K is said to be starshaped if it is p-starshaped for
some p ∈ K.

Clearly, each convex set is starshaped but converse is not true.
A convex metric space (X, d) is said to satisfy Property (I) [18] if for all x, y, q ∈ X and

λ ∈ [0, 1],
d(W (x, q, λ),W (y, q, λ)) ≤ λd(x, y)

holds.
A normed linear spaceX and each of its convex subsets are simple examples of convex metric

spaces with W given by W (x, y, λ) = λx + (1 − λ)y for x, y ∈ X and 0 ≤ λ ≤ 1. There are
many convex metric spaces which are not normed linear spaces (see [18], [26]). Property (I) is
always satisfied in a normed linear space.

Example 1.1. [26] Let I be the unit interval [0, 1] and X be the family of closed intervals [ai, bi]
such that 0 ≤ ai ≤ bi ≤ 1. For Ii = [ai, bi], Ij = [aj , bj ] and λ (0 ≤ λ ≤ 1), define a mapping
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W by W (Ii, Ij , λ) = [λai +(1− λ)aj , λbi +(1− λ)bj ] and define a metric d in X by Hausdorff
distance i.e.

d(Ii, Ij) = sup
a∈I

{∣∣∣∣ inf
b∈Ii
{|a− b|} − inf

c∈Ij
{|a− c|}

∣∣∣∣}
The metric space (X, d) along with the convex structure W is a convex metric space.

Example 1.2. [1] Let X = {(x1, x2) ∈ R2 : x1, x2 > 0}. For x = (x1, x2), y = (y1, y2) in X ,
and α ∈ [0, 1], define a mapping W : X ×X × [0, 1]→ X by

W (x, y, α) =

(
αx1 + (1− α)y1,

αx1x2 + (1− α)y1y2

αx1 + (1− α)y1

)
,

and a metric d : X×X → [0,∞) by d(x, y) = |x1−y1|+ |x1x2−y1y2|. Then (X, d) is a convex
metric space but not a normed linear space.

For a nonempty subsetM of a metric space (X, d) and x ∈ X , an element y ∈M is said to be
a best approximation of x to M or a best M -approximant if d(x, y) = dist(x,M) ≡ inf{d(x, y) :
y ∈M}. The set of all such y ∈M is denoted by PM (x).

Let M be a nonempty subset of a metric space (X, d), a point x ∈ M is a common fixed
(coincidence) point of f and T if x = fx = Tx(fx = Tx). The set of fixed points (re-
spectively, coincidence points) of f and T is denoted by F (f, T ) (respectively, C(f, T )). The
mappings T, f : M → M are called commuting if Tfx = fTx for all x ∈ M ; compati-
ble if limn→∞ d(Tfxn, fTxn) = 0 whenever {xn} is a sequence such that limn→∞ Txn =
limn→∞ fxn = t for some t in M ; weakly compatible if they commute at their coincidence
points, i.e., if fTx = Tfx whenever fx = Tx.

The ordered pair (T, I) of two self maps of a metric space (X, d) is called a Banach operator
pair [15], if the set F (I) is T -invariant, i.e. T (F (I)) ⊆ F (I). Obviously, a commuting pair
(T, I) is a Banach operator pair but not conversely. If (T, I) is a Banach operator pair then (I, T )
need not be Banach operator pair. If the self maps T and I of X satisfy d(ITx, Tx) ≤ kd(Ix, x),
for all x ∈ X and k ≥ 0, then (T, I) is a Banach operator pair (see [6], [15], [17]).

Example 1.3. (see [17])Consider M = R2 with usual metric d((x1, y1), (x2, y2)) = |x1 − x2|+

|y1 − y2|, (x1, y1), (x2, y2) ∈ R2. Define T and I on M as T (x, y) = (x3 + x − 1,
3
√

x2+y3−1
3 )

and I(x, y) = (x3 + x − 1, 3
√
x2 + y3 − 1). F (T ) = (1, 0), F (I) = {(1, y) : y ∈ R} and

C(I, T ) = {(x, y) : y = 3
√

1− x2, x ∈ R}. T (F (I)) = {T (1, y) : y ∈ R}={(1, y3 ) : y ∈ R} ⊆
{(1, y) : y ∈ R} = F (I). Thus (T, I) is a Banach operator pair, which is not weakly compatible
as T and I do not commute on the set C(I, T ) and hence it is not compatible.

Khan et al. [20] initiated the use of a control function that alters distance between two points
in a metric space, which they called an altering distance function.

