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Abstract. In this paper, we consider a nonlinear boundary value problem for viscoelastic
equations with a source term. By basing on Faedo-Galerkin approximations and compactness
argument, this work is devoted to prove the existence, uniqueness, and also continuous depen-
dence with respect to the initial data of solutions.

1 Introduction

In this paper, we consider a semilinear hyperbolic boundary value problem governed by par-
tial differential equations, which describe the evolution of nonlinear viscoelastic materials with
Dirichlet and Neumann boundary conditions as follows:

∂2u
∂t2 − divσ (u) + |u|ν u = f, in Ω× (0, T ) ,

σ (u) = λF (ε(u)) + µG (ε(u′)) , in Ω× (0, T ) ,
u = 0 on Γ1 × (0, T ) ,

u = 0 on Γ1 × (0, T ) , σ(u)η = 0 on Γ2 × (0, T ) ,
u(x, 0) = u0(x), u′(x, 0) = u1(x), x ∈ Ω,

where F,G are nonlinear functions and ν, λ, µ are positive reel numbers. In the case where µ = 0
and λ = 1, if σ (u) = ∇u or σ (u) = |∇u|p−2∇u , p ≥ 2, the correspondent problems were
considered by J.L. Lions [3]. Precisely, under assumption on ν, he showed the existence, unique-
ness and the regularity of a solution. For λ = 1, µ = 0, where F is a linear function, Rahmoune
and Benabderrahmane in [5, 6], without supposing any assumption on ν, have showed the local
existence, uniqueness and the regularity of solutions, by using Faedo Galerkin techniques and
compactness method.

In this paper assume that the data functions F,G, f , u0, u1 satisfy certain hypotheses, then
by using Faedo Galerkin approximations and compactness argument, we will prove the local
existence of solutions. Our main goal in this work is, without any assumption on ν like in
[5, 6], to show the uniqueness and the continuous dependence with respect to the initial data of
solutions.

2 Problem statement

Let Ω be an open and bounded domain in Rn, recall that the boundary Γ of Ω is assumed to be
regular and is composed of two relatively closed parts : Γ1, Γ2, with mutually disjoint relatively
open interiors. We assume that meas (Γ1) > 0. We pose Σi = Γi× (0, T ) , i = 1, 2, where T is
a finite real. Let η be the unit outward normal vector on Γ. Here and throughout this paper, the
summation convention over repeated indices is used.

The classical formulation of the problem is as follows. Find a displacement field u : Ω ×
(0, T )→ Rn, a stress field σ : Ω× (0, T )→ Sn, such that

u′′ − divσ (u) + |u|ν u = f in Q, ν > −1, (2.1)

σ (u) = λF (x, ε(u)) + µG (x, ε(u′)) in Q, (2.2){
u = 0 on Σ1,

σ(u)η = 0 on Σ2,
(2.3)
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{
u(x, 0) = u0(x) in Ω,

u′(x, 0) = u1(x) in Ω,
(2.4)

where Sn is the space of symmetric second-order tensors in Rn. u and f represent the dis-
placement field and the density of volume forces, respectively. (2.1), without the source term
|u|ν u, is the equilibrium equations for the stress, in which "div" denotes the divergence operator
for stress tensor σ = (σij), i, j = 1, 2, ..., n. (2.2) represents the viscoelastic constitutive law,
ε(u) = 1

2

(
∇u+∇Tu

)
denotes the linearized strain tensor. Next, (2.3) and (2.4) are the dis-

placement and traction boundary conditions and the initial conditions, respectively. To simplify
the notations, we do not indicate explicitly the dependence of u and σ with respect to x ∈ Ω and
t ∈ (0, T ).

In order to proceed with the variational formulation, we need the following space:

H= L2(Ω)n×ns =
{
σ = (σij) ∈ Sn : σij = σji ∈ L2(Ω)

}
,

which is a real Hilbert spaces endowed with the scalar product defined by

〈σ,τ〉 =
∫

Ω

σijτijdx.

The associated norm is denoted by ‖.‖H. Also we consider the notation ‖v‖L2(Ω) = |v| =(∫
Ω
|v|2 dx

) 1
2
.

