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Abstract. Representations of posets in certain modules are used to discuss direct decomposi-
tions of almost completely decomposable groups. For almost completely decomposable groups
with p-primary regulator quotients direct decompositions are unique up to near–isomorphism.
Among the categories of rigid almost completely decomposable groups with p-primary homo-
cyclic regulator quotients we determine those that contain indecomposable groups of any finite
rank in which case a complete description is hopeless, and for the remaining cases we completely
determine the near–isomorphism classes of indecomposable groups.

1 Introduction

Representations of finite posets S over Ze = Z/eZ are intimately connected with almost com-
pletely decomposable groups, [Mader00, Ch.8]. An almost completely decomposable group is
a torsion-free abelian group of finite rank that contains a completely decomposable subgroup of
finite index. An almost completely decomposable group G contains a fully invariant completely
decomposable subgroup of finite index, the regulator R := R(G). The regulator quotient G/R
is a Ze-module where e = exp(G/R) denotes the exponent of G/R. The Ze-module R/eR
contains UG∗ := eG/eR ∼= G/R, and UG∗ together with certain other distinguished submodules
form the representation UG associated with G. The group G is indecomposable if and only if its
representation UG is indecomposable, [Mader00, Corollary 10.1.7].

There is clear evidence that isomorphism is an unworkable equivalence relation for almost
completely decomposable groups while near–isomorphism works very well. E.g., [Arnold82]
showed that near–isomorphic (torsion-free abelian) groups of finite rank have the same decom-
position properties. Also near–isomorphic almost completely decomposable groups have iso-
morphic regulators and regulator quotients, [Mader00, Theorem 9.2.6]. Two almost completely
decomposable groups G and H with regulators isomorphic to R and isomorphic regulator quo-
tients of exponent e can be viewed in the representation setting R/eR differing only by the
submodules UG∗ and UH∗ . It turns out that G and H are nearly isomorphic if and only if their
representations are isomorphic, [Mader00, Theorem 9.2.4].

A particularly nice subclass of almost completely decomposable groups is the class of almost
completely decomposable groups with p-primary regulator quotient. While almost completely
decomposable groups in general may have wildly different direct decompositions, for groups
with primary regulator quotients the direct decompositions with indecomposable summands are
unique up to near–isomorphism, [Faticoni-Schultz96]. This means that a classification of these
groups amounts to determining their near–isomorphism classes of indecomposable such groups.
Yet, even for these groups the associated representations mostly have unbounded representation
type, i.e., there exist indecomposable groups of arbitrarily large finite rank, and these groups are
not amenable to classification.

If R =
⊕

ρ∈Tcr(R)Rρ is the decomposition of the completely decomposable group R with
homogeneous summands Rρ 6= 0 of type ρ, then Tcr(R) is the critical typeset of R. An almost
completely decomposable group G is rigid if Tcr(R(G)) is an antichain. We settle completely
the case of rigid almost completely decomposable groups with p-primary homocyclic regulator
quotient, i.e., the regulator quotient is the direct sum of cyclic groups all of the same order pe for
some e ≥ 1. A type τ is p-reduced if pA 6= A for any rank-1 group of type τ .

Let e be a positive integer and Sw = {τ1, . . . , τw} an anti-chain of p-reduced types and
of width w. By hc′(Sw, pe) we denote the category of rigid homocyclic almost completely
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decomposable groups G with critical typeset Tcr(G) = Sw and regulator quotient G/R(G) that
is homocyclic of exponent pe.

The main result of this paper is Theorem 1.1. It will be seen in the Section 3 how almost
completely decomposable groups can be described in terms of “representing matrices”.

Theorem 1.1.

1. For w ≥ 4 and any e ≥ 1, the category hc′(Sw, pe) has unbounded representation type.

2. For w = 3 and e ≥ 3, the category hc′(Sw, pe) has unbounded representation type.

3. The category hc′(S2, p
e) contains up to near–isomorphism exactly one indecomposable

group with representing matrix
[
1
∣∣∣∣1].

4. The category hc′(S3, p) contains up to near–isomorphism exactly one indecomposable group
with representing matrix

[
1
∣∣∣∣1∣∣∣∣1], and one indecomposable group with representing matrix[

1
∣∣∣∣ 0

∣∣∣∣ 1
0
∣∣∣∣ 1

∣∣∣∣ 1

]
.

5. The category hc′(S3, p
2) contains up to near–isomorphism exactly the fourteen indecom-

posable groups with representing matrices listed in Theorem 6.3.

Proof. (1) and (2): Corollary 5.9.
(3): Trivial.
(4): Theorem 6.2.
(5): Theorem 6.7.

Theorem 6.3 overlaps with [Mouser93] and confirms Mouser’s assertion that indecomposable
groups in hc′(S3, p

2) have rank ≤ 9. However, Mouser lists indecomposable representations that
do not satisfy the Regulator Criterion, and some indecomposable representations are missing.
We therefore produce independent proofs.

The theory of almost completely decomposable groups with two critical types S = (1, 1) is
well-known and due to [Arnold73], [Dugas90], [Lewis93]. Indecomposable groups in hc′(S2, p

e)
have rank 2 and two indecomposable such groups are nearly isomorphic if and only if they have
the same critical typeset and isomorphic regulator quotients, [Mader00, Section 12.3].

2 Almost completely decomposable groups

Details on almost completely decomposable groups and representation of posets are found in
[Mader00] and [Arnold00]. All “groups” in this paper are torsion-free abelian groups of finite
rank.

A completely decomposable subgroup R of an almost completely decomposable group G is
a regulating subgroup of G if |G/R| is minimal. The regulator R(G) of G is the intersection
of all regulating subgroups of G, a fully invariant, completely decomposable subgroup of finite
index in G, [Burkhardt84], [Mader00, Corollary 4.4.5]. Let R := R(G) =

⊕
ρ∈Tcr(R)Rρ be the

decomposition of the regulator R with homogeneous summands Rρ 6= 0 of type ρ. Then Tcr(R)
is the critical typeset of R and of G, Tcr(G) := Tcr(R). Let (S, pe) denote the category of almost
completely decomposable groups G with Tcr(G) ⊆ S and regulator quotient peG ⊆ R(G).

Given a prime p, two almost completely decomposable groups G and H are isomorphic at p
if there exist f : G→ H , g : H → G, and an integer n prime to p with fg = n and gf = n. The
groups G and H are nearly isomorphic, G ∼=nr H , if they are isomorphic at p for every prime p,
[Lady75].

Lemma 2.1. [Arnold00, Lemma 5.4.1] Let S a finite poset of types and assume G,H ∈ (S, pe).

1. G and H are nearly isomorphic if and only if G and H are isomorphic at p.

2. G is an indecomposable group if and only if G is isomorphic at p to an indecomposable
group.

Another substantial simplification occurs when the almost completely decomposable group
contains a unique regulating subgroup which then coincides with the regulator. We then speak
of a regulating regulator. This happens when the critical typeset is ∨-free or, equivalently,
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an inverted forest, [Mutzbauer93, 1.4], [Mader00, Proposition 4.5.4], and in particular in the
rigid case. In this case the regulator is easily characterized among the completely decomposable
subgroups of finite index.

Lemma 2.2. [Mader00, Theorem 4.4.6] Suppose that G is an almost completely decomposable
group with regulating regulator. A completely decomposable subgroup A of finite index in the
group G is the regulator of G if and only if ∀ τ ∈ Tcr(G) : G(τ) = A(τ).

3 Representations and almost completely decomposable groups

Let G be a group with regulator R := R(G) =
⊕

ρ∈Tcr(R)Rρ and peG ⊆ R. Define

: R→ R/peR : x = x+ peR, so R = R/peR.

Set S := Tcr(G). The representation UG of G is given by

UG =
(
R,R(σ), peG : σ ∈ Sop

)
,

where UG∗ := peG is the distinguished submodule mentioned earlier.
The construction of UG makes sense for any completely decomposable subgroup of finite in-

dex in G. It is essential to use the regulator because the construction of UG must be functorial on
a suitable category and therefore a canonical choice of the completely decomposable subgroup
of finite index is needed. Furthermore, as R(G) is fully invariant in G, we have the well-defined
induced map

: EndG→ EndR : f(x) := f(x)

and the crucial Lemma 3.4 rests on lifting certain maps in EndR to EndG.
The categories of interest in this paper are hc(Sw, pe), a generalization of hc′(Sw, pe). We

precede the discussion of hc(Sw, pe) by establishing properties of groups whose critical typeset
is contained in an inverted forest.

Lemma 3.1.

1. Let S be a inverted forest of types and G an almost completely decomposable group with
Tcr(G) ⊆ S. Then G has a regulating regulator and R(G) =

∑
σ∈S G(σ).

2. Let S be an inverted forest and let G and H be almost completely decomposable groups
with Tcr(G),Tcr(H) ⊆ S. Then

• Tcr(G⊕H)) ⊆ S, G⊕H has a regulating regulator, R(G⊕H) = R(G)⊕R(H), and
• ∀φ ∈ Hom(G,H) : φ(R(G)) ⊆ R(H).

Proof. (1) Set R := R(G). By Lemma 2.2,

R =
∑
σ∈Tcr(G)R(σ) =

∑
σ∈Tcr(G)G(σ) ⊆

∑
σ∈S G(σ).

To obtain the claimed equality we need to show that ∀σ ∈ S : G(σ) ⊆ R.
Let σ ∈ S. Write R(σ) =

⊕
σ≤ρ∈Tcr(G)Rρ and suppose that x ∈ G(σ). As G(σ) = R(σ)∗,

there exists 0 6= m ∈ N such that mx ∈ R(σ). Hence mx = yτ1 + · · ·+yτk where 0 6= yτi ∈ Rτi .
It follows that ∀ i : σ ≤ tpx = tpmx =

∧
(τ1, . . . , τk) ≤ τi. Using that S is an inverted forest

it follows that the τi form a chain and without loss of generality σ ≤ τ1 < · · · < τk. Hence
tpx = tpmx = τ1 and G(σ) = G(τ1) = R(τ1) ⊆ R.

(2) We have Tcr(G ⊕ H) = Tcr(G) ∪ Tcr(H) ⊆ S, hence G, H and G ⊕ H have regulating
regulators. But R(G)⊕ R(H) is a regulating subgroup of G⊕H by the definition of regulating
subgroup in terms of Butler complements, [Mader00, Definition 4.1.5], and it follows that R(G⊕
H) = R(G)⊕ R(H). The second claim follows immediately from (1).

We now formally introduce the category hc(Sw, pe) where Sw is an antichain of width w
of p-reduced types. The objects of hc(Sw, pe) are the almost completely decomposable groups
G with Tcr(G) ⊆ Sw and peG ⊆ R(G), the morphisms of hc(Sw, pe) are the ordinary group
homomorphisms.

Lemma 3.2.

1. Every G ∈ hc(Sw, pe) has a regulating regulator and R(G) =
∑
σ∈Sw G(σ).
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2. hc(Sw, pe) is closed under summands and (finite) direct sums.

