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Abstract. In this survey article, we shall give some properties of classes of short exact
sequences of modules related with complement and supplement submodules; some of them form
proper classes in the sense of Buchsbaum and some do not. Neat subgroups in abelian groups
can be generalized to modules in several different ways; these give us the proper classes of short
exact sequences of modules projectively generated or injectively generated or flatly generated by
simple modules which approximate the proper classes defined using supplement submodules or
complement submodules. The classes of short exact sequences of modules defined using weak
supplements or submodules that have a supplement or small submodules do not always form
a proper class, but for hereditary rings we can determine the smallest proper class containing
them. For the proper classes we are interested in, we describe better their interrelations and their
homological objects, like projectives, injectives, coprojectives, coinjectives with respect to the
proper class, when the ring is a Dedekind domain. There are many natural questions for proper
classes that needs to be further investigated.

1 Introduction

In this survey article, we shall describe the relative homological algebra approach to comple-
ments and supplements in terms of classes of short exact sequences of modules which may or
may not a form a proper class in the sense of Buchsbaum; for the concept of proper classes of
short exact sequences of objects in an abelian category, see [39, Ch. XII, §4]. When a class
of short exact sequences of modules do not form a proper class, a natural question is to deter-
mine the smallest proper class containing it. For completeness, the terminology and notation for
proper classes of short exact sequences of modules have been gathered at the end in the Appendix
Section A to this article; our notation for proper classes is as in [56] and [52]. The reason for
using proper classes is to formulate easily and explicitly some problems of interest (for relative
injectivity, projectivity, flatness), and to use the present technique for them for further investi-
gations of the relations between them along these lines. After explaining our motivation from
abelian groups, we shall list the definition of all the classes of short exact sequences of modules
defined in this article by some kinds of submodules (whose definitions are given below) related
with complements and supplements that we are interested in.

Throughout the article, R denotes an arbitrary ring with unity and an R-module or module
means a unital left R-module; R-Mod denotes the category of all left R-modules. .Ab denotes
the category of abelian groups. Z denotes the ring of integers and Q denotes the field of rational
numbers.

1.1 Complements, supplements, coclosed submodules, weak supplements,
Rad-supplements, coatomic supplements

Let A be a submodule of a module B. It would be best if A is a direct summand of B, that is,
if there exists another submodule K of B such that B = A & K which means B = A + K and
AN K = 0. When A is not a direct summand, retaining at least one of these conditions with a
maximality or minimality condition give rise to the concepts complement and supplement; others
are obtained by some similar conditions.

(i) A is said to be a complement in B or is said to be a complement submodule of B if A is a
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complement of some submodule K of B, thatis, K N A = 0 and A is maximal with respect
to this property. A submodule A of a module B is said to be closed in B if A has no proper
essent~ial exten~sion in B, that is, there exists~no submodule A of B such that A g A and
A < A (A <D A means that A is essential in A , that is, for every non-zero submodule X of
A, we have AN X # 0). We also say in this case that A is a closed submodule of B and it
is known that closed submodules and complement submodules in a module coincide. See
the monograph [23] for a survey of results in the related concepts.

(i1) Dually, A is said to be a supplement in B or A is said to be a supplement submodule of B
if A is a supplement of some submodule K of B, that is, B = K + A and A is minimal
with respect to this property; equivalently, K + A = Band KNA <K A(KNA K A
means that K N A is small (=superfluous) in A, that is, for no proper submodule X of A,
K N A+ X = A). For the definitions and related properties, see [60, §41]; the monograph
[17] focuses on the concepts related with supplements.

(iii) A is said to be a weak supplement in B or A is said to be a weak supplement submodule
of B if A is a weak supplement of some submodule K of B, thatis, B = K + A and
KNA<KB.

(iv) A is said to be a Rad-supplement in B or A is said to be a Rad-supplement submodule
of B if A is a Rad-supplement of some submodule K of B, thatis, B = K + A and
K NACRad(A).

(v) A is said to be a coatomic supplement in B if A is a coatomic supplement of a submodule
K of B, thatis, B = K + A and K N A is a coatomic module (A module M is said to be
coatomic if Rad(M/U) # M /U for every proper submodule U of M, or equivalently, every
proper submodule of M is contained in a maximal submodule of M; coatomic modules
appear in the theory of supplemented, semiperfect, and perfect modules, see [62] and [64]).

(vi) Given submodules K C A C B, the inclusion K C A is called cosmall in B if A/K <«
B/K; Ais called coclosed in B if A has no proper submodule K for which the inclusion
K C Aiscosmallin B (see [17, 3.1 and 3.6]).