For studying the problem (2.1)–(2.4), we will need the following hypotheses:
We assume that the nonlinear elasticity operator F : Ω× Sn → Sn satisfies :

For all ε1, ε2 ∈ Sn, then there exist m1 > 0 and L > 0 such that
(a) (F (x, ε1)− F (x, ε2)) . (ε1 − ε2) ≥ m1 |ε1 − ε2|2 , a.e. x ∈ Ω;
(b) |F (x, ε1)− F (x, ε2)| ≤ L |ε1 − ε2| , a.e. x ∈ Ω;
(c) The mapping x→ F (x, ε) is Lebesgue measurable on Ω;
(d) F (x; 0) = 0.

(2.5)

The nonlinear viscosity operator G : Ω× Sn → Sn verifies :
For all ε1, ε2 ∈ Sn, then there exists m2 > 0 such that
(a) (G(ε1)−G(ε2)) . (ε1 − ε2) ≥ m2 |ε1 − ε2|2 , a.e. x ∈ Ω;
(b) The mapping x→ G(x, ε) is Lebesgue measurable on Ω.

(2.6)

Also we assume that the given data f , u0 and u1 verify

f ∈ L2(Q), (2.7)

u0 ∈ V ∩ Lp(Ω), p = ν + 2, (2.8)

u1 ∈ L2(Ω). (2.9)

It is easy, as in [5, 6] to verify the following result.

Lemma 2.1. Assume that hypotheses (2.5) and (2.6) hold. Then the functions, still denoted by
F , G : H −→ H, defined by

F (ε(.)) = F (., ε(.)) , G (ε(.)) = G (., ε(.)) , a.e. in Ω

are continuous on H.

By a standard procedure based on Green’s formula, we derive the following variational for-
mulation of the mechanical problem (2.1)–(2.4):

Find a displacement field u ∈ V ∩ Lp(Ω), p = ν + 2 such that, for all v ∈ V ∩ Lp(Ω), we
have {

(u′′, v) + λa (u, v) + µ (G (ε(u′)) , ε(v)) + (|u|ν u, v) = (f, v),

u(x, 0) = u0(x), u′(x, 0) = u1(x), x ∈ Ω,

where
V =

{
v ∈ H1(Ω), v = 0 on Γ1

}
and a(u, v) =

∫
Ω

F (ε(u)) ε(v)dx.
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3 Existence and Uniqueness

Our main goal in this section is, by basing on Faedo-Galerkin approximations and compactness
argument, to show the local existence and uniqueness of a weak solution.

3.1 Existence

Theorem 3.1. Assume that (2.5)–(2.9) hold. Then there exists at least one solution to problem
(2.1)–(2.4) and it satisfies

u ∈ L∞(0, T ;V ∩ Lp(Ω)), p = ν + 2, (3.1)

u′ ∈ L∞
(
0, T ;L2(Ω)

)
∩ L2 (0, T ;V ) . (3.2)

Assume that the result of the Theorem 3.1 is verified, then we show the following result,
which guarantees that the initial conditions are well-defined.

Lemma 3.2. Assume that (2.5)–(2.9) hold. Then the initial conditions in (2.4) are well-defined.

Proof. Using hypotheses (2.5)–(2.9) and the results of 3.1, we get

u ∈ L2 (0, T ;V ) and u′ ∈ L2 (0, T ;V ) .

Using a known result like in [3], then the application u : [0, T ]→ V, is continuous, possibly after
a modification on a subset of [0, T ] with zero measure, then u (0) is well-defined, therefore the
first condition in (2.4) has a sense.

Using, (3.1) and (3.2), then we have ε(u), ε(u′) ∈ L∞
(
0, T ;L2(Ω)

)
. Thus, using the fact

that F and G are continuous and L2(Ω) ⊂ V ′, we get F (ε(u)) , G (ε(u′)) ∈ L∞
(
0, T ;L2(Ω)

)
.

Consequently, we deduce

divσ (u) = div (λF (ε(u)) + µG (ε(u′))) ∈ L∞ (0, T ;V ′) .

On the other hand, we have∫
Ω

|(|u|ν u)|p
′

dx ≤
∫

Ω

|u|(ν+1)p′
dx =

∫
Ω

|u|(p−1) p
p−1 dx = ‖u‖pLP (Ω) ,

1
p
+

1
p′

= 1.

Thus, for all u ∈ Lp(Ω), we arrive at

|u|ν u ∈ L∞
(

0, T ;Lp
′
(Ω)

)
.

Then, from (2.1) it follows

u′′ = f + divσ (u)− |u|ν u ∈ L2 (0, T ;L2(Ω)
)
+ L∞

(
0, T ;V ′ + Lp

′
(Ω)

)
,

where V ′ is the dual space of V and

V ′ + Lp
′
(Ω) =

{
u+ v; u ∈ V ′and v ∈ Lp

′
(Ω)

}
.