3. If G,H ∈ hc(Sw, pe), then R(G⊕H) = R(G)⊕ R(H).

4. If G,H ∈ hc(Sw, pe), then ∀φ ∈ Hom(G,H) : φ(R(G)) ⊆ R(H).

Proof. (1) is a special case of Lemma 3.1(1). (3) and (4) are special cases of Lemma 3.1(2).
(2) G⊕H

R(G⊕H)
∼= G

R(G) ⊕
H

R(H) is homocyclic of exponent dividing pe, thus G⊕H ∈ hc(Sw, pe).
Now suppose that G ∈ hc(Sw, pe) and G = G1 ⊕G2. Then Tcr(Gi) ⊆ Tcr(G) ⊆ Sw. Hence

bothGi have regulating regulators and R(G) = R(G1)⊕R(G2). As before, G
R(G)

∼= G1
R(G1)

⊕ G2
R(G2)

hence Gi/R(Gi) is homocyclic of exponent dividing pe, showing that Gi ∈ hc(Sw, pe).

When the regulator is regulating, the case of interest here, the regulator can be easily recog-
nized in the representation of G.

Lemma 3.3. [Mader00, Corollary 8.1.12] Regulator Criterion. Let G be an almost completely
decomposable group with regulating regulator. A completely decomposable subgroup R of G
with finite index inG and eG ⊆ R is the regulator ofG if and only if ∀ τ ∈ Tcr(G) : eG∩R(τ) =
0.

By definition every group G ∈ hc(Sw, pe) has p-reduced critical types, i.e., if R := R(G) =⊕
ρ∈Tcr(G)Rρ, then ∀ τ ∈ Tcr(G) : pRτ 6= Rτ . It follows that R =

⊕
ρ∈Tcr(R)Rρ is a free module

over Zpe and R(τ) =
⊕

ρ>τ Rρ is free as well. Furthermore, peG = peG/peR ∼= G/R is a free
Zpe-module.

Define hcRep(Sw,Zpe) to be the category of representations U = (U0, Uσ, U∗ : σ ∈ Sop)
such that for each σ ∈ S, there is a finitely generated free Zpe-module Vσ with U0 =

⊕
σ∈S Vσ,

Uσ =
⊕

σ≤ρ∈S Vρ, Uτ a summand of Uσ whenever σ ≤ τ in S, U∗ a free submodule of U0, and
Uσ ∩ U∗ = 0 for each σ ∈ S. We set rkU = rkU0.

Morphisms on U = (U0, Uσ, U∗ : σ ∈ Sop) to W = (W0,Wσ,W∗ : σ ∈ Sop) are Zpe-
homomorphisms f : U0 → W0 with f(Uσ) ⊆ Wσ for each σ ∈ S ∪ {∗}. The category
hcRep(Sw,Zpe) is additive and has biproducts. A representationU is indecomposable if and only
if 0 and 1 are the only idempotents of End(U), the endomorphism ring of U in hcRep(S,Zpe).

Lemma 3.4. Let S be an inverted forest of types.

1. The assignment of near–isomorphism classes of objects of hc(S, pe) to isomorphism classes
of objects of hcRep(S,Zpe) given by

[G] 7→ [UG] where UG =
(

R(G),R(G)(σ), peG : σ ∈ Sop
)
,

where ¯ : R(G) → R(G)/pe R(G) = R(G) is the natural epimorphism, is a bijective corre-
spondence. Note that rkG = rkUG.

2. ForG,H ∈ hc(S, pe) and φ ∈ Hom(G,H), there is a natural induced map φ ∈ Hom(UG, UH)

where φ : R(G)→ R(H) : ∀x ∈ R(x) : φ(x) = φ(x).

3. Two groups G,H ∈ hc(S, pe) are nearly isomorphic if and only if UG is isomorphic to UH .

4. G ∈ hc(S, pe) is indecomposable if and only if UG is indecomposable.

Proof. (1) [AMMS09, Lemma 4(1)]. In particular, given a representation U ∈ hcRep(S,Zpe)
there exists G ∈ hc(S, pe) such that UG ∼= U . The construction of G is described in Re-
mark 3.5(1).

(2) It follows from Lemma 3.2(4) that φ is well-defined.
(3) [Mader00, Theorem 9.2.4] or [AMMS09, Lemma 4].
(4) [AMMS09, Lemma 4].

Remark 3.5.

1. Given a representation

U = (U0 =
⊕

ρ∈S Vρ, Uσ, U∗ : σ ∈ Sop) ∈ hcRep(S,Zpe),

the construction of a group G ∈ hc(S, pe) such that UG ∼= U is as follows. First choose
a completely decomposable group R =

⊕
σ∈S Rσ such that Rσ = Vσ, choose a divisible

hull QR of R, let ( )−1[U∗] = {x ∈ R : x ∈ U∗} (the pre–image of U∗ in R) and let
G = p−e( )−1[U∗] ≤ QR. Then UG ∼= U .
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2. Let G ∈ hc(S, pe) and suppose that UG = U1⊕U2 for representations Ui ∈ hcRep(S,Zpe).
Then there exist Gi ∈ hc(S, pe) such that UGi = Ui. Then UG1⊕G2 = UG1 ⊕ UG2 =
U1⊕U2 = UG. Hence G ∼=nr G1⊕G2 and it follows that G is the direct sum of two groups
of rank rkU1 and rkU2.

Let G ∈ hc(S, pe) with representation UG = (U0, Uσ, U
G
∗ : σ ∈ Sop), U0 =

⊕
σ∈S Vσ and

Uσ =
⊕

σ≤ρ∈S Vρ. A representing matrix expresses UG∗ in terms of a suitable basis of the free
module U0. Specifically, a Zpe-matrix MG is a representing matrix of G if BG = {Bσ : σ ∈ S}
is a Zpe-basis of U0 with each Bσ = {xσj : 1 ≤ j ≤ nσ} a basis of Vσ, CG = {h1, . . . , hr} a
basis of the free Zpe-module UG∗ ∼= G/R(G),

hi =
∑
σ∈S

∑
1≤j≤nσ mi,σjxσj , 1 ≤ i ≤ r,

with mi,σj ∈ Zpe for each 1 ≤ i ≤ r and 1 ≤ j ≤ nσ, Mσ :=
[
mi,σj

]
, and MG :=[

Mσ : σ ∈ S
]
r×n

with n =
∑
{nσ : σ ∈ S} and Mσ to the left of Mσ′ if σ < σ′ in S, i.e.,

the basis elements in BG are so ordered that the basis elements belonging to larger types are
listed to the right of the basis elements belonging to smaller types. We will call a basis of U0 of
this kind a proper basis. Representation matrices are defined only with respect to a proper basis
of U0. The rank of G is equal to the number n of columns of MG. Looking at U0 in terms of
coordinates, the elements of U0 are n-tuples and UG∗ is the submodule of U0 generated by the

rows of MG, in symbols UG∗ =
⇀

ZMG, where
⇀

Z is the set of Z-tuples of the appropriate size,
here r-tuples, r being the number of rows of MG.

The representing matrix can be simplified by applying automorphisms of the representation
that amount to basis changes. The possible changes (simplifications!) of the representing matrix
are effected by “allowed” row and column transformations. We will formulate later (Proposi-
tion 6.1) the allowed transformations in the case of rigid almost completely decomposable groups
with primary homocyclic regulator quotients. The goal is to simplify the representing matrix to
the degree that either no further simplifications are possible and the representation can be shown
to be indecomposable or the matrix is “decomposed” and shows that the representation is decom-
posed. These representations are the representations of groups that then are indecomposable or
decomposed as are their representations. If the group is decomposed, by Remark 3.5, the ranks
of the summands are equal to ranks the representation summands and these in turn are equal the
number of columns in their representing matrix.

A representing matrix is decomposed if it can be put in block diagonal form

[
A 0
0 B

]
by

rearranging rows and columns. We will not formulate the technical details but the proof of
Theorem 6.7 contains numerous illustrations that are easily understood.

4 General Results

We first recall a form of the Regulator Criterion that is suited to the representation approach that
we use. [AMMS11, Lemma 13] deals with the general case of a regulating regulator and primary
regulator quotient. We will state the result for the rigid homocyclic case that we need. It should
be noted that in this case the representing matrix is just the “coordinate matrix” of [AMMS11,
Lemma 13] considered modulo the exponent of the regulator quotient.

Lemma 4.1. ([AMMS11, Lemma 13]) Matrix Regulator Criterion. Let G ∈ hc(Sw, pe) and let
M =

[
M1
∣∣∣∣M2

∣∣∣∣ · · · ∣∣∣∣Mw

]
be a representing matrix of G having r rows. Then

∀ i ∈ {1, . . . , w} :
[
M1 · · · Mi−1 Mi+1 · · · Mw

]
has rank r modulo p.

We first establish a criterion that is very efficient and turns indecomposability proofs in most
cases into a routine exercise. The hypothesis that a representing matrixM has a right inverseM∗
is in all our applications an evident matter. But it is a fact that M∗ exists if and only if G/R(G)
is homocyclic.

Remark 4.2. A representing matrix MG of a rigid homocyclic group has a right inverse. This
follows from the Matrix Regulator Criterion. On the other hand if a representing matrix M
of G has a right inverse M∗, then it follows from MM∗ = I that no row of M is a p-fold
of some row vector which means that each row has maximal order pe = exp(G/R(G)). In
addition the rows of M are linearly independent by definition of the representing matrix, so
G/R(G) ∼= peG/pe R(G) = peG is a free Zpe-module, i.e., a homocyclic group of exponent pe.
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A representation morphism f ∈ EndUG is a module homomorphism f : R → R such that
∀ τ ∈ Tcr(G) : f(R(τ)) ⊆ R(τ) and f(peG) ⊆ peG. We will use weaker concept called type
endomorphism of R. A type endomorphism is a module homomorphism g : R → R such that
∀ τ ∈ Tcr(R) : f(R(τ)) ⊆ R(τ). So type endomorphism are just representation morphisms of
UR.

Theorem 4.3. Let G be an almost completely decomposable group, R = R(G) its regulator, let
UG be the representation of G, and let M := MG be a representing matrix of G. Assume that
M∗ is a right inverse of M . Let f be a type endomorphism of G. Then f ∈ EndUG if and only
if it satisfies the matrix equation

Mf =MfM∗M.

Proof. We have UG =
(
U0, Uρ, U

G
∗ : ρ ∈ Tcr(G)op

)
where UG∗ =

⇀

ZM . Suppose that f ∈

EndUG and that M has t rows. Then for every
⇀
x ∈

⇀

Z = Zr there is
⇀
u ∈

⇀

Z such that
⇀
xMf =

⇀
uM . Hence

⇀
u =

⇀
xMfM∗. Substituting this expression for

⇀
u in

⇀
xMf =

⇀
uM

and dropping the argument
⇀
x results in the claimed matrix identity.

Conversely, assume that f is a type endomorphism of U0 and Mf = MfM∗M . Then take
⇀
u =

⇀
xMfM∗, so that

⇀
uM =

⇀
xMf showing that f(UG∗ ) ⊆ UG∗ and f ∈ EndUG.

Corollary 4.4. Let G be an almost completely decomposable group, R = R(G) its regulator, let
UG be the representation of G, and let M := MG be a representing matrix of G. Assume that
M∗ is a right inverse of M . Let f2 = f ∈ EndUG. Then G is indecomposable if and only if the
matrix equation

Mf =MfM∗M

is satisfied only by the trivial solutions f = 0 and f = 1.

Lemma 4.5 relates indecomposable groups in (S, pk) to indecomposable groups in (S, pe) for
1 ≤ k ≤ e in the representation setting.

Lemma 4.5. Assume S is an inverted forest of p-reduced types and 1 ≤ k ≤ e.