A function µ : [0,∞) → [0,∞) is called an altering distance function if the following
properties are satisfied:

(i) µ is monotone increasing and continuous;
(ii) µ(t) = 0 if and only if t = 0.
Suppose that T and f are self-mappings of a metric space (X, d). A mapping T is said to be

(µ, ψ)-generalized f -weakly contractive (see [8]) if for each x, y ∈ X ,

µ(d(Tx, Ty)) ≤ µ(1
2
[d(fx, Ty) + d(fy, Tx)])− ψ(d(fx, Ty), d(fy, Tx)), (1.1)

holds, where µ : [0,∞) → [0,∞) is an altering distance function and ψ : [0,∞)2 → [0,∞) is a
continuous mapping such that ψ(x, y) = 0 if and only if x = y = 0.

Note. 1. If f = identity mapping, then a (µ, ψ)-generalized f -weakly contractive mapping
is a (µ, ψ)-generalized weakly contractive mapping.

2. If µ(t) = t, then a (µ, ψ)-generalized f -weakly contractive mapping is a generalized f -
weakly contractive mapping (see [7]) and further if f = identity mapping, then a generalized
f -weakly contractive mapping is a generalized weakly contractive mapping (see [16]).

3. If ψ(x, y) = k (x + y), 0 < k < 1
2 , then a generalized weakly contractive mapping is a

Chatterjea mapping (see [14]).
The purpose of this work is to prove some common fixed point theorems for (µ, ψ)-generalized

f -weakly contractive mappings in convex metric spaces. As applications, some results on the set
of best approximation for this class of mappings are also obtained. The proved results generalize
and extend some well known results in the literature.



SOME COMMON FIXED POINT THEOREMS 295

2 Main Results

To start with we need the following result of Chandok [8].

Lemma 2.1. Let M be a subset of a metric space (X, d) and f and T are self-mappings of M
such that cl T (F (f)) ⊆ F (f). If cl T (M) is complete, F (f) is nonempty and T is a (µ, ψ)-
generalized f -weakly contractive mapping for all x, y ∈ F (f), then F (T )∩F (f) is a singleton.

Theorem 2.2. Let M be a nonempty subset of a convex metric space (X, d) with property (I) and
T , f are self mappings of M . Suppose that F (f) is q-starshaped, cl T (F (f)) ⊆ F (f), cl T (M)
is compact and T satisfies

µ(d(Tx, Ty)) ≤ µ(
1
2
[dist(fx, [Ty, q]) + dist(fy, [Tx, q])])−

ψ(dist(fx, [Ty, q]), d(fy, [Tx, q])), (2.1)

where µ : [0,∞) → [0,∞) is continuous and monotonic increasing function with µ(at) ≤
µ(t), 0 < a ≤ 1, t > 0 and µ(t) = 0 if and only if t = 0; and ψ : [0,∞)2 → [0,∞) is a
continuous mapping such that ψ(x, y) = 0 if and only if x = y = 0, for all x, y ∈ M . Then
M ∩ F (T ) ∩ F (f) 6= ∅.

Proof. For each n, define Tn : M → M by Tn(x) = W (Tx, q, kn), x ∈ M where (kn) is a
sequence in (0, 1) such that kn → 1. Since F (f) is q-starshaped and cl T (F (f)) ⊆ F (f), we
have

Tn(x) =W (Tx, q, kn) =W (Tx, fq, kn) ∈ F (f)
for all x ∈ F (f) and so cl Tn(F (f)) ⊆ F (f) (respectively, wcl Tn(F (f)) ⊆ F (f)) for each n.
Consider

µ(d(Tnx, Tny)) = µ(d(W (Tx, q, kn),W (Ty, q, kn)))

≤ µ(knd(Tx, Ty))

≤ µ(d(Tx, Ty))

≤ µ(
1
2
[dist(fx, [Ty, q]) + dist(fy, [Tx, q])])−

ψ(dist(fx, [Ty, q]), dist(fy, [Tx, q])),

for all x, y ∈ F (f). Thus Tn is a (µ, ψ)-generalized f -weakly contractive mapping. As cl T (M)
is compact, cl Tn(M) is compact for each n and hence complete. Now by Lemma 2.1, there
exists xn ∈M such that xn is a common fixed point of f and Tn for each n. The compactness of
cl T (M) implies there exists a subsequence {Txni

} of {Txn} such that Txni
→ z ∈ cl T (M).