Using the fact that L2(Ω) ⊂ V ′ + Lp
′
(Ω), it is easy to deduce that

u′′ ∈ L2
(

0, T ;V ′ + Lp
′
(Ω)

)
. (3.3)

As in [3], using (3.2) we get
u′ : [0, T ] −→ V ′ + Lp

′
(Ω)

is continuous, possibly after a modification on a subset of [0, T ] with zero measure, then u′ (0)
is well-defined, therefore the second initial condition in (2.4) has a sense.

Proof of Theorem 3.1 . It consists of four steps:

Step 1 : Approximate Solutions.
It introduces a sequence (wn) of functions having the following properties:
∗ ∀j = 1, ...,m;wj ∈ V ∩ Lp(Ω);
∗ The family {w1, w2, ..., wm} is linearly independent;
∗ The Vm = span {w1, w2, ..., wm} generated by {w1, w2, ..., wm} is dense in V ∩ Lp(Ω).
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Let um = um(t) be an approximate solution such that

um(t) =
m∑
i=1

Kjm(t)wi. (3.4)

The Kjm being to be determined by the following system:

(u′′m(t), wj) + λa(um(t), wj) + µ (G (ε(u′m(t))) , ε(wj))+

+(|um|ν um(t), wj) = (f(t), wj), 1 ≤ j ≤ m,
(3.5)

um(0) = u0m =
m∑
i=1

αimwi
m−→∞−→ u0 in V ∩ Lp(Ω), (3.6)

u′m(0) = u1m =
m∑
i=1

βimwi
m−→∞−→ u1 in L2(Ω). (3.7)

Since (3.5)–(3.7) is a normal system of ordinary differential equations, then there exist at least
um, solutions to the problem (2.1)–(2.4) having the following regularities:

um (t) ∈ L2 (0, tm;Vm) , u′m (t) ∈ L2 (0, tm;Vm) .

In order to verify that ∀k ∈ N, then tm = T , we will show some a priori estimates uniform with
respect to m.

Step 2: Estimates on (um). We set

‖u‖1 =

(∫
Ω

F (ε(u)) ε(u)dx

) 1
2

. (3.8)

Then, using (2.5), it can be shown that ‖u‖1 is a norm on V equivalent to the norm ‖u‖ inH1(Ω).
Multiplying the equation (3.5) by K ′jm(t) and summing over j = 1 to m, we get{

(u′′m(t), u
′
m(t)) + λa (um(t), u′m(t)) + µ (G (ε(u′m(t))) , ε(u

′
m(t)))+

+(|um|ν um(t), u′m(t)) = (f (t) , u′m(t)) .
(3.9)

Since um ∈ L2 (0, tm;Vm) , u′m ∈ L2 (0, tm;Vm), we then deduce that ε(um), ε(u′m) ∈ L2
(
0, T ;L2 (Ω)

)
.

From Lemma 2.1 it follows

F (ε(um)) , F (ε(u′m)) ∈ L2 (0, T ;L2 (Ω)
)
.

Observing that

d

dt
a (um(t), um(t)) = (Fε(um (t)), ε(u′m (t))) +

(
d

dt
(Fε(um (t))) , ε(um (t))

)
.

From (3.8)we have

(F (ε(um (t))) , ε(u′m (t))) =
d

dt
‖um (t)‖2

1 −
(
d

dt
F (ε(um (t))) , ε(um (t))

)
.

Using Cauchy-Shwarz’s, Hollder’s inequalities and hypotheses (2.5), then we have∣∣∣∣( d

dt
F (ε(um (t))) , ε(um (t))

)∣∣∣∣ ≤ L |ε(u′m (t))| |ε(um (t))| ≤ C3 ‖u′m (t)‖ ‖um (t)‖ . (3.10)

Also, we have

1
2
d

dt
|u′m(t)|

2
= (u′′m(t), u

′
m(t)) ,

1
p

d

dt
‖um(x, t))‖pLp(Ω) = (|um|ν um(t), u′m(t)) , p = ν + 2.