1. If G ∈ hc(S, pk) is indecomposable, then there is an indecomposable group H ∈ hc(S, pe)
with rk(H) = rk(G).

2. If hc(S, pk) has unbounded representation type, then hc(S, pe) has unbounded representa-
tion type.

3. If hc(S, pe) has bounded representation type, then hc(S, pk) has bounded representation
type.

Proof. (1) We identify Zpk with Zpe/pkZpe . Given a free Zpk -module F , let F ∗ be a free Zpe-
module with F = F ∗/pkF ∗. If M =

[
mrs + pkZpe

]
is a Zpk -matrix, then M∗ =

[
mrs

]
is a

Zpe-matrix with M∗ ≡M mod pk.
Let UG = (U0, Uσ, U

G
∗ : σ ∈ Sop) be the representation of the indecomposable group G ∈

hc(S, pk) with MG a representing matrix of G. Define U∗G = (U∗0 , U
∗
σ , U

∗
∗ : σ ∈ Sop) with

U∗∗ =
⇀

ZM∗G. Then U∗σ ∩ U∗∗ = 0, because Uσ ∩ UG∗ = 0, and so UG∗ is in cdRep(S,Zpe).
Let f be an idempotent endomorphism of U∗G, i.e., f2 = f : U∗0 → U∗0 is an idempotent

Zpe-endomorphism with f(U∗σ) ⊆ U∗σ and f(U∗∗ ) ⊆ U∗∗ . Then f induces an idempotent Zpk -
endomorphism g : U0 → U0 since U0 = U∗0 /p

kU∗0 . Furthermore, g(Uσ) ⊆ Uσ and g(U∗) ⊆ U∗
because

UG = (U0, Uσ, U
G
∗ : σ ∈ S) =

(
U∗0
pkU∗0

,
U∗σ + pkU∗0 )

pkU∗0
,
U∗∗ + pkU∗0
pkU∗0

: σ ∈ S
)
.

Hence, g is an idempotent endomorphism of UG. As UG is indecomposable, g = 0 or g = 1.
If g = 0, then f = pf ′ is an idempotent nilpotent and f = 0. If g = 1, then f = 1 + pf ′ is an
idempotent unit and f = 1. This shows that U∗G is indecomposable.

By Lemma 3.4, UG∗ ∼= UH for some indecomposable hc(S, pe)-group H . Then rk(G) =
rk(U0) = rk(U∗0 ) = rk(H).

(2) and (3) follow from (1).

Example 4.6. The group G21 with MG21 =

[
1
∣∣∣∣ 0

∣∣∣∣ 1
0
∣∣∣∣ 1

∣∣∣∣ 1

]
is indecomposable in hc(S3, p

2).

Hence there is an indecomposable group H in hc(S3, p
3) with MH =MG21 .
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Lemma 4.7 shows that the abundance of indecomposable groups increases if to the poset S
of critical types a further type σ is added that is incomparable with any of the types in S. In
particular, if hcRep(S, pe) has unbounded representation type, then so has hcRep(S ∪ {σ}, pe).

Lemma 4.7. Let G be a p-reduced almost completely decomposable group with regulating reg-
ulator R = R(G) and p-primary regulator quotient, let UG be the representation of G, and let
M := MG be a representing matrix of G. Assume that M∗ is a right inverse of M . Then, for
any non-zero column vector N with entries in Zpe , the matrix M ′ =

[
M
∣∣∣∣N], is the represent-

ing matrix of an indecomposable H with Tcr(H) = Tcr(G) ∪ {σ} where σ is p-reduced and
incomparable with any type in Tcr(G).

Proof. We have UG =
(
U0, Uρ, U

G
∗ : ρ ∈ Tcr(G)op

)
where UG∗ =

⇀

ZM is the row space of

M . The matrix M ′ =
[
M
∣∣∣∣N] satisfies the Regulator Criterion because M does, where N

belongs to the additional type σ. (This is certainly easy in the rigid case using Lemma 4.1,
but it is also true in the general case using [AMMS11, Lemma 13].) There exists an almost
completely decomposable H having the representing matrix M ′ and the representation UH =

(U0 ⊕ V,Uρ, V, U∗ : ρ ∈ Tcr(G)) where U∗ =
⇀

ZM ′. The entries of M ′ are in Zpe so U∗ is p-
primary as a group.

Suppose that f ′2 = f ′ ∈ EndUH . Then f ′ =

[
f 0
0 g

]
where f ∈ EndUG and g is a scalar.

Then M ′∗ =

[
M∗

0

]
is a right inverse of M ′. Furthermore M ′f ′ =

[
Mf Ng

]
, M ′∗M ′ =[

M∗M M∗N

0 0

]
, and M ′f ′M ′∗M ′ =

[
MfM∗M MfM∗N

]
. As f ′ ∈ EndUH it follows that

M ′f ′ =M ′f ′M ′∗M ′ and so Mf =MfM∗M and Ng =MfM∗N .
By hypothesis the first condition implies that f = 0 or f = 1. Suppose that f = 0. Then

Ng = 0, so g = 0 and f ′ = 0. Suppose that f = 1. Then Ng = N , g = 1 and f ′ = 1.

Example 4.8. The group G21 with MG21 =

[
1
∣∣∣∣ 0

∣∣∣∣ 1
0
∣∣∣∣ 1

∣∣∣∣ 1

]
is indecomposable hc(S3, p

2).

Hence there are there are indecomposable groups in hc(S4, p
2) with representing matrices[

1
∣∣∣∣ 0

∣∣∣∣ 1
∣∣∣∣ 1

0
∣∣∣∣ 1

∣∣∣∣ 1
∣∣∣∣ 0

]
,

[
1
∣∣∣∣ 0

∣∣∣∣ 1
∣∣∣∣ 0

0
∣∣∣∣ 1

∣∣∣∣ 1
∣∣∣∣ 1

]
,

[
1
∣∣∣∣ 0

∣∣∣∣ 1
∣∣∣∣ 1

0
∣∣∣∣ 1

∣∣∣∣ 1
∣∣∣∣ 1

]
.

It readily follows from Remark 4.2 that the new group H of Lemma 4.7 is homocyclic, and
if G was rigid, so is H . It is also clear that H has a regulating regulator if Tcr(G) is an inverted
forest, in particular if Tcr(G) is an antichain.

It is not clear whether the new groups H for different choices of N are nearly isomorphic or
not. This however is not needed to infer Corollary 4.9 from Corollary 4.7 as rank considerations
suffice.

Corollary 4.9. If the category hc(S3, p
k) has unbounded representation type and w ≥ 3, then

hc(Sw, pk) has unbounded representation type.

There is a general criterion in terms of representing matrices to decide whether two groups
with the same regulator and isomorphic regulator quotients are nearly isomorphic. It is a fact
that nearly isomorphic almost completely decomposable groups have isomorphic regulators and
regulator quotients, [Mader00, Lemma 9.1.10.4].

Theorem 4.10. Let G and H be almost completely decomposable groups with R := R(G) =
R(H) and G/R ∼= H/R. Set exp(G/R) = e. Then the representations of the two groups are the
same except for the terms UG∗ = eG/eR and UH∗ = eH/eR. Let MG and MH be representing
matrices of G and H , respectively, using the same basis. Suppose that MH has a right inverse
M∗H . ThenG andH are nearly isomorphic if and only if there is a type automorphism α ofR/eR
such that MGα =MGαM

∗
HMH .

Proof. By [Mader00, Theorem 9.2.4] G ∼=nr H if and only if there is a type isomorphism (=
bijective type endomorphism) α of R/eR such that UG∗ α = UH∗ . This is the case if and only if

∀⇀x∃⇀u :
⇀
xMGα =

⇀
uMH .
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If so
⇀
u =

⇀
xMGαM

∗
H . Substituting and omitting the variable

⇀
x we obtainMGα =MGαM

∗
HMH .

The converse is clear.

We note a special case relevant to Lemma 4.7.

Corollary 4.11. Suppose that X is an almost completely decomposable group with regulating
regulator R and representing matrix M that has a right inverse M∗. Let NG and NH be column
matrices and let G and H be groups with representing matrices MG =

[
M
∣∣∣∣NG] and MH =[

M
∣∣∣∣NH] respectively. Then G ∼=nr H if and only if there is α ∈ AutUR and a unit a such that

MαM∗NH = NGa.

Proof. The new groups G and H have regulator R′ = R ⊕ Rσ where Rσ is a rank one group of
type σ. Let f be a type automorphism of UR′ . Then

f =

[
α 0
0 a

]
, α, a invertible, and M∗H =

[
M∗

0

]
is a right inverse of MH .

Easy computations result in

MGf =
[
Mα NGa

]
, MGfM

∗
HMH =

[
Mα MαM∗NH

]
.

Hence MGf =MGfM
∗
HMH if and only if NGa =MαM∗NH .

Corollary 4.11 can settle concrete cases.

Example 4.12. The three constructs in Example 4.8 belong to different near–isomorphism classes.
On the other hand[

1
∣∣∣∣ 0

∣∣∣∣ 1
∣∣∣∣ 1

0
∣∣∣∣ 1

∣∣∣∣ 1
∣∣∣∣ 1

]
and

[
1
∣∣∣∣ 0

∣∣∣∣ 1
∣∣∣∣ u

0
∣∣∣∣ 1

∣∣∣∣ 1
∣∣∣∣ v

]
with u 6= 0 6= v

belong to nearly isomorphic groups.

Proof. HereM∗ =

1 0
0 1
0 0

, α =

a1 0 0
0 a2 0
0 0 a3

 andMαM∗ =

[
a1 0
0 a2

]
. Consider the general

case NG =

[
n1

n2

]
and NH =

[
m1

m2

]
. Then NGa =MαM∗NH if and only if

[
a1n1

a2n2

]
=

[
am1

am2

]
.

Here a1, a2, a are non-zero elements in Zp, hence units. It is easily seen that no two of the three

groups of Example 4.8 are nearly isomorphic; for example

[
a1 · 1
a2 · 1

]
=

[
a · 1
a · 0

]
results in the

contradiction a2 = 0. On the other hand[
a1 · 1
a2 · 1

]
=

[
au

av

]
has the solution a = 1, α =

u 0 0
0 v 0
0 0 1

 .
Proposition 4.13 notes consequences of the symmetry of antichains.

Proposition 4.13. Suppose that the representing matrix M =
[
M1
∣∣∣∣ · · · ∣∣∣∣Mw

]
defines a group

G ∈ hc(Sw, pe) that is indecomposable.
Let π be a permutation of {1, 2, . . . , w}. Then M ′ =

[
Mπ(1)

∣∣∣∣ · · · ∣∣∣∣Mπ(w)

]
defines a group

H ∈ hc(Sw, pe) that is indecomposable.

Proof. This is due to the symmetry in the critical types. In fact, the indecomposability criterion
Corollary 4.4 depends only on the poset structure of the critical typeset and the critical types
can be assigned to the column blocks of M in any desired way. Then the types can be listed as
desired without changing the group resulting in a permutation of the column blocks of M .
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5 Unbounded representation type

We demonstrate the use of the Indecomposability Criterion in a particularly simple case. We will
make use of the fact that there exist n × n integral matrices A with the property that an n × n
matrix X must equal 0 or 1 modulo p if AX ≡ XA mod p. This is the case if the minimal
polynomial of A is the power of an irreducible polynomial. Making an n-dimensional Zp-vector
space V into a Zp[x]-module using A (via xv = Av, v ∈ V ), the matrix A has the desired
property if the Zp[x]-module V turns out to be indecomposable.