Since {Txn} is a sequence in T (F (f)), z ∈ cl T (F (f)) ⊆ F (f). Now, as kni → 1, we have

xni = Tnixni =W (Txni , q, kni)→ z

and d(fxni , Txni) = d(xni , Txni)→ 0. Further, we have

µ(d(Txni
, T z)) ≤ µ(

1
2
[dist(fxni

, [Tz, q]) + dist(fz, [Txni
, q])])−

ψ(dist(fxni
, [Tz, q]), dist(fz, [Txni

, q]))

= µ(
1
2
[dist(xni

, [Tz, q]) + dist(fz, [Txni
, q])])−

ψ(dist(xni
, [Tz, q]), dist(fz, [Txni

, q]))

= µ(
1
2
[d(xni

, T z) + d(fz, Txni
)])−

ψ(d(xni , T z), d(fz, Txni)),

on taking limit, we get z = Tz and so M ∩ F (T ) ∩ F (f) 6= ∅.

Let M be a non-empty subset of a metric space (X, d). Suppose that C = PM (u) ∩ Cf
M (u),

where Cf
M (u) = {x ∈M : fx ∈ PM (u)}.

Corollary 2.3. Let T , f are self mappings of convex metric space (X, d) with property (I). If
u ∈ X , D ⊆ C, G = D ∩ F (f) is q-starshaped, cl T (G) ⊆ G, cl T (D) is compact and T
satisfies the inequality (2.1) for all x, y ∈ D, then PM (u) ∩ F (f, T ) is nonempty.
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Corollary 2.4. Let T , f are self mappings of convex metric space (X, d) with property (I). If
u ∈ X , D ⊆ PM (u), G = D ∩ F (f) is q-starshaped, cl T (G) ⊆ G, cl T (D) is compact and T
satisfies the inequality (2.1) for all x, y ∈ D, then PM (u) ∩ F (f, T ) is nonempty.

If µ(t) = t, we have the following results.

Corollary 2.5. Let M be a nonempty subset of a convex metric space (X, d) with property (I)
and T , f are self mappings of M . Suppose that F (f) is q-starshaped, cl T (F (f)) ⊆ F (f),
cl T (M) is compact and T satisfies

d(Tx, Ty) ≤ 1
2
[dist(fx, [Ty, q]) + dist(fy, [Tx, q])]−

ψ(dist(fx, [Ty, q]), dist(fy, [Tx, q])), (2.2)

where ψ : [0,∞)2 → [0,∞) is a continuous mapping such that ψ(x, y) = 0 if and only if
x = y = 0, for all x, y ∈M . Then M ∩ F (T ) ∩ F (f) 6= ∅.

Corollary 2.6. Let T , f are self mappings of a convex metric space (X, d) with property (I). If
u ∈ X , D ⊆ C, G = D ∩ F (f) is q-starshaped, cl T (G) ⊆ G, cl T (D) is compact and T
satisfies the inequality (2.2) for all x, y ∈ D, then PM (u) ∩ F (f, T ) is nonempty.

Corollary 2.7. Let T , f are self mappings of a convex metric space (X, d) with property (I). If
u ∈ X , D ⊆ PM (u), G = D ∩ F (f) is q-starshaped, cl T (G) ⊆ G, cl T (D) is compact and T
satisfies the inequality (2.2) for all x, y ∈ D, then PM (u) ∩ F (f, T ) is nonempty.

Remark 2.8. Theorem 2.2 extends and generalizes the corresponding results of [4], [6], [7], [8],
[14], [15], [16], [19], and [21].

Let G0 denote the class of closed convex subsets containing a point x0 of a convex metric
space (X, d). For M ∈ G0 and p ∈ X , let Mp = {x ∈ M : d(x, x0) ≤ 2d(p, x0)}; and
PM (p) = {x ∈M : d(p, x) = dist(p,M)} be the set of best approximants to p in M .

Note PM (p) ⊆Mp since if x ∈ PM (p) then

d(x, x0) ≤ d(x, p) + d(p, x0) = dist(p,M) + d(p, x0) ≤ 2d(p, x0).

Proposition 2.9. If M is a closed convex subset of a convex metric space (X, d) and x ∈ X , then
PM (x) is closed and convex.

Proof. Let y, z ∈ PM (x) and λ ∈ [0, 1]. Consider

d(x,W (y, z, λ)) ≤ λd(x, y) + (1− λ)d(x, z)
= λdist(x,M) + (1− λ)dist(x,M)

= dist(x,M)

≤ d(x,W (y, z, λ)) as W (y, z, λ) ∈M.

Therefore, d(x,W (y, z, λ)) = dist(x,M) and so W (y, z, λ) ∈ PM (x). Thus PM (x) is con-
vex and it is easy to see its closedness.