Using hypotheses (2.6), then there is a constant C2 > 0 such that

(G(ε (u′m (t))), ε (u′m (t))) ≥ C2 ‖u′m (t)‖2
.
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Then, using Cauchy-Schwarz’s and Young’s inequalities and (3.10) from (3.9) it finds

d

dt

[
1
2 |u
′
m(t)|

2
+ λC1 ‖um (t)‖2

]
+ µC2 ‖u′m (t)‖2

+ 1
p

d

dt
‖um(x, t))‖pLp(Ω) ≤

≤ |(f(t)| |u′m(t)|+ C3 ‖u′m (t)‖ ‖um (t)‖ ≤
≤ 1

2 |f(t)|
2
+ 1

2 |u
′
m(t)|

2
+ 1

2µC2 ‖u′m (t)‖2
+ 1

2
C2

3
µC2
‖um (t)‖2

.

(3.11)

Integrating the last inequality over (0, t), we deduce that

1
2 |u
′
m(t)|

2
+ λC1 ‖um(t)‖

2
+ 1

2µC2

t∫
0
‖u′m (s)‖2

ds+ 1
p ‖um(t)‖

p
Lp(Ω) ≤

≤ 1
2 |u1m|2 + λC1 ‖u0m‖2 + 1

p ‖u0m‖pLp(Ω) +
1
2

t∫
0
|f(s)|2 ds+

+ 1
2

t∫
0
|u′m(s)|

2
ds+ C4

t∫
0
‖um (s)‖2

ds,

(3.12)

where C4 =
1
2
C2

3
µC2

.
By using hypotheses (3.7), (3.6) and (2.7), then there exists a constant C5 > 0 such that

1
2
|u1m|+ λC1 ‖u0m‖2 +

1
p
‖u0m‖pLp(Ω) +

1
2

t∫
0

|f(s)|2 ds ≤ C5.

Then from (3.12) it follows that

|u′m(t)|
2
+ ‖um(t)‖2

+
t∫

0
‖u′m (s)‖2

ds+ ‖um(t)‖pLp(Ω) ≤

≤ C6 + C7

t∫
0

(
|u′m(s)|

2
+ ‖um(s)‖2

)
ds, ∀m ∈ N∗,

(3.13)

where C6 =
C5

min( 1
2 ,λC1,

1
2µC2,

1
p)

and C7 =
max( 1

2 ,C4)
min( 1

2 ,λC1,
1
2µC2,

1
p)

.

Consequently in particular, for all t ∈ (0, T )

|u′m(t)|
2
+ ‖um(t)‖2 ≤ C6 + C7

t∫
0

(
|u′m(s)|

2
+ ‖um (s)‖2

)
ds

Therefore, employing Gronwall’s inequality, we deduce that there exists a constant C > 0,
independent of m, such that

|u′m(t)|+ ‖um(t)‖ ≤ C. (3.14)

From (3.13), we have

‖um(t)‖Lp(Ω) +

t∫
0

‖u′m (s)‖2
ds ≤ C (independent of m). (3.15)

From where, we deduce that tm is independent of m.
Passing to the limit when m −→∞, then from (3.15) it follows{

(um) is bounded in L∞ (0, T ;V ∩ Lp(Ω)) ,

(u′m) is bounded in L∞
(
0, T ;L2(Ω)

)
∩ L2 (0, T ;V ) .

(3.16)

Step 3 : Passage to the limit.
It follows from (3.16) that there exists a subsequence (uµ) of (um) such that

uµ −→ u weakly star in L∞ (0, T ;V ∩ Lp(Ω)) , (3.17)

u′µ −→ u′ weakly star in L∞
(
0, T ;L2(Ω)

)
∩ L2 (0, T ;V ) . (3.18)

From (3.16), it is obtained that the sequences (um) and (u′m) are bounded in L2(0, T ;V ) ⊂
L2(0, T ;L2(Ω)) = L2(Q) and L2

(
0, T ;L2(Ω)

)
∩ L2 (0, T ;V ) ⊂ L2(0, T ;L2(Ω)) = L2(Q),

respectively.
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Thanks to the Aubin–Lions theorem (see [4]), we deduce

uµ −→ u strongly in L2(Q). (3.19)

From (3.15) it results that (|um|ν um) is bounded in L∞
(

0, T ;Lp
′
(Ω)

)
, consequently

|uµ|ν uµ → |u|ν u weakly in L∞
(

0, T ;Lp
′
(Ω)

)
, (3.20)

where 1
p +

1
p′ = 1 and p = ν + 2.