Theorem 5.1. The category hc(S4, p) has unbounded representation type.

Proof. Let A be an n×n matrix with entries in Zp such that AX = XA implies that X ∈ {0, 1},
and let G be a group in hc(S4, p) with representing matrix

M =

[
In

∣∣∣∣ 0
∣∣∣∣ In

∣∣∣∣ In

0
∣∣∣∣ In

∣∣∣∣ In
∣∣∣∣ A

]

Clearly M∗ =


In 0
0 In

0 0
0 0

 is a right inverse of M . By an easy computation

M∗M =


In 0 In In

0 In In A

0 0 0 0
0 0 0 0

 .

Let f2 = f be a type idempotent in UG. Then, for n× n idempotent matrices a, b, c, d,

f =


a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 d

 , Mf =

[
a 0 c d

0 b c Ad

]
, MfM∗M =

[
a 0 a a

0 b b bA

]
.

Now assume that f is a representation idempotent. Then Mf =MfM∗M implies that c = a =
d = b and Ad = bA, hence Ab = bA and it follows that b ∈ {0, 1} and that f ∈ {0, 1}.

Theorem 5.2 is stated in [Arnold-Dugas98] with an equivalent matrix but without proof. The
proof is delicate and we include it in detail.

Theorem 5.2. The category hc(S3, p
3) has unbounded representation type.

Proof. Let G ∈ hc(S3, p
3)-group with representing matrix

M =


In 0 0 0

∣∣∣∣ 0 0 0 0
∣∣∣∣ 0 In pIn 0

0 In 0 0
∣∣∣∣ 0 0 0 p2In

∣∣∣∣ In In 0 p2In

0 0 In 0
∣∣∣∣ 0 0 In 0

∣∣∣∣ 0 0 A pIn

0 0 0 p2In
∣∣∣∣ 0 In 0 0

∣∣∣∣ 0 In 0 0
0 0 0 0

∣∣∣∣ In 0 0 0
∣∣∣∣ In 0 0 0


where A is a square matrix such that AX ≡ XA mod p implies that X ∈ {0, 1}.

Clearly M∗ =


In 0 0 0 0 0 0 0 0 0 0 0
0 In 0 0 0 0 0 0 0 0 0 0
0 0 In 0 0 0 0 0 0 0 0 0
0 0 0 0 0 In 0 0 0 0 0 0
0 0 0 0 In 0 0 0 0 0 0 0



tr

is a right inverse of M .
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Let f2 = f be an idempotent type endomorphism of UG. Then f =

a 0 0
0 b 0
0 0 c

,

a =


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 , b =


b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

b41 b42 b43 b44

 , c =


c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

c41 c42 c43 c44



where the aij , bij , cij are n× n matrices.
Suppose now that f is a representation morphism. Then Mf =MfM∗M implies the matrix

equations

• a14 = 0 a13 = 0 p2a12 = 0 a24 = 0 a23 = p2b43 a34 = p2b32

• b34 = p2a32 b23 = p2a43 b24 = 0 p2b12 = 0 b13 = 0 b14 = 0

• c13 = 0 c14 = 0 c24 = 0

• p2b44 = p2a22 b33 = a33 p2a44 = p2b22 c11 = b11 c22 = b22 + p2a41 + p2a42

• c21 + pc31 = a12

• c22 + pc32 = a12 + a11

• c11 + c21 + p2c41 = a22 + p2b41

• c12 + c22 + p2c42 = a22 + a21 + p2b42

• c21 = p2a42 + b21

• c12 = b12

• c23 + pc33 = a13A+ pa11

• c24 + pc34 = pa13 + p2a12

• p2c43 + c23 + c13 = pa21 + a23A

• c14 + c24 + p2c44 = pa23 + p2a22

• Ac33 + pc43 = a33A+ pa31

• Ac34 + pc44 = pa33 + p2a32

• c23 = p2a43A
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We interpret these equations modulo p, but retain stronger information as needed.

a14 = 0 a13 = 0 a12 ≡ 0 a24 = 0 pa23 = 0 a34 ≡ 0 (5.3)

b34 ≡ 0 b23 ≡ 0 b24 = 0 b12 ≡ 0 b13 = 0 b14 = 0 (5.4)

c13 = 0 c14 = 0 c24 = 0 (5.5)

b44 ≡ a22 b33 = a33 a44 ≡ b22 c11 = b11 c22 ≡ b22

c21 ≡ a12 so c21 ≡ 0 by (5.3) (5.6)

c22 ≡ a12 + a11 so c22 ≡ a11 by (5.3)

c11 + c21 ≡ a22 so c11 ≡ a22 by (5.6)

c12 + c22 ≡ a22 + a21 so c22 ≡ a22 by (5.7), (5.8)

c21 ≡ b21 so b21 ≡ 0 by (5.6)

c12 = b12 so c12 ≡ 0 by (5.4)

c23 ≡ a13A so c23 ≡ 0 by (5.3) (5.7)

c24 + pc34 = pa13 + p2a12 so pc34 = pa13 by (5.5), (5.3)
so pc34 = 0 by (5.3)

p2c43 + c23 + c13 = pa21 + a23A so pc23 = p2a21 + pa23A

using (5.5) so p2a21 = 0 by (5.3), (5.9), so a21 ≡ 0

c14 + c24 + p2c44 = pa23 + p2a22

so p2c44 = p2a22 by (5.5), (5.3) so c44 ≡ a22

Ac33 ≡ a33A (5.8)

Ac34 + pc44 = pa33 + p2a32 so
Apc34 + p2c44 = p2a33 so p2c44 = p2a33 by (5.8) so c44 ≡ a33

c23 = p2a43A so pc23 = 0

Combining the information above we now have that, modulo p,

α := a11 ≡ a22 ≡ a33 ≡ a44 ≡ b11 ≡ b22 ≡ b33 ≡ b44 ≡ c11 ≡ c22 ≡ c33 ≡ c44

and the idempotent matrices a, b, c are lower triangular with the one value α as diagonal blocks.
By (5.8) we have Aα = αA and by choice of the matrix A, either α ≡ 0 mod p or α ≡ 1
mod p. By then α itself must be 0 or 1, therefore the lower triangular matrices a, b, c must be 0
or 1 and finally f ∈ {0, 1}.

Corollary 5.9. The category hc(Sw, pm) has unbounded representation type if

1. w ≥ 4, m ≥ 1,

2. w = 3 and m ≥ 3.

Proof. (1) follows from Theorem 5.1 and Lemma 4.7.
(2) follows from Theorem 5.2 and Lemma 4.5.

6 Indecomposable groups in hc(S3, p
e), e ≤ 3

The following proposition, expressing a change of bases BG and CG of a representing matrix
in terms of row and column operations, is analogous to [AMMS12] for (1, n)-groups and to
[AMMS11, Lemmas 14 and 24] and [Mader00, Proposition 12.4.1] with different notation.

Lemma 6.1. Let G ∈ hc(Sw, pe) with representing matrix

MG =
[
M1
∣∣∣∣M2

∣∣∣∣ · · · ∣∣∣∣Mw

]
.

If MG can be transformed into a matrix M by a sequence of the six types of transformations
below, then M = MH is the representing matrix of a group H ∈ hc(Sw, pe) that is nearly
isomorphic with G.
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1. Add a Zpe-multiple of a row of MG to any other row.

2. Multiply a row of MG by a unit of Zpe .

3. Interchange any two rows of MG.

4. Add a Zpe-multiple of a column of Mj to another column of Mj .

5. Multiply a column of MG by a unit of Zpe .

6. Interchange any two columns of Mj .

Proof. Let UG = (U0, Uσ, U∗ | σ ∈ Sw) be the representation of G where U0 =
⊕

σ∈Sw Vσ. The
representing matrix is obtained by choosing a proper basis B =

⋃
σ∈Sw Bσ of U0 where Bσ is a

basis of the free module Vσ and choosing a basis C of U∗ ∼= G/R(G). In terms of coordinates
with respect to these bases U∗ is just the row space of the representing matrix MG.

Elementary row transformations do not change the row space and hence the corresponding
group is still G. We have justified (1)–(3).

Elementary column transformations in the blocks Mi correspond to basis changes in the Vσ
and hence to an automorphism ξ of U0 with ξ(Vσ) = Vσ. There is a group H ∈ hc(Sw, pe) with
representation UH = (U0, Uσ, ξ(U∗) | σ ∈ Sw). Then H ∼=nr G and the representing matrix of
H with respect to the new bases of the Uσ is just the transform of MG. This justifies (4)–(6).

The following proofs start with an arbitrary representing matrix of an indecomposable group
and then simplify the matrix using allowed transformation until direct summands appear that
must coincide with the group. Recall that hc′(S, pe) contains those groups G ∈ hc(S, pe) with
exp(G/R(G)) = pe.

Theorem 6.2. Let {τ1, τ2, τ3} be a given antichain of types. Then there are in hc′(S3, p) up
to near–isomorphism exactly two indecomposable groups with critical typeset {τ1, τ2, τ3} and
representing matrices [

1
∣∣∣∣1∣∣∣∣1] and

[
1
∣∣∣∣ 0

∣∣∣∣ 1
0
∣∣∣∣ 1

∣∣∣∣ 1

]
.

Proof. LetG be an indecomposable group in hc′(S3, p). Then rk(G) ≥ 3. LetMG =
[
M1
∣∣∣∣M2

∣∣∣∣M3

]
be a representing matrix for G. Each of the submatrices Mi must have at least one column.
The entries of MG are either 0 or units. The matrix MG cannot have 0-columns and any row
transformation on the whole matrix and any column transformation within blocks is allowed
corresponding to basis changes or switches to a nearly isomorphic group, Lemma 6.1.

If MG has just one row it is easy to see that the representing matrix has to be
[
1
∣∣∣∣1∣∣∣∣1] and

there is only one group of this kind up to near–isomorphism.

Thus let MG have r ≥ 2 rows. It may be assumed that M1 =

[
Ia

0

]
where Ia is an identity

matrix of size a× a and 0 is a zero matrix of size (r− a)× a. As M1 must have columns, a ≥ 1.
The Regulator Criterion requires that M2 contains units in the last r − a rows. These can be
used to annihilate upward and to the right. Let Js denote the s × s-matrix with entries 1 on the

co-diagonal and and 0 entries otherwise, e.g. J =

[
0 1
1 0

]
. With this notation we get

MG =

[
Ia

∣∣∣∣ 0 X
∣∣∣∣ Y

0
∣∣∣∣ Jr−a 0

∣∣∣∣ Z

]

The submatrix X may be transformed to (reversed) Smith Normal Form and cannot contain a
0-column. Thus we get the form

MG =

Ib 0
∣∣∣∣ 0 0

∣∣∣∣ X

0 Ia−b
∣∣∣∣ 0 Ja−b

∣∣∣∣ Y

0 0
∣∣∣∣ Jr−a 0

∣∣∣∣ Z

 , a ≥ b ≥ 0.