1.2 Motivating ideas in abelian groups: Neat subgroups

A subgroup A of an abelian group B is said to be a neat subgroup if AN pB = pA for all prime
numbers p ([35], [30, p. 131]). This is a weakening of the condition for being a pure subgroup:
A subgroup A of an abelian group B is said to be a pure subgroup if ANnB = nA for all integers
n. See [30, Ch. 5 and §53] for the very important notion of purity in abelian groups, pure-exact
sequences of abelian groups, pure-projectivity and pure-injectivity and the functor Pext; this is
one of the main motivations for the relative homological algebra approach.

For a subgroup A of an abelian group B, the following are equivalent (see [41, Theorem
4.1.1]):

(i) A is neat subgroup of B, thatis, AN pB = pA for all prime numbers p.

(i) The sequence

lz/p2®ia

(Z/pZ) ® B

obtained by applying the functor (Z/pZ)® — to the inclusion monomorphismis : A — B
is exact for all prime numbers p.

(iii) The sequence
Homy(Z/pZ, B)—Homgy(Z/pZ, B/A)—0

obtained by applying the functor Homy(Z/pZ, —) to the canonical epimorphism B —
B/A is exact for all prime numbers p.

(iv) The sequence
Homy (B, Z/pZ)——Homgy (A, Z/pZ)—0

obtained by applying the functor Homy(—,Z/pZ) to the inclusion monomorphism i, :
A — B is exact for all prime numbers p.

(v) Ais acomplement of a subgroup K of B, thatis, AN K = 0 and A is maximal with respect
to this property (equivalently, A is a closed subgroup of B, that is, A has no proper essential
extension in B).
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1.3 The classes of short exact sequences related with complements and supplements

For ease of reference, we give below the list of the classes of short exact sequences of modules
that we shall deal in this article in the next sections; the main motivation is the characterization
of neat subgroups given in the previous Subsection 1.2. Some of them are proper classes and
some are not as explained in the later sections.

Each of the following are classes of short exact sequences of (left) R-modules; to emphasize
the ring R, we shall sometimes write the index R on the left, like in gCompl, but throughout the
article for the arbitrary ring R, we shall usually not write it. When we use some specific ring
like the ring Z of integers and consider abelian groups, we shall of course write this explicitly,
like in zCompl.

For a given class M of modules, 7=!(M) [¢~!(M)] denotes the proper class projectively
generated [resp. injectively generated] by M. For a given class M of right R-modules, 7= (M)
denotes the proper class flatly generated by the class M of right R-modules. See the Appendix
Section A. We are using the letters , ¢ and 7 for describing the concepts related with the relative
versions of ‘projective’, ‘injective’ and ‘flat’ as in [56] and [52]. A class of short exact sequences
of modules is usually given by describing it as the class of all short exact sequences

f g
0 A B C 0 (1.1)

of R-modules such that Im( f) is a submodule of the stated kind; some of the classes below are
given by stating this condition on Im( f).

(i) Compl: Im(f) is a complement submodule of B.
(ii) Suppl: Im(f) is a supplement submodule of B.
(ili) 7-Compl = 7~'({N € R-Mod | 7(N) = N}) for an idempotent preradical 7 on R-Mod.
(iv) 7-Suppl = 17 ({N € R-Mod | 7(N) = 0}) for a radical 7 on R-Mod.
(v) Neat = Neat™ = 7! ({ all simple R-modules }) = Soc-Compl.
(vi) Neat™ = 7=!({ all simple right R-modules }).
(vii) Neat* = ~!({ all simple R-modules }).
(viii) CoNeat = ! ({ all R-modules with zero radical }) = Rad-Suppl.
(ix) PPure =71 ({R/P | P € P}), where P is the collection of all left primitive ideals of R.
(x) Co-Closed: Im(f) is a coclosed submodule of B.

(xi) §: Im f has a supplement in B (such short exact sequences are called x-elements by
Zoschinger in [63]);

(xii) WS: Im f has (is) a weak supplement in B;
(xiii) Small: Im f is a small submodule of B;
(xiv) CAS: Im f has a coatomic supplement in B.