Let j be fixed and µ > j. Then by (3.5) we have(
u′′µ(t), wj

)
+ λa (uµ(t), wj) + µ

(
−divG

(
ε(u′µ(t))

)
, wj
)
+

+(|uµ|ν uµ(t), wj) = (f(t), wj) .
(3.21)

Then, (3.17) and (3.18) imply that
a(uµ, wj) −→ a(u,wj) weakly star in L∞(0, T ),
(u′µ, wj) −→ (u′, wj) weakly star in L∞(0, T ),(

−divG
(
ε(u′µ(t))

)
, wj
)
→ (χ,wj) weakly star in L∞(0, T ).

And (
u′′µ(t), wj

)
−→ (u′′(t), wj) in D′(0, T ).

Using (3.20) to obtain

(|uµ|ν uµ, wj) −→ (|u|ν u,wj) weakly star in L∞(0, T ).

Then (3.21) becomes

(u′′(t), wj) + λa(u(t), wj) + µ (χ,wj) + (|u|ν u(t), wj) = (f(t), wj) .

Finally, since the space Vm is dense in V ∩ Lp(Ω), for all v ∈ V ∩ Lp(Ω) we obtain

(u′′(t), v) + λa (u(t), v) + µ (χ, v) + (|u|ν u(t), v) = (f(t), v) .

Then, u satisfies
u′′(t)− λdivF (ε(u)) + µχ+ |u|ν u = f. (3.22)

Step 4 : Verification of the initial conditions.
From (3.17) and (3.18), it follows that

uµ(0)→ u(0) weakly in L2(Ω).

Then, using (3.6) we deduce that

uµ(0) = u0µ → u0 in V ∩ Lp(Ω).

Thus, the first condition in (2.4) is obtained.
Again, by using (3.3), we get{

d
dt

(
u′µ(t), wj

)
−→ (f(t), wj)− λa (u(t), wj)− (χ,wj) =

= d
dt (u

′(t), wj) weakly in L2 (0, T ) + Lp
′
(0, T ),

then, for j = 1, ...,m, we have(
u′µ(0), wj

)
= (u1µ, wj) −→ (u′(0), wj).

Consequently
(u1, wj) = (u′(0), wj), for j = 1, ...,m,

Then the second condition in (2.4) is satisfied.
In order to complete the proof of 3.1, we need to prove that

χ = −divG (ε(u′(t)))
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For any ϕ ∈ L2 (0, T ;V ), let us consider A (ϕ(t)) = −divG (ε(ϕ(t))). Our goal now is to show
that χ = A (u′(t)). Indeed, using Green’s formula and the boundary conditions (2.3), then for
all v ∈ L2 (0, T ;V ) , from (2.6) we get

Xµ =

t∫
0

(
A
(
u′µ (s)

)
−A (v′ (s)) , u′µ (s)− v′ (s)

)
ds ≥ 0 (3.23)

and also, from (3.5) it results

t∫
0

(
A
(
u′µ (s)

)
, u′µ (s)

)
ds = − 1

2

∣∣u′µ (t)∣∣2 − λ t∫
0
a
(
uµ (s) , u′µ (s)

)
ds−

− 1
p ‖uµ(x, t))‖

p
Lp(Ω) +

1
p ‖u0µ‖pLp(Ω) +

1
2 |u1µ|2 +

t∫
0

(
f (s) , u′µ (s)

)
ds.

Hence, using (3.23), we arrive at

Xµ = − 1
2

∣∣u′µ (t)∣∣2 − λ t∫
0
a
(
uµ (s) , u′µ (t)

)
ds− 1

p ‖uµ(x, t))‖
p
Lp(Ω)+

+ 1
p ‖u0µ‖pLp(Ω) +

1
2 |u1µ|2 +

t∫
0

(
f (s) , u′µ (s)

)
ds−

t∫
0

(
A
(
u′µ (s)

)
, v′ (s)

)
ds−

−
t∫

0

(
A (v′ (s)) , u′µ (s)− v′ (s)

)
ds.

Consequently, using the following inequalities
lim
µ

inf
∣∣u′µ (t)∣∣2 ≥ |u′ (t)|2 ,

lim
µ

inf ‖uµ(x, t))‖pLp(Ω) ≥ ‖u(x, t))‖
p
Lp(Ω) ,

lim
µ

inf
t∫

0
a
(
uµ (s) , u′µ (s)

)
ds ≥

t∫
0
a (u (s) , u′ (s)) ds,

to obtain that

lim
µ

supXµ ≤ − 1
2 |u
′ (t)|2 − λ

t∫
0
a (u (s) , u′ (s)) ds− 1

p ‖u(x, t))‖
p
Lp(Ω)+

+ 1
p ‖u0‖pLp(Ω) +

1
2 |u1|2 +

t∫
0
(f (s) , u′ (s)) ds−

−µ
t∫

0
(χ, v′ (s)) ds−

t∫
0
(A (v′ (s)) , u′ (s)− v′ (s)) ds.