The submatrix

XY
Z

 may be assumed to be in column echelon form and the first b rows must
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have full rank. With some annihilations we have

MG =

Ib 0
∣∣∣∣ 0 0

∣∣∣∣ Ib 0
0 Ia−b

∣∣∣∣ 0 Ja−b
∣∣∣∣ 0 Y1

0 0
∣∣∣∣ Jr−a 0

∣∣∣∣ Z1 Z2

 .
If Z2 6= 0, we can and annihilate in Z1 and get a rank-2 summand. On the other hand if Z2 = 0,
then there is a rank-2 or rank-3 summand. Hence the last column must be absent and we must
have a = b resulting in

MG =

[
Ia

∣∣∣∣ 0
∣∣∣∣ Ia

0
∣∣∣∣ Jr−a

∣∣∣∣ Z1

]
.

Without loss of generality Z1 is in Smith Normal Form and Z1 cannot have a 0-row. Hence Z1 =[
Ir−a 0

]
and if the 0 entry actually appears, then we have a forbidden rank-2 summand. So

Z1 =
[
Ib

]
and to be indecomposable we must have a = 1, r = 2 and obtain the indecomposable

matrix

MG =
[
M1
∣∣∣∣M2

∣∣∣∣M3

]
=

[
1
∣∣∣∣ 0

∣∣∣∣ 1
0
∣∣∣∣ 1

∣∣∣∣ 1

]
.

Any permutation of the submatrices Mi can be changed by allowed transformations to the form
MG showing there is only one such group up to near–isomorphism.

Theorem 6.3. Groups in hc′(S3, p
2) are indecomposable if they have one of the following repre-

senting matrices
[
M1
∣∣∣∣M2

∣∣∣∣M3

]
.

1. Groups with cyclic regulator quotient:

a. MG31 =
[
1
∣∣∣∣1∣∣∣∣1], rk(G31) = 3,

b. MG32 =
[
1
∣∣∣∣1∣∣∣∣p], rk(G32) = 3, with two permutations

[
1
∣∣∣∣p∣∣∣∣1] and

[
p
∣∣∣∣1∣∣∣∣1],

2. Groups with 2-generated regulator quotient:

a. MG21 =

[
1
∣∣∣∣ 0

∣∣∣∣ 1
0
∣∣∣∣ 1

∣∣∣∣ 1

]
, rk(G21) = 3,

b. MG22 =

[
1 0

∣∣∣∣ 0
∣∣∣∣ 1

0 p
∣∣∣∣ 1

∣∣∣∣ 1

]
, rk(G22) = 4, with two permutations

[
0
∣∣∣∣ 1 0

∣∣∣∣ 1
1
∣∣∣∣ 0 p

∣∣∣∣ 1

]

and

[
0
∣∣∣∣ 1

∣∣∣∣ 1 0
1
∣∣∣∣ 1

∣∣∣∣ 0 p

]
,

c. MG23 =

[
1 0

∣∣∣∣ 0 p
∣∣∣∣ 1

0 p
∣∣∣∣ 1 0

∣∣∣∣ 1

]
, rk(G23) = 5, with two permutations

[
1 0

∣∣∣∣ 1
∣∣∣∣ 0 p

0 p
∣∣∣∣ 1

∣∣∣∣ 1 0

]

and

[
1
∣∣∣∣ 1 0

∣∣∣∣ 0 p

1
∣∣∣∣ 0 p

∣∣∣∣ 1 0

]
,

d. MG24 =

[
1 0

∣∣∣∣ 0 p
∣∣∣∣ 1 0

0 p
∣∣∣∣ 1 0

∣∣∣∣ 1 p

]
, rk(G24) = 6,

3. Groups with 3-generated regulator quotient:

MG31 =

1 0
∣∣∣∣ 0 0

∣∣∣∣ 1 0
0 1

∣∣∣∣ 0 1
∣∣∣∣ 0 1

0 0
∣∣∣∣ 1 0

∣∣∣∣ 1 p

, rk(G31) = 6,

4. Groups with 4-generated regulator quotient:

MG41 =


1 0 0

∣∣∣∣ 0 0 0
∣∣∣∣ 1 0 0

0 1 0
∣∣∣∣ 0 0 p

∣∣∣∣ 0 1 0
0 0 p

∣∣∣∣ 0 1 0
∣∣∣∣ 1 0 p

0 0 0
∣∣∣∣ 1 0 0

∣∣∣∣ 0 1 p

, rk(G41) = 9.
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Proof. We only show that G41 is indecomposable. The other proofs are similar and simpler. We
also demonstrate in one case why some permutations as in Proposition 4.13 do not result in new
near–isomorphism classes of indecomposable groups.

The matrix M∗ =


1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0


tr

is a right inverse of the representing

matrix MG41 . A type endomorphism of G41 is f = diag(a, b, c) where

a =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 , b =

b11 b12 b13

b21 b22 b23

b31 b32 b33

 , c =

c11 c12 c13

c21 c22 c23

c31 c32 c33

 .
Then Mf =MfM∗M if and only if

a13 = 0 0 = pa12 c11 = a11 c12 = a12 c13 = 0
a23 = 0 pb33 = pa22 c21 = a21 + pb32 c22 = a22 + pb31 c23 = 0

pa33 = pb22 b23 = 0 c11 + pc31 = b22 + pa31 c12 + pc32 = b21 + pa32 c13 + pc33 = pb21 + pb22

0 = pb12 b13 = 0 c21 + pc31 = b12 c22 + pc32 = b11 c23 + pc33 = pb11 + pb12

From these we immediately get with α := a11 and β := a22 that, modulo p,

a ≡

 α 0 0
a21 β 0
a31 a32 a33

 , b ≡

 β 0 0
0 α 0
b31 b32 β

 , c ≡

 α 0 0
c21 β 0
c31 c32 β

 .
Using a combination of equalities we further get a33 ≡ b22 ≡ β and β ≡ c33 ≡ b22 ≡ α, hence
α ≡ β. The equalities c21 = a21 + pb32 and c21 + pc31 = b12 were not needed. Now assume that
f2 = f . Then a2 = a, b2 = b and c2 = c. Modulo p these are lower triangular matrices with α
on all diagonals. So a ≡ b ≡ c ∈ {0, 1}, hence a = b = c ∈ {0, 1} and finally f ∈ {0, 1}.

According to Proposition 4.13 the group H with representing matrix

M =


1 0 0

∣∣∣∣ 1 0 0
∣∣∣∣ 0 0 0

0 1 0
∣∣∣∣ 0 1 0

∣∣∣∣ 0 0 p

1 0 p
∣∣∣∣ 0 0 p

∣∣∣∣ 0 1 0
0 1 p

∣∣∣∣ 0 0 0
∣∣∣∣ 1 0 0


is indecomposable. To show that H ∼=nr G41 we will transform M . The steps mirror the con-
struction of the normal form (6.6): First obtain the Smith Normal Form of the first block, then
the reverse Smith Normal Form of the second block and finally simplify the third block using
column transformations and some row transformations that are still possible without destroying
the special form of the first two blocks.

To wit, we first subtract row 1 from row 3 and row 2 from row 4 to get
1 0 0

∣∣∣∣ 1 0 0
∣∣∣∣ 0 0 0

0 1 0
∣∣∣∣ 0 1 0

∣∣∣∣ 0 0 p

0 0 p
∣∣∣∣ −1 0 p

∣∣∣∣ 0 1 0
0 0 p

∣∣∣∣ 0 −1 0
∣∣∣∣ 1 0 −p


Next we subtract row 3 from row 4 and get

1 0 0
∣∣∣∣ 1 0 0

∣∣∣∣ 0 0 0
0 1 0

∣∣∣∣ 0 1 0
∣∣∣∣ 0 0 p

0 0 p
∣∣∣∣ −1 0 p

∣∣∣∣ 0 1 0
0 0 0

∣∣∣∣ 1 −1 −p
∣∣∣∣ 1 −1 −p


Next we clear entries above 1 in block 2 and get

1 0 0
∣∣∣∣ 0 1 p

∣∣∣∣ −1 1 p

0 1 0
∣∣∣∣ 0 1 0

∣∣∣∣ 0 0 p

0 0 p
∣∣∣∣ 0 −1 0

∣∣∣∣ 1 0 −p
0 0 0

∣∣∣∣ 1 −1 −p
∣∣∣∣ 1 −1 −p


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We get after several column and row transformations
1 0 0

∣∣∣∣ 0 0 p
∣∣∣∣ 0 1 0

0 1 0
∣∣∣∣ 0 0 0

∣∣∣∣ 1 0 0
0 0 p

∣∣∣∣ 0 −1 0
∣∣∣∣ 1 0 −p

0 0 0
∣∣∣∣ 1 0 0

∣∣∣∣ 1 −1 −p


Exchanging the first two rows and making adjustments we get

1 0 0
∣∣∣∣ 0 0 0

∣∣∣∣ 1 0 0
0 1 0

∣∣∣∣ 0 0 p
∣∣∣∣ 0 1 0

0 0 p
∣∣∣∣ 0 1 0

∣∣∣∣ 1 0 −p
0 0 0

∣∣∣∣ 1 0 0
∣∣∣∣ 1 −1 −p


Finally, column transformations in the third block and clearing fill-ins results in

1 0 0
∣∣∣∣ 0 0 0

∣∣∣∣ 1 0 0
0 1 0

∣∣∣∣ 0 0 p
∣∣∣∣ 0 1 0

0 0 p
∣∣∣∣ 0 1 0

∣∣∣∣ 1 0 p

0 0 0
∣∣∣∣ 1 0 0

∣∣∣∣ 0 1 p

 =MG41 .

On the other hand, the representing matrices

MG23 =

[
1 0

∣∣∣∣ 0 p
∣∣∣∣ 1

0 p
∣∣∣∣ 1 0

∣∣∣∣ 1

]
, and M :=

[
1 0

∣∣∣∣ 1
∣∣∣∣ 0 p

0 p
∣∣∣∣ 1

∣∣∣∣ 1 0

]

cannot belong to nearly isomorphic groups because the ranks of the homogeneous components
of the regulator are different.

We next establish a sort of “normal form” of the representing matrices that we have to deal
with. Let Ja denote the a × a matrix with entries 1 on the co-diagonal and vanishing entries
elsewhere.

Lemma 6.4. Let G ∈ hc′(S3, p
2) be indecomposable. Then there is a H ∈ hc′(S3, p

2) nearly
isomorphic to G with representing matrix

M =
[
M1
∣∣∣∣M2

∣∣∣∣M3

]
=


Ia1 0 0 0 0

∣∣∣∣ 0 0 0 0 0
∣∣∣∣ Ia1 0 0 0

0 Ia2 0 0 0
∣∣∣∣ 0 0 0 0 pJa2

∣∣∣∣ 0 Ia2 0 0
0 0 Ia31 0 0

∣∣∣∣ 0 0 0 Ja31 0
∣∣∣∣ 0 0 Ia31 0

0 0 0 Ia32 0
∣∣∣∣ 0 0 Ja32 0 0

∣∣∣∣ 0 0 0 pX1

0 0 0 0 pIb
∣∣∣∣ 0 Jb 0 0 0

∣∣∣∣ X2 X3 0 pX4

0 0 0 0 0
∣∣∣∣ Jc 0 0 0 0

∣∣∣∣ X5 X6 pX7 pX8


where one or more of the rows of M and columns of the Mi may be absent.

Let

• r denote the number of rows of M ,

• ni the number of columns of Mi, and

• d the number of columns of pX1.