(xv) WS consists of the so called extended weak supplement short exact sequences of modules,
where a short exact sequence F as in (1.1) is said to be extended weak supplement if there
is a short exact sequence

u

E': 0 A B’ c’ 0

of modules such that Im v has (is) a weak supplement in B’ (that is, E’ is in the class WS)
and there is a homomorphism & : C' — C’ such that E = h*(E’), where h* = Exth(h, 14),
that is, there is a commutative diagram as follows:

E: 0 A B C 0

E': 0 A B’ c’ 0
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2 The proper classes Compl, Suppl, N eat, CoN eat, P-Pure and
Co-Closed

The classes rCompl and rSuppl form proper classes as has been shown more generally by
[32, Theorem 1], [33, Theorem 1], [55, Proposition 4 and Remark after Proposition 6]. In [55],
following the terminology in abelian groups, the term ‘high’ is used instead of complements and
‘low’ for supplements. [32,33] use the terminology ‘high’ and ‘cohigh’ for complements and
supplements, and give more general definitions for proper classes of complements and supple-
ments related to another given proper class (motivated by the considerations as pure-high exten-
sions and neat-high extensions in [34]); ‘weak purity’ in [32] is what we denote by rpCompl. See
also [27, Theorem 2.7.15 and Theorem 3.1.2] or [60, 10.5 and 20.7] for the proofs of rRCompl
and pSuppl being proper classes.

Denote by zMNeat, the proper class of all short exact sequences (1.1) of abelian groups
and abelian group homomorphisms where Im(f) is a neat subgroup of B; call such short ex-
act sequences neat-exact sequences of abelian groups (like the terminology for pure-exact se-
quences of abelian groups). The characterization of neat subgroups of abelian groups given
in Subsection 1.2 can be described in terms of proper classes as follows. The proper class
zCompl = zNeat is projectively generated, flatly generated and injectively generated by the
simple abelian groups Z/pZ, p prime number:

zCompl = gNeat = = '({Z/pZ | p prime})
= 7'({Z/pZ | p prime}) = .~ ({Z/pZ | p prime}).

The second equality zNeat = 7~ 1({Z/pZ|p prime}) is the motivation to define for any
ring R

rNeat = n~'({all simple R-modules})
=« Y({R/P|P is a maximal left ideal of R}),

following [56, 9.6] (and [55, §3]). For a submodule A of an R-module B, say that A is a neat
submodule of B if A is a gpNeat-submodule, that is, if for every simple R-module S, the se-
quence Homg(S, B) — Hompg(S, B/A) — 0 obtained by applying the functor Homg (S, —)
to the canonical epimorhism B — B/A is exact.

We always have gCompl C rNeat for any ring R (by [55, Proposition 5]). [32, Theorem 5]
gives a characterization of this equality in terms of the ring R:

Theorem 2.1. (see [41, Theorem 3.3.2]): rRCompl = rNeat if and only if R is a left C-ring.

The notion of C-ring has been introduced in [50]: A ring R is said to be a left C-ring if for
every (left) R-module B and for every essential proper submodule A of B, Soc(B/A) # 0, that is
B/A has a simple submodule. Clearly, if R is a left semiartinian ring R (that is, if Soc(R/I) # 0
for every proper left ideal I of R), then R is a left C-ring. A commutative Noetherian ring
in which every nonzero prime ideal is maximal is also a C-ring. So, of course, in particular a
Dedekind domain and therefore a principal ideal domain is also a C-ring. A commutative domain
R is a C-ring if and only if every nonzero torsion module has a simple submodule and such rings
have been considered in [26, Theorem 4.4.1] when dealing with torsion-free covering modules
over a commutative domain.

Because of the characterization of neat subgroups of abelian groups in Subsection 1.2, there
are several reasonable ways to generalize the concept of neat subgroups to modules and a natural
question is when these are equivalent (see Section 3). Another natural generalization of neat
subgroups to modules is what is called P-purity. Denote by P the collection of all left primitive
ideals of the ring R; recall that a (two-sided) ideal P of R is said to be a left primitive ideal if
it is the annihilator of a simple (left) R-module. We say that a submodule A of an R-module B
is P-pure in B if AN PB = PAfor all P € P. Denote by P-Pure the proper class of all short
exact sequences (1.1) of R-modules such that Im(f) is P-pure in B. By Example A.1-(4), the
proper class P-Pure is a flatly generated proper class:

P-Pure:Tfl({R/P | PEP})'