(3.24)

We multiply the (3.22) by u′ and we use integration by parts to arrive at

µ
t∫

0
(χ, u′ (s)) ds =

t∫
0
(f (s) , u′ (s)) ds− 1

2 |u
′ (t)|2 − λ

t∫
0
a (u (s) , u′ (s)) ds−

− 1
p ‖u(x, t))‖

p
Lp(Ω) +

1
p ‖u0‖pLp(Ω) +

1
2 |u1|2 .

This last equality with (3.23) and (3.24) yields

t∫
0

(µχ−A (v′ (s)) , u′ (s)− v′ (s)) ds ≥ 0. (3.25)

Now, for all w ∈ L2 (0, T ;V ), we put v′ = u′ − αw, α > 0, then (3.25) becomes

t∫
0

(χ−A (u′ (s)− αw′ (s)) , w (s)) ds ≥ 0. (3.26)

Finally, when α −→ 0 from (3.26) it results

t∫
0

(χ−A (u′ (s)) , w (s)) ds ≥ 0, ∀w ∈ L2 (0, T ;V ) ,



8 Rahmoune Abita, Benabderrahmane Benyattou and Nouri Brahim

which implies that χ = A (u′ (t)) .
Then, for all wj ∈ Vm and j = 1, ...,m, from (3.21) it results

d2

dt2
(u (t) , wj) + λa(u (t) , wj) + µ (−divG (ε(u′(t))) , wj) = (f (t) , wj) .

Finally, using the fact that Vm is dense in V , then for all v ∈ V we gate

(u′′ (t) , v) + λa (u (t) , v) + µ (−divG (ε(u′(t))) , v) = (f (t) , v) . (3.27)

Thus, the (2.1) is satisfied.

3.2 Uniqueness

Many authors have showed the uniqueness of the solution by supposing that ν ≤ 2
n− 2

, of

particular problems. Our goal in this section is, for all ν > −1, to show the uniqueness of the
solution of our problem.

Theorem 3.3. Under the hypotheses in 3.1. Then for all ν > −1, the solution u, given by 3.1, is
unique.

Proof. Let u, v be two solutions to problem (2.1)–(2.4). Define w = u− v and using 3.1, then w
satisfy the following system

w′′ − λdiv (F (ε(u))− F (ε(v)))− µdiv (G (ε(u′))−G (ε(v′)))+

+(|u|ν u− |v|ν v) = 0 in Q,
(3.28)

w(0) = w′(0) = 0 in Ω, (3.29)

w = 0 on Σ1, σ(w)η = 0 on Σ2, (3.30)

w ∈ L∞(0, T ;V ∩ Lp(Ω)), p = ν + 2, (3.31)

w′ ∈ L∞
(
0, T ;L2(Ω)

)
∩ L2 (0, T ;V ) . (3.32)

Multiplying the equation (3.28) by w′ and integrating over Ω. Then, using Green’s formula and
(3.30) we obtain

1
2
d
dt |w

′(t)|2 + λ (F (ε(u))− F (ε(v)), ε(u′)− ε(v′))+
+µ (G (ε(u′))−G (ε(v′)) , ε(u′)− ε(v′)) =

∫
Ω
(|v|ν v − |u|ν u)w′dx.

(3.33)

Now, we use (2.5), (3.29) and (3.8) to obtain

(F (ε(u))− F (ε(v)), ε(u′)− ε(v′)) =
d

dt
(F (ε(u))− F (ε(v)), ε(u)− ε(v))−

−
(
d

dt
(F (ε(u))− F (ε(v))) , ε(u)− ε(v)

)
≥

≥ C1
d

dt
‖w‖2 −

(
d

dt
(F (ε(u))− F (ε(v))) , ε(u)− ε(v)

)
.

Then, from (2.6), there exists a constant C2 > 0 such that

(G (ε(u′))−Gε(v′), ε(u′)− ε(v′)) ≥ C2 ‖w′‖
2
.