Then we may further assume that n1 ≥ n2 ≥ n3 and if n1 = n2, then rkpM1 ≥ rkpM2, hence

a1 ≥ c, d ≤ (b+ c) + a32 − a1, b+ c ≤ a1 + a2, 1 ≤ b+ c ≤ r

2
.

In particular, a1 ≤ (b+ c) + a32. If n1 = n2, then a1 = c, and b ≤ a2.

Proof. Let G be indecomposable in hc′(S3, p
2). Then rk(G) ≥ 3. The case rk(G) = 3 being

simple we assume that rk(G) ≥ 4. Hence if a summand of rank ≤ 4 shows up, it must be
omitted.
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By symmetry in the poset of types we may rearrange the Mi and hence can assume that
n1 ≥ n2 ≥ n3. Furthermore, if n1 = n2, then we may assume that the rank of M1 modulo p is ≥
to the rank of M2 modulo p.

Arbitrary row transformations on M and arbitrary column transformations within each Mi

will produce representing matrices of groups nearly isomorphic toG and the Smith Normal Form
of M1 has no zero column because G is indecomposable.

M1 =

Ia 0
0 pIb

0 0

 .
We can establish the column echelon form of M2 from the bottom up, and using that, due to the
Regulator Criterion, there must be units in all rows of M2 except possibly in the first a rows, we
obtain the form

M2 =

 ∗ ∗ X

0 Jb 0
Jc 0 0

 .
Row transformations upward in M2 are allowed because the changes so produced in M1 can be
undone by column transformations. Therefore we can assume that

[
M1
∣∣∣∣M2

]
=

Ia 0
∣∣∣∣ 0 0 X

0 pIb
∣∣∣∣ 0 Jb 0

0 0
∣∣∣∣ Jc 0 0

 .
Any row and column transformations can be used on X because whatever change occurs in Ia
can be undone by column transformations. Thus we can achieve the reverse Smith Normal Form
of X and, as no zero columns can appear, we have

[
M1
∣∣∣∣M2

]
=


Ia1 0 0 0

∣∣∣∣ 0 0 0 0
0 Ia2 0 0

∣∣∣∣ 0 0 0 pJa2

0 0 Ia3 0
∣∣∣∣ 0 0 Ja3 0

0 0 0 pIb
∣∣∣∣ 0 Jb 0 0

0 0 0 0
∣∣∣∣ Jc 0 0 0

 . (6.5)

We now look atM3 assuming that
[
M1
∣∣∣∣M2

]
are in the form (6.5). First of all we may assume

thatM3 is in reduced column echelon form and the first a1+a2 rows must contain units to satisfy
the Regulator Criterion, Lemma 4.1. These units may be used to annihilate below and we get

M =


Ia1 0 0 0

∣∣∣∣ 0 0 0 0
∣∣∣∣ Ia1 0 0

0 Ia2 0 0
∣∣∣∣ 0 0 0 pJa2

∣∣∣∣ 0 Ia2 0
0 0 Ia3 0

∣∣∣∣ 0 0 Ja3 0
∣∣∣∣ 0 0 X1

0 0 0 pIb
∣∣∣∣ 0 Jb 0 0

∣∣∣∣ X2 X3 X4

0 0 0 0
∣∣∣∣ Jc 0 0 0

∣∣∣∣ X5 X6 X7

 ,

where the boldface zeros in M3 indicate that they can always be restored if filled in by column
transformations.

If X7 contains a unit, it can be used to annihilate up, down, right and left and we get a rank-3
summand. So X7 = pX ′7. Now if X4 contains a unit, it can be used to annihilate up, down
(because X7 = pX ′7 and p2 = 0), left, right and get a rank-3 summand. So X4 = pX ′4. We now
have

M =


Ia1 0 0 0

∣∣∣∣ 0 0 0 0
∣∣∣∣ Ia1 0 0

0 Ia2 0 0
∣∣∣∣ 0 0 0 pJa2

∣∣∣∣ 0 Ia2 0
0 0 Ia3 0

∣∣∣∣ 0 0 Ja3 0
∣∣∣∣ 0 0 X1

0 0 0 pIb
∣∣∣∣ 0 Jb 0 0

∣∣∣∣ X2 X3 pX ′4
0 0 0 0

∣∣∣∣ Jc 0 0 0
∣∣∣∣ X5 X6 pX ′7

 ,

Arbitrary row and column transformations may be used on X1 and we therefore may assume

that X1 is in Smith Normal Form which we can compress to X1 =

[
Ia31 0
0 pX ′1

]
. With Ia31 we
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can annihilate in pX ′4 to get M =

Ia1 0 0 0 0
∣∣∣∣ 0 0 0 0 0

∣∣∣∣ Ia1 0 0 0
0 Ia2 0 0 0

∣∣∣∣ 0 0 0 0 pJa2

∣∣∣∣ 0 Ia2 0 0
0 0 Ia31 0 0

∣∣∣∣ 0 0 0 Ja31 0
∣∣∣∣ 0 0 Ia31 0

0 0 0 Ia32 0
∣∣∣∣ 0 0 Ja32 0 0

∣∣∣∣ 0 0 0 pX′
1

0 0 0 0 pIb
∣∣∣∣ 0 Jb 0 0 0

∣∣∣∣ X2 X3 0 pX′′
4

0 0 0 0 0
∣∣∣∣ Jc 0 0 0 0

∣∣∣∣ X5 X6 pX′′
7 pX′′′

7


and we have established the claimed form after adjusting notation.

With this form of the representing matrix we see that

1. n1 = a1 + a2 + a31 + a32 + b = rkp(M1) + b,

2. n2 = a2 + a31 + a32 + b+ c = rkp(M2) + a2,

3. n3 = a1 + a2 + a31 + d.

The assumption n1 ≥ n2 ≥ n3 implies that a1 ≥ c and a32 + b + c ≥ a1 + d. Suppose that
n1 = n2, i.e., a1 = c. Then rkp(M1) ≥ rkp(M2) if and only if n1 − b ≥ n1 − a2 if and only
if a2 ≥ b. It should be noted here that the established form of [M1

∣∣∣∣M2] can be reestablished in
[M2

∣∣∣∣M1] by reversing the order of the rows.
Finally, the Regulator Criterion requires that the submatrix

[M1 M3] =



Ia1 0 0 0 0 Ia1 0 0 0
0 Ia2 0 0 0 0 Ia2 0 0
0 0 Ia31 0 0 0 0 Ia31 0
0 0 0 Ia32 0 0 0 0 pX ′1
0 0 0 0 pIb X2 X3 0 pX ′′4
0 0 0 0 0 X5 X6 pX ′′7 pX ′′′7



has rank r modulo p. This means that the rank modulo p of

[
X2 X3

X5 X6

]
must be b+cwhich equals

its number of rows and this must be less than or equal to its number of columns a1 + a2.

In order to keep the matrices from growing too large, we often use the abbreviated "normal"
form

M =
[
M1
∣∣∣∣M2

∣∣∣∣M3

]
=



Ia1

∣∣∣∣ 0
∣∣∣∣ Ia1 0 0 0

Ia2

∣∣∣∣ pJa2

∣∣∣∣ 0 Ia2 0 0
Ia31

∣∣∣∣ Ja31

∣∣∣∣ 0 0 Ia31 0
Ia32

∣∣∣∣ Ja32

∣∣∣∣ 0 0 0 pX1

pIb
∣∣∣∣ Jb

∣∣∣∣ X2 X3 0 pX4

0
∣∣∣∣ Jc

∣∣∣∣ X5 X6 pX7 pX8


. (6.6)

The boldface 0’s signal that these zeros can always be reestablished from above if they are “filled
in” by some column transformations in M3.

The case rkG = 3 being easy, we assume that rkG > 3, i.e., if M has a non-zero summand
with up to 3 columns, then we have a contradiction and can exclude whatever conditions produce
this outcome. In general, if G = G1 ⊕ G2, then either G1 is indecomposable and G = G1 or
G1 = 0 and G = G2.

Theorem 6.7. The list of fourteen near–isomorphism classes of indecomposable groups in hc′(S3, p
2)

given in Theorem 6.3 is complete.

Proof. We will use certain language in this proof that we wish to clarify first.

• The term line means a row or a column. A 0-line is a line of zeros and a p-line is a line all
of whose entries are in pZp2 .

• A cross at (i, j) in a matrix A occurs if all entries in row i and column j are zero except
possibly the entry at location (i, j), the pivot of the cross.

• By “x ∈ A leads to a cross” we mean that this entry x can be used to annihilate in its row
and its column to produce a cross.
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• We apply transformations to annihilate entries. While doing this, some entries that were
originally zero may change to nonzero entries; these entries are called fill-ins. The phrase
“we annihilate” tacitly includes that the fill-ins caused in the process can be removed
by subsequent transformations without destroying previously established desired forms,
mostly blocks piI for i ≥ 0.

• The phrase “we form the Smith Normal Form of A” implies that the Smith Normal Form
can be established by allowed line-transformations. It is tacitly ascertained that destroyed
piI-blocks can be reestablished.

Let M =
[
M1
∣∣∣∣M2

∣∣∣∣M3

]
be the representing matrix of an indecomposable group G ∈

hc′(S3, p
2) of rank ≥ 4. Then without loss of generality

M =



Ia1 0 0 0 0
∣∣∣∣ 0 0 0 0 0

∣∣∣∣ Ia1 0 0 0
0 Ia2 0 0 0

∣∣∣∣ 0 0 0 0 pJa2

∣∣∣∣ 0 Ia2 0 0
0 0 Ia31 0 0

∣∣∣∣ 0 0 0 Ja31 0
∣∣∣∣ 0 0 Ia31 0

0 0 0 Ia32 0
∣∣∣∣ 0 0 Ja32 0 0

∣∣∣∣ 0 0 0 pX1

0 0 0 0 pIb
∣∣∣∣ 0 Jb 0 0 0

∣∣∣∣ X2 X3 0 pX4

0 0 0 0 0
∣∣∣∣ Jc 0 0 0 0

∣∣∣∣ X5 X6 pX7 pX8


(a) pX1 is not present.

The submatrix
[
pX1
pX4
pX8

]
allows for row transformations upward and arbitrary column transfor-

mations. Thus it can be transformed to reduced column echelon form, implying that there is at
most one nonzero entry in a row, i.e., a row is either a 0-row or it contains the pivot of a cross.
So the row block containing pX1 is not present, hence

M =


Ia1 0 0 0

∣∣∣∣ 0 0 0 0
∣∣∣∣ Ia1 0 0 0

0 Ia2 0 0
∣∣∣∣ 0 0 0 pJa2

∣∣∣∣ 000 Ia2 0 0
0 0 Ia31 0

∣∣∣∣ 0 0 Ja31 0
∣∣∣∣ 000 000 Ia31 0

0 0 0 pIb
∣∣∣∣ 0 Jb 0 0

∣∣∣∣ X2 X3 0 pX4

0 0 0 0
∣∣∣∣ Jc 0 0 0

∣∣∣∣ X5 X6 pX7 pX8


(b) Simplified Form of

[
X2 X3

X5 X6

]
.