Theorem 2.10. Let T , g are self mappings of a convex metric space (X, d) with property (I). If
p ∈ X and M ∈ G0 such that T (Mp) ⊆M , cl T (Mp) is compact, and d(Tx, p) ≤ d(x, p) for all
x ∈ Mp, then PM (p) is nonempty, closed and convex with T (PM (p)) ⊆ PM (p). If, in addition,
D is a subset of PM (p), G = D ∩ F (g) is q-starshaped, cl T (G) ⊆ G, and T satisfies inequality
(2.1) for all x, y ∈ D, then PM (p) ∩ F (g, T ) is nonempty.

Proof. If p ∈M then the result is clear. So assume that p /∈M . If x ∈M\Mp, then

d(x, x0) > 2d(p, x0)

and so
d(p, x) ≥ d(x, x0)− d(p, x0) > d(p, x0) ≥ dist(u,M).

Thus
α = dist(p,Mp) = dist(p,M) ≤ d(p, x0).

Since cl (T (Mp)) is compact, and the distance function is continuous, there exists z ∈
cl (T (Mp)) such that

β = dist(u, cl (T (Mp))) = d(p, z).
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Hence

α = dist(p,Mp) ≤ dist(p, cl (T (Mp))) as T (Mp) ⊆M
= β

≤ dist(p, T (Mp))

≤ d(p, Sx)

≤ d(p, x)

for all x ∈Mp. Therefore, α ≤ β ≤ dist(p,Mp) = dist(p,M) = α, α = β = dist(p,M), i.e.

dist(p,M) = dist(u, cl (T (Mp))) = d(p, z),

i.e. z ∈ PM (p) and so PM (p) is nonempty. The closedness and convexity of PM (p) follows
from that of M .

Now to prove T (PM (p)) ⊆ PM (p), let y ∈ T (PM (p)). Then y = Tx for x ∈ PM (p).
Consider

d(p, y) = d(p, Tx) ≤ d(p, x) = dist(p,M)

and so y ∈ PM (p) as PM (p) ⊂Mp ⇒ T (PM (p)) ⊂M i.e. y ∈M .
The compactness of cl T (Mp) implies that cl T (D) compact. Hence the result follows from

Corollary 2.4.

Corollary 2.11. Let T , g are self mappings of a convex metric space (X, d) with property (I). If
p ∈ X and M ∈ G0 such that T (Mp) ⊆M , cl T (Mp) is compact, and d(Tx, p) ≤ d(x, p) for all
x ∈ Mp, then PM (p) is nonempty, closed and convex with T (PM (p)) ⊆ PM (p). If, in addition,
D is a subset of PM (p), G = D ∩ F (g) is q-starshaped, and closed, (T, g) is a Banach operator
pair on D, and T satisfies inequality (2.1) for all x, y ∈ D, then PM (p) ∩ F (g, T ) is nonempty.

If µ(t) = t, we have the following results.

Corollary 2.12. Let T , g are self mappings of a convex metric space (X, d) with property (I). If
p ∈ X and M ∈ G0 such that T (Mp) ⊆M , cl T (Mp) is compact, and d(Tx, p) ≤ d(x, p) for all
x ∈ Mp, then PM (p) is nonempty, closed and convex with T (PM (p)) ⊆ PM (p). If, in addition,
D is a subset of PM (p), G = D ∩ F (g) is q-starshaped, cl T (G) ⊆ G, and T satisfies inequality
(2.2) for all x, y ∈ D, then PM (p) ∩ F (g, T ) is nonempty.

Corollary 2.13. Let T , g are self mappings of a convex metric space (X, d) with property (I). If
p ∈ X and M ∈ G0 such that T (Mp) ⊆M , cl T (Mp) is compact, and d(Tx, p) ≤ d(x, p) for all
x ∈ Mp, then PM (p) is nonempty, closed and convex with T (PM (p)) ⊆ PM (p). If, in addition,
D is a subset of PM (p), G = D ∩ F (g) is q-starshaped, and closed, (T, g) is a Banach operator
pair on D, and T satisfies inequality (2.2) for all x, y ∈ D, then PM (p) ∩ F (g, T ) is nonempty.

Remark 2.14. Theorem 2.10 extends and generalizes the corresponding results of [3], [4], [8],
[19], [22] and [25].

Remark 2.15. It may be noted that the assumption of linearity or affinity for I is necessary in
almost all known results about common fixed points of maps T , I such that T is I-nonexpansive
under the conditions of commuting, weakly commuting, R-subweakly commuting or compati-
bility (see [3], [6], [15], [22], [25] and the literature cited therein), but our results in this paper
are independent of the linearity or affinity.
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