Therefore (3.33) takes the form

d
dt

(
1
2 |w

′(t)|2 + λC1 ‖w(t)‖
2
)
+ µC2 ‖w′(t)‖

2 ≤
∫

Ω
(|v|ν v − |u|ν u)w′dx+

+
∫

Ω

d

dt
(F (ε(u))− F (ε(v))) (ε(u)− ε(v)) dx.

(3.34)

From hypotheses (2.5) we have the following estimates:∣∣∣∣∫Ω

d

dt
(F (ε(u))− F (ε(v))) (ε(u))− (ε(v)) dx

∣∣∣∣ ≤
≤ L

∫
Ω
|ε(u′)− ε(v′)| |ε(u)− ε(v)| dx ≤ C3 ‖w′‖ ‖w‖ .

(3.35)
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Now, as in [4], we estimate the first term on the right hand side of (3.34) as follows∣∣∣∣∫
Ω

(|v|ν v − |u|ν u)w′dx
∣∣∣∣ ≤ (ν + 1)

∫
Ω

sup (|u|ν , |v|ν) |w| |w′| dx.

Using Holder’s inequality with 1
n + 1

q +
1
2 = 1, we get∣∣∣∣∫

Ω

(|v|ν v − |u|ν u)w′dx
∣∣∣∣ ≤ C (ν + 1)

(
‖|u|ν‖Ln(Ω) + ‖|v|

ν‖Ln(Ω)

)
||w (t)||Lq(Ω) |w

′ (t)| ,

where C is a positive constant.
Also, as in [1], for all k, q ∈ N∗, we have

‖v‖Lkq(Ω) =
∥∥∥|v|k∥∥∥ 1

k

Lq(Ω)
. (3.36)

Finally, For all n > 2 and ν > −1, putting k = E
(
ν(n−2)

2

)
+ 1, where E (x) is the integer part

of x, then k satisfies

ν ≤ 2k
n− 2

, k ∈ N∗, n 6= 2. (3.37)

Thus, νn ≤ kq.
Then, using (3.36), (3.37) and the Sobolev embedding H1(Ω) ↪→ Lq(Ω), we arrive at

‖|v|ν‖Ln(Ω) = ‖v‖
ν
Lνn(Ω) ≤ ‖v‖

ν
Lkq(Ω) =

∥∥∥|v|k∥∥∥ νk
Lq(Ω)

≤

≤ C ‖v‖νLq(Ω) ≤ C ‖v‖
ν
.

Thus we have
‖|v|ν‖Ln(Ω) ≤ C ‖v‖

ν
, (3.38)

which implies that∣∣∣∣∫
Ω

(|v|ν v − |u|ν u)w′dx
∣∣∣∣ ≤ C (ν + 1) (||u||ν + ‖v‖ν) ||w|| |w′| .

Since u, v ∈ L∞ (0, T ;V ∩ Lp(Ω)) , then there exists C4 > 0 such that∣∣∣∣∫
Ω

(|v|ν v − |u|ν u)w′dx
∣∣∣∣ ≤ C4 ||w|| |w′| . (3.39)

Combining (3.34), (3.35) and (3.39) and using Young’s, Holder’s inequalities to obtain

d
dt

(
1
2 |w

′(t)|2 + λC1 ‖w(t)‖
2
)
+ µC2 ‖w′(t)‖

2 ≤
≤ C3 ‖w′(t)‖ ‖w(t)‖+ C4 ||w(t)|| |w′(t)| ≤ 1

2µC2 ‖w′(t)‖
2
+

+C5 ‖w(t)‖
2
+ 1

2C6

(
|w′(t)|2 + ‖w(t)‖2

)
.

Integrating the above inequality over (0, t) and using (3.29), we get

1
2 |w

′(t)|2 + λC1 ‖w(t)‖
2
+ 1

2µC2

t∫
0
‖w′ (s)‖2

ds ≤

≤ 0 + C7

t∫
0

(
|w′(s)|2 + ‖w(s)‖2

)
ds.

Using Gronwall’s inequality to deduce that w = 0.

4 Continuous dependence with respect to the initial data

Our goal in this section is to show the continuous dependence with respect to the initial data of
solutions.
Let W (Q) =

{
ϕ ∈ L∞ (0, T ;V )� ϕ′ ∈ L∞

(
0, T ;L2 (Ω)

)}
be the Banach space equipped

with the norm
‖ϕ‖W (Q) = ‖ϕ‖L∞(0,T ;V ) + ‖ϕ

′‖L∞(0,T ;L2(Ω)) .
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Let u ∈ W (Q) be the solution of (2.1)–(2.4) associated to the initial data {f, u0, u1}. Then,
using 3.1 and 3.3, we can define the application π as follows:{

π : L2 (Q)× V × L2 (Ω)→W (Q)

{f, u0, u1} 7→ u.
(4.1)

Our main result announces as follows.