We can obtain the partial Smith Normal Form of X6 =

[
Ic1 0
0 pX

]
and get

M =



Ia1

∣∣∣∣ 0
∣∣∣∣ Ia1 0 0 0 0

Ia21

∣∣∣∣ pJa21

∣∣∣∣ 0 Ia21 0 0 0
Ia22

∣∣∣∣ pJa22

∣∣∣∣ 0 0 Ia22 0 0
Ia31

∣∣∣∣ Ja31

∣∣∣∣ 0 0 0 Ia31 0
pIb

∣∣∣∣ Jb
∣∣∣∣ X2 X31 X32 0 pX4

0
∣∣∣∣ Jc1

∣∣∣∣ X51 Ic1 0 pX71 pX81

0
∣∣∣∣ Jc2

∣∣∣∣ X52 0 pX pX72 pX82


With Ic1 we can annihilate X31, X51 and also pX71 to get

M =



Ia1

∣∣∣∣ 0
∣∣∣∣ Ia1 0 0 0 0

Ia21

∣∣∣∣ pJa21

∣∣∣∣ 0 Ia21 0 0 0
Ia22

∣∣∣∣ pJa22

∣∣∣∣ 0 0 Ia22 0 0
Ia31

∣∣∣∣ Ja31

∣∣∣∣ 0 0 0 Ia31 0
pIb

∣∣∣∣ Jb
∣∣∣∣ X2 0 X32 0 pX4

0
∣∣∣∣ Jc1

∣∣∣∣ 0 Ic1 0 0 pX81

0
∣∣∣∣ Jc2

∣∣∣∣ X52 0 pX pX72 pX82


The Smith Normal Form of X52 cannot contain a p-row, so without loss of generality X52 =[
Ic2 0

]
and we get

M =



Ia11

∣∣∣∣ 0
∣∣∣∣ Ia11 0 0 0 0 0

Ia12

∣∣∣∣ 0
∣∣∣∣ 0 Ia12 0 0 0 0

Ia21

∣∣∣∣ pJa21

∣∣∣∣ 0 0 Ia21 0 0 0
Ia22

∣∣∣∣ pJa22

∣∣∣∣ 0 0 0 Ia22 0 0
Ia31

∣∣∣∣ Ja31

∣∣∣∣ 0 0 0 0 Ia31 0
pIb

∣∣∣∣ Jb
∣∣∣∣ X21 X22 0 X32 0 pX4

0
∣∣∣∣ Jc1

∣∣∣∣ 0 0 Ic1 0 0 pX81

0
∣∣∣∣ Jc2

∣∣∣∣ Ic2 0 0 pX pX72 pX82


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With Ic2 we can now annihilate X21 but also pX because the apparent fill-in above Ia22 is absent
as it contains a factor p2 and p2 = 0. We now have

M =



Ia11

∣∣∣∣ 0
∣∣∣∣ Ia11 0 0 0 0 0

Ia12

∣∣∣∣ 0
∣∣∣∣ 0 Ia12 0 0 0 0

Ia21

∣∣∣∣ pJa21

∣∣∣∣ 0 0 Ia21 0 0 0
Ia22

∣∣∣∣ pJa22

∣∣∣∣ 0 0 0 Ia22 0 0
Ia31

∣∣∣∣ Ja31

∣∣∣∣ 0 0 0 0 Ia31 0
pIb

∣∣∣∣ Jb
∣∣∣∣ 0 X22 0 X32 0 pX4

0
∣∣∣∣ Jc1

∣∣∣∣ 0 0 Ic1 0 0 pX81

0
∣∣∣∣ Jc2

∣∣∣∣ Ic2 0 0 0 pX72 pX82



We form next the partial Smith Normal Form of X32 that is

[
Ib1 0
0 pY

]
, and we get

M =



Ia11

∣∣∣∣ 0
∣∣∣∣ Ia11 0 0 0 0 0 0

Ia12

∣∣∣∣ 0
∣∣∣∣ 0 Ia12 0 0 0 0 0

Ia21

∣∣∣∣ pJa21

∣∣∣∣ 0 0 Ia21 0 0 0 0
Ia221

∣∣∣∣ pJa221

∣∣∣∣ 0 0 0 Ia221 0 0 0
Ia222

∣∣∣∣ pJa222

∣∣∣∣ 0 0 0 0 Ia222 0 0
Ia31

∣∣∣∣ Ja31

∣∣∣∣ 0 0 0 0 0 Ia31 0
pIb1

∣∣∣∣ Jb1

∣∣∣∣ 0 X221 0 Ib1 0 0 pX41

pIb2

∣∣∣∣ Jb2

∣∣∣∣ 0 X222 0 0 pY 0 pX42

0
∣∣∣∣ Jc1

∣∣∣∣ 0 0 Ic1 0 0 0 pX81

0
∣∣∣∣ Jc2

∣∣∣∣ Ic2 0 0 0 0 pX72 pX82


We annihilate X221 with Ib1 and introduce the Smith Normal Form of X222 that cannot contain

a p-row and get

M =



Ia11

∣∣∣∣ 0
∣∣∣∣ Ia11 0 0 0 0 0 0 0

Ia121

∣∣∣∣ 0
∣∣∣∣ 0 Ia121 0 0 0 0 0 0

Ia122

∣∣∣∣ 0
∣∣∣∣ 0 0 Ia122 0 0 0 0 0

Ia21

∣∣∣∣ pJa21

∣∣∣∣ 0 0 0 Ia21 0 0 0 0
Ia221

∣∣∣∣ pJa221

∣∣∣∣ 0 0 0 0 Ia221 0 0 0
Ia222

∣∣∣∣ pJa222

∣∣∣∣ 0 0 0 0 0 Ia222 0 0
Ia31

∣∣∣∣ Ja31

∣∣∣∣ 0 0 0 0 0 0 Ia31 0
pIb1

∣∣∣∣ Jb1

∣∣∣∣ 0 0 0 0 Ib1 0 0 pX41

pIb2

∣∣∣∣ Jb2

∣∣∣∣ 0 Ib2 0 0 0 pY 0 pX42

0
∣∣∣∣ Jc1

∣∣∣∣ 0 0 0 Ic1 0 0 0 pX81

0
∣∣∣∣ Jc2

∣∣∣∣ Ic2 0 0 0 0 0 pX72 pX82


Next we see that pY can be annihilated, the fill-in above can be cleared from below using that
p2 = 0 resulting in

M =



Ia11

∣∣∣∣ 0
∣∣∣∣ Ia11 0 0 0 0 0 0 0

Ia121

∣∣∣∣ 0
∣∣∣∣ 0 Ia121 0 0 0 0 0 0

Ia122

∣∣∣∣ 0
∣∣∣∣ 0 0 Ia122 0 0 0 0 0

Ia21

∣∣∣∣ pJa21

∣∣∣∣ 0 0 0 Ia21 0 0 0 0
Ia221

∣∣∣∣ pJa221

∣∣∣∣ 0 0 0 0 Ia221 0 0 0
Ia222

∣∣∣∣ pJa222

∣∣∣∣ 0 0 0 0 0 Ia222 0 0
Ia31

∣∣∣∣ Ja31

∣∣∣∣ 0 0 0 0 0 0 Ia31 0
pIb1

∣∣∣∣ Jb1

∣∣∣∣ 0 0 0 0 Ib1 0 0 pX41

pIb2

∣∣∣∣ Jb2

∣∣∣∣ 0 Ib2 0 0 0 0 0 pX42

0
∣∣∣∣ Jc1

∣∣∣∣ 0 0 0 Ic1 0 0 0 pX81

0
∣∣∣∣ Jc2

∣∣∣∣ Ic2 0 0 0 0 0 pX72 pX82


We have low rank summands unless a122 = 0 and a222 = 0, so without loss of generality

M =



Ia11

∣∣∣∣ 0
∣∣∣∣ Ia11 0 0 0 0 0

Ia121

∣∣∣∣ 0
∣∣∣∣ 0 Ia121 0 0 0 0

Ia21

∣∣∣∣ pJa21

∣∣∣∣ 0 0 Ia21 0 0 0
Ia221

∣∣∣∣ pJa221

∣∣∣∣ 0 0 0 Ia221 0 0
Ia31

∣∣∣∣ Ja31

∣∣∣∣ 0 0 0 0 Ia31 0
pIb1

∣∣∣∣ Jb1

∣∣∣∣ 0 0 0 Ib1 0 pX41

pIb2

∣∣∣∣ Jb2

∣∣∣∣ 0 Ib2 0 0 0 pX42

0
∣∣∣∣ Jc1

∣∣∣∣ 0 0 Ic1 0 0 pX81

0
∣∣∣∣ Jc2

∣∣∣∣ Ic2 0 0 0 pX72 pX82


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(c) The remaining groups.
We can produced the Smith Normal Form of pX82 and get without loss of generality

M =



Ia111

∣∣∣∣ 0
∣∣∣∣ Ia111 0 0 0 0 0 0 0

Ia112

∣∣∣∣ 0
∣∣∣∣ 0 Ia112 0 0 0 0 0 0

Ia121

∣∣∣∣ 0
∣∣∣∣ 0 0 Ia121 0 0 0 0 0

Ia21

∣∣∣∣ pJa21

∣∣∣∣ 0 0 0 Ia21 0 0 0 0
Ia221

∣∣∣∣ pJa221

∣∣∣∣ 0 0 0 0 Ia221 0 0 0
Ia31

∣∣∣∣ Ja31

∣∣∣∣ 0 0 0 0 0 Ia31 0 0
pIb1

∣∣∣∣ Jb1

∣∣∣∣ 0 0 0 0 Ib1 0 pX411 pX412

pIb2

∣∣∣∣ Jb2

∣∣∣∣ 0 0 Ib2 0 0 0 pX421 pX422

0
∣∣∣∣ Jc1

∣∣∣∣ 0 0 0 Ic1 0 0 pX811 pX812

0
∣∣∣∣ Jc21

∣∣∣∣ Ic21 0 0 0 0 pX721 pIc21 0
0

∣∣∣∣ Jc22

∣∣∣∣ 0 Ic22 0 0 0 pX722 0 0


With pIc21 we annihilate upward to get

M =



Ia111

∣∣∣∣ 0
∣∣∣∣ Ia111 0 0 0 0 0 0 0

Ia112

∣∣∣∣ 0
∣∣∣∣ 0 Ia112 0 0 0 0 0 0

Ia121

∣∣∣∣ 0
∣∣∣∣ 0 0 Ia121 0 0 0 0 0

Ia21

∣∣∣∣ pJa21

∣∣∣∣ 0 0 0 Ia21 0 0 0 0
Ia221

∣∣∣∣ pJa221

∣∣∣∣ 0 0 0 0 Ia221 0 0 0
Ia31

∣∣∣∣ Ja31

∣∣∣∣ 0 0 0 0 0 Ia31 0 0
pIb1

∣∣∣∣ Jb1

∣∣∣∣ 0 0 0 0 Ib1 0 0 pX412

pIb2

∣∣∣∣ Jb2

∣∣∣∣ 0 0 Ib2 0 0 0 0 pX422

0
∣∣∣∣ Jc1

∣∣∣∣ 0 0 0 Ic1 0 0 0 pX812

0
∣∣∣∣ Jc21

∣∣∣∣ Ic21 0 0 0 0 0 pIc21 0
0

∣∣∣∣ Jc22

∣∣∣∣ 0 Ic22 0 0 0 pX722 0 0


Now if c21 6= 0, then we get

M =

[
1

∣∣∣∣ 0
∣∣∣∣ 1 0

0
∣∣∣∣ 1

∣∣∣∣ 1 p

]
;

[
0

∣∣∣∣ 1
∣∣∣∣ 1 p

1
∣∣∣∣ 0

∣∣∣∣ 1 0

]

;

[
0

∣∣∣∣ 1
∣∣∣∣ 1 p

1
∣∣∣∣ 1

∣∣∣∣ 0 p

]
;

[
0

∣∣∣∣ 1
∣∣∣∣ 1 0

1
∣∣∣∣ 1

∣∣∣∣ 0 p

]
, a permutation of MG22 .