Theorem 4.1. Let u, v ∈W (Q) be solutions of (2.1)–(2.4) associated to the initial data {f, u0, u1} , {g, v0, v1} ∈
L2 (Q)×V ×L2 (Ω) , respectively. Under the assumptions in 3.1 and 3.3. Then, the application
π defined by (4.1) is continuous, i.e. there exists a function C (u, v) such that

|u′(t)− v′(t)|2 + ‖u(t)− v(t)‖2 ≤ C (u, v)

|u1 − v1|2 + ‖u0 − v0‖2 +

t∫
0

|(f − g) (s)|2 ds

 .

Proof. Let u, v ∈W (Q) solutions of (2.1)–(2.4) associated to the initial data {f, u0, u1} , {g, v0, v1} ∈
L2 (Q)× V × L2 (Ω) .

Then, putting w = u− v we get

w′′ − λdiv (F (ε(u))− F (ε(v)))− µdiv (G(ε(u′))−G(ε(v′))) =
= (f − g) + (|v|ν v − |u|ν u) .

Multiplying the last equation by w′, using Green’s formula and (3.30) we arrive at

1
2
d
dt |w

′(t)|2 + λ
∫
Ω

(F (ε(u))− F (ε(v))) ε(w′)dx+ µ
∫
Ω

(G(ε(u′))−G(ε(v′))) ε(w′)dx =

= (f − g, w′) +
∫
Ω

(|v|ν v − |u|ν u)w′dx.

(4.2)
Thus, from (2.5) we conclude that∫

Ω

(F (ε(u))− F (ε(v))) ε(w′)dx ≥

≥ d
dtC1 ‖w‖2 −

∫
Ω

(
d

dt
(F (ε(u))− F (ε(v)))

)
ε(w)dx

and ∣∣∣∣∣∣
∫
Ω

(
d

dt
(F (ε(u))− F (ε(v)))

)
ε(w)dx

∣∣∣∣∣∣ ≤ C3 ‖w′‖ ‖w‖ .

On the other hand, by hypotheses (2.6) we have∫
Ω

(G(ε(u′))−G(ε(v′))) ε(w′)dx ≥ C2 ‖w′‖
2
.

Therefore, using Holder’s, Young’s inequalities and integrating the result over (0, t) from (4.2),
we get

1
2 |w

′(t)|2 + λC1 ‖w (t)‖2
+ µC2

t∫
0
‖w′ (s)‖2

ds ≤ 1
2 |u1 − v1|2 + λC1 ‖u0 − v0‖2 +

+ 1
2

t∫
0
|(f − g) (s)|2 ds+ 1

2

t∫
0
|w′(s)|2 ds+ 1

2C4

t∫
0
‖w (s)‖2

ds+

+ 1
2µC2

t∫
0
‖w′ (s)‖2

ds+
t∫

0

∫
Ω

(|v (s)|ν v (s)− |u (s)|ν u (s))w′ (s) dxds.

(4.3)

Combining these estimates (3.39) and (4.3) to deduce

|w′(t)|2 + 2λC1 ‖w (t)‖2
+ µC2

t∫
0
‖w′ (s)‖2

ds ≤ |u1 − v1|2 + 2C1λ ‖u0 − v0‖2 +

+
t∫

0
|(f − g) (s)|2 ds+

t∫
0
|w′(s)|2 ds+ C4

t∫
0
‖w (s)‖2

ds+ C5

t∫
0

(
||w(s)||2 + |w′(s)|2

)
ds.
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Consequently, the last inequality implies

|w′(t)|2 + 2λC1 ‖w (t)‖2 ≤ |u1 − v1|2 + 2λC1 ‖u0 − v0‖2 +

+
t∫

0
|(f − g) (s)|2 ds+ 2C6

t∫
0

(
|w′(s)|2 + ‖w (s)‖2

)
ds.

Finally, using Gronwall’s inequality to arrive at

|w′(t)|2 + ‖w (t)‖2 ≤ C (u, v)

|u1 − v1|2 + ‖u0 − v0‖2 +

t∫
0

|(f − g) (s)|2 ds

 ,

where C (u, v) is a bounded function in Q. Thus, the proof of 3.1 is completed.
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