We now assume without loss of generality that c21 = 0 and we have

M =



Ia112

∣∣∣∣ 0
∣∣∣∣ Ia112 0 0 0 0 0

Ia121

∣∣∣∣ 0
∣∣∣∣ 0 Ia121 0 0 0 0

Ia21

∣∣∣∣ pJa21

∣∣∣∣ 0 0 Ia21 0 0 0
Ia221

∣∣∣∣ pJa221

∣∣∣∣ 0 0 0 Ia221 0 0
Ia31

∣∣∣∣ Ja31

∣∣∣∣ 0 0 0 0 Ia31 0
pIb1

∣∣∣∣ Jb1

∣∣∣∣ 0 0 0 Ib1 0 pX412

pIb2

∣∣∣∣ Jb2

∣∣∣∣ 0 Ib2 0 0 0 pX422

0
∣∣∣∣ Jc1

∣∣∣∣ 0 0 Ic1 0 0 pX812

0
∣∣∣∣ Jc22

∣∣∣∣ Ic22 0 0 0 pX722 0


There are now two possibilities:

M1 =

Ia112

∣∣∣∣ 0
∣∣∣∣ Ia112 0

Ia31

∣∣∣∣ Ja31

∣∣∣∣ 0 Ia31

0
∣∣∣∣ Jc22

∣∣∣∣ Ic22 pX722



M2 =



Ia121

∣∣∣∣ 0
∣∣∣∣ Ia121 0 0 0

Ia21

∣∣∣∣ pJa21

∣∣∣∣ 0 Ia21 0 0
Ia221

∣∣∣∣ pJa221

∣∣∣∣ 0 0 Ia221 0
pIb1

∣∣∣∣ Jb1

∣∣∣∣ 0 0 Ib1 pX412

pIb2

∣∣∣∣ Jb2

∣∣∣∣ Ib2 0 0 pX422

0
∣∣∣∣ Jc1

∣∣∣∣ 0 Ic1 0 pX812


In M1 we establish the Smith Normal Form of pX722 and get

M1 =



Ia1121

∣∣∣∣ 0
∣∣∣∣ Ia112 0 0 0

Ia1122

∣∣∣∣ 0
∣∣∣∣ 0 Ia112 0 0

Ia311

∣∣∣∣ Ja311

∣∣∣∣ 0 0 Ia311 0
Ia312

∣∣∣∣ Ja312

∣∣∣∣ 0 0 0 Ia312

0
∣∣∣∣ Jc221

∣∣∣∣ Ic221 0 pI221 0
0

∣∣∣∣ Jc222

∣∣∣∣ 0 Ic222 0 0


Rank-3 summands being excluded we are left the possibility1 0

∣∣∣∣ 0 0
∣∣∣∣ 1 0

0 1
∣∣∣∣ 0 1

∣∣∣∣ 0 1
0 0

∣∣∣∣ 1 0
∣∣∣∣ 1 p

 = MG31 .
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In M2 we establish the Smith Normal Form of pX812 to get

M2 =



Ia121

∣∣∣∣ 0
∣∣∣∣ Ia121 0 0 0 0 0

Ia211

∣∣∣∣ pJa211

∣∣∣∣ 0 Ia211 0 0 0 0
Ia212

∣∣∣∣ pJa212

∣∣∣∣ 0 0 Ia212 0 0 0
Ia221

∣∣∣∣ pJa221

∣∣∣∣ 0 0 0 Ia221 0 0
pIb1

∣∣∣∣ Jb1

∣∣∣∣ 0 0 0 Ib1 pX4121 pX4122

pIb2

∣∣∣∣ Jb2

∣∣∣∣ Ib2 0 0 0 pX4221 pX4222

0
∣∣∣∣ Jc11

∣∣∣∣ 0 Ic11 0 0 pIc11 0
0

∣∣∣∣ Jc12

∣∣∣∣ 0 0 Ic12 0 0 0


Dismissing the possible summand G21 and annihilating pX4121, we are left with

M2 =



Ia121

∣∣∣∣ 0
∣∣∣∣ Ia121 0 0 0 0

Ia211

∣∣∣∣ pJa211

∣∣∣∣ 0 Ia211 0 0 0
Ia221

∣∣∣∣ pJa221

∣∣∣∣ 0 0 Ia221 0 0
pIb1

∣∣∣∣ Jb1

∣∣∣∣ 0 0 Ib1 0 pX4122

pIb2

∣∣∣∣ Jb2

∣∣∣∣ Ib2 0 0 pX4221 pX4222

0
∣∣∣∣ Jc11

∣∣∣∣ 0 Ic11 0 pIc11 0



Create the Smith Normal Form of pX4222,

[
pIb21 0

0 0

]
, and get

M2 =



Ia1211

∣∣∣∣ 0
∣∣∣∣ Ia1211 0 0 0 0 0 0

Ia1212

∣∣∣∣ 0
∣∣∣∣ 0 Ia1212 0 0 0 0 0

Ia211

∣∣∣∣ pJa211

∣∣∣∣ 0 0 Ia211 0 0 0 0
Ia221

∣∣∣∣ pJa221

∣∣∣∣ 0 0 0 Ia221 0 0 0
pIb1

∣∣∣∣ Jb1

∣∣∣∣ 0 0 0 Ib1 0 pX41221 pX41222

pIb21

∣∣∣∣ Jb21

∣∣∣∣ Ib21 0 0 0 pX42211 pIb21 0
pIb22

∣∣∣∣ Jb22

∣∣∣∣ 0 Ib22 0 0 pX42212 0 0
0

∣∣∣∣ Jc11

∣∣∣∣ 0 0 Ic11 0 pIc11 0 0


Now annihilate left with pIb21 and clear the fill-in with pIc11 to get

M2 =



Ia1211

∣∣∣∣ 0
∣∣∣∣ Ia1211 0 0 0 0 0 0

Ia1212

∣∣∣∣ 0
∣∣∣∣ 0 Ia1212 0 0 0 0 0

Ia211

∣∣∣∣ pJa211

∣∣∣∣ 0 0 Ia211 0 0 0 0
Ia221

∣∣∣∣ pJa221

∣∣∣∣ 0 0 0 Ia221 0 0 0
pIb1

∣∣∣∣ Jb1

∣∣∣∣ 0 0 0 Ib1 0 pX41221 pX41222

pIb21

∣∣∣∣ Jb21

∣∣∣∣ Ib21 0 0 0 0 pIb21 0
pIb22

∣∣∣∣ Jb22

∣∣∣∣ 0 Ib22 0 0 pX42212 0 0
0

∣∣∣∣ Jc11

∣∣∣∣ 0 0 Ic11 0 pIc11 0 0


There are two summands now

M21 =

Ia1212

∣∣∣∣ 0
∣∣∣∣ Ia1212 0 0

Ia211

∣∣∣∣ pJa211

∣∣∣∣ 0 Ia211 0
pIb22

∣∣∣∣ Jb22

∣∣∣∣ Ib22 0 pX42212

0
∣∣∣∣ Jc11

∣∣∣∣ 0 Ic11 pIc11


and

M22 =

Ia1211

∣∣∣∣ 0
∣∣∣∣ Ia1211 0 0 0

Ia221

∣∣∣∣ pJa221

∣∣∣∣ 0 Ia221 0 0
pIb1

∣∣∣∣ Jb1

∣∣∣∣ 0 Ib1 pX41221 pX41222

pIb21

∣∣∣∣ Jb21

∣∣∣∣ Ib21 0 pIb21 0


Case M =M21. We introduce the Smith Normal Form of pX42212 and get

M =



Ia12121

∣∣∣∣ 0
∣∣∣∣ Ia12121 0 0 0 0 0

Ia12122

∣∣∣∣ 0
∣∣∣∣ 0 Ia12122 0 0 0 0

Ia211

∣∣∣∣ pJa211

∣∣∣∣ 0 0 Ia211 0 0 0
Ia211

∣∣∣∣ pJa211

∣∣∣∣ 0 0 0 Ia211 0 0
pIb2211

∣∣∣∣ Jb2211

∣∣∣∣ Ib2211 0 0 0 pIb2211 0
pIb2222

∣∣∣∣ Jb2222

∣∣∣∣ 0 Ib2222 0 0 0 0
0

∣∣∣∣ Jc11

∣∣∣∣ 0 0 Ic11 0 pIc11 0
0

∣∣∣∣ Jc11

∣∣∣∣ 0 0 0 Ic11 0 pIc11


M can be one of three matrices.1 0 0

∣∣∣∣ 0 0 0
∣∣∣∣ 1 0 0

0 1 0
∣∣∣∣ 0 0 p

∣∣∣∣ 0 1 0
0 0 p

∣∣∣∣ 0 1 0
∣∣∣∣ 1 0 p

0 0 0
∣∣∣∣ 1 0 0

∣∣∣∣ 0 1 p

 =MG41 ,

[
1 0

∣∣∣∣ 0
∣∣∣∣ 1

0 p
∣∣∣∣ 1

∣∣∣∣ 1

]
=MG21 ,
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or [
1

∣∣∣∣ 0 p
∣∣∣∣ 1 0

0
∣∣∣∣ 1 0

∣∣∣∣ 1 p

]
;

[
1 0

∣∣∣∣ 0 p
∣∣∣∣ 1

1 p
∣∣∣∣ 1 0

∣∣∣∣ 0

]
;

[
1 0

∣∣∣∣ 0 p
∣∣∣∣ 1

0 p
∣∣∣∣ 1 0

∣∣∣∣ 1

]
=MG23 .

Case M =M22. Here pX41221 can be annihilated and we get

M2 =

Ia1211

∣∣∣∣ 0
∣∣∣∣ Ia1211 0 0 0

Ia221

∣∣∣∣ pJa221

∣∣∣∣ 0 Ia221 0 0
pIb1

∣∣∣∣ Jb1

∣∣∣∣ 0 Ib1 0 pX41222

pIb21

∣∣∣∣ Jb21

∣∣∣∣ Ib21 0 pIb21 0

 .
There are three possibilities:[

1 0
∣∣∣∣ 0

∣∣∣∣ 1 0
0 p

∣∣∣∣ 1
∣∣∣∣ 1 p

]
;

[
1 0

∣∣∣∣ 1 0
∣∣∣∣ 0

0 p
∣∣∣∣ 1 p

∣∣∣∣ 1

]
;

[
1 0

∣∣∣∣ 0 p
∣∣∣∣ 1

0 p
∣∣∣∣ 1 0

∣∣∣∣ 1

]
=MG23 ,[

1 0
∣∣∣∣ 0 p

∣∣∣∣ 1 0
0 p

∣∣∣∣ 1 0
∣∣∣∣ 1 p

]
=MG24 and

[
1 0

∣∣∣∣ 0 p
∣∣∣∣ 1

0 p
∣∣∣∣ 1 0

∣∣∣∣ 1

]
=MG23

We have now shown that any indecomposable group G ∈ hc′(3, p2) is nearly isomorphic to one
of the groups listed in Theorem 6.3
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