In [42], the relation of P-purity with complements and supplements has been investigated and
the structure of c-injective modules (= Compl-injective modules) over Dedekind domains has
been given. If the ring R is commutative, then P is just the set of all maximal ideals of R.
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We clearly have,

rNeat = n'({all semisimple R-modules})
= 7 '({M|Soc M = M, M an R-module}),

where Soc M is the socle of M, that is the sum of all simple submodules of M. Dualizing this,
we define the proper class Co-Neat raqoq Y

rCoNeat = =" ({all R-modules with zero radical})
=" '({M|Rad M = 0, M an R-module}).
If Ais a gCo-Neat-submodule of an R-module B, we say that A is a co-neat submodule of B,
or that the submodule A of the module B is co-neat in B.
For the motivation to consider these proper classes Compl, Suppl, Neat, CoNeat and for
further related results, see [41], [5], [1], [17, §10 and 20.7-8], [16] and [44].
Every module M with Rad M = 0 is Suppl-injective that is M is injective with respect to

every short exact sequence in Suppl. Thus supplement submodules are co-neat submodules by
the definition of co-neat submodules (see [41, Proposition 3.4.1]), and we have for any ring R

Suppl C CoNeat C v~ '({all (semi-)simple R-modules}).

The class Co-Neat has an interpretation in terms of supplements. Being a co-neat submodule
is like being a supplement: For a submodule A of a module B, A is co-neat in B if and only if A
is a Rad-supplement in B, that is, there exists a submodule K C B such that

A+K=B and ANK CRadA

(see [41, Proposition 3.4.2] or [17, 10.14] or [1, 1.14]). This characterization will be the particu-
lar case 7 = Rad in Proposition 4.1 and this is the reason for considering Rad-supplements and in
general 7-supplements; see Section 4 for the proper class 7-Suppl defined using T-supplements
for aradical 7 on R-Mod and the proper class 7-Compl for an idempotent preradical 7 on R-Mod.
For more results on co-neat submodules see [41], [5], [17, §10 and 20.7-8] and [1].

For a semilocal ring R,

CoNeat = v~ ({all (semi-)simple R-modules}),
and for a left perfect ring R,
Suppl = CoNeat = =" ({all (semi-)simple R-modules})

(see [41, Theorem 3.8.7 and Corollary 3.8.8]).

A natural question for a proper class is when it equals Split (=the class of all splitting short
exact sequences of modules) or when it equals Abs (=the class of all short exact sequences of
modules). For the proper classes Compl and Suppl, we know that:

Theorem 2.2. (by [23, 13.5] and [47, Corollary 2.5]) For a ring R, the following are equivalent:
(i) Compl = Split (equivalently, all left R-modules are extending (CS)),

(ii) R is left perfect and Suppl = Split (equivalently, all left R-modules are lifting),

(iii) R is (left and right) artinian serial and J* = 0 for the Jacobson radical J of R.

2.1 The relations between these proper classes over Dedekind domains

In abelian groups, we have:

Theorem 2.3. ([41, Theorems 4.6.5 and 4.4.4] and [5, Theorem 5.3])
(i) zSuppl & zCoNeat & zNeat = zCompl.

(ii) The inductive closure of the proper class zSuppl, that is, the smallest inductively closed
proper class containing 7Suppl, is flatly generated by all simple abelian groups and so it
is zCompl = zNeat.

In abelian groups, the functor EXt,comp is factorizable, in the sense defined in Subsec-
tion A.1, like Ext, p,.. in Example A.2; but the proper class zSuppl behaves badly in this sense:
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Theorem 2.4. [41, Theorems 4.1.5, 4.5.3]
(i) ([30, Exercise 53.4] and [45, Theorem 5.1]) For all abelian groups A and C,

Ext,compi (C; A) = (] pExtz(C, A) = Rad(Extz(C; A)),

p prime

where the functor Rad : Ab — Ab which associates with each abelian group M, its Frat-
tini subgroup (which is its radical as a Z-module and which equals) Rad(M) = ﬂ pM.

p prime
So the functor EXt,comp IS factorizable.

(ii) The functor EXt,sypp is not factorizable as

Exty, H
Z-Mod x Z-Mod —— Ab —— Ab

for any functor H : Ab — Ab on the category of abelian groups.

For Dedekind domains we have the following inclusion relations for the proper classes Compl,
Suppl, Neat and Co-Neat, and like in abelian groups Extcompy = EXtareq: is factorizable and
when also Rad R = 0, Exts,pp; and Exteoveqs are not factorizable:

Theorem 2.5. [41, Theorems 5.2.2, 5.2.3, 5.4.6 and 5.4.8] If R is a Dedekind domain which is
not a field, we have:

(i) Compl = Neat is also flatly generated by all simple R-modules and injectively generated
by all simple R-modules.

(ii) (By [45, Theorem 5.1]) Extcompr = EXtareqr is factorizable as

Extgr Rad
R-Mod x R-Mod —— R-Mod —— R-Mod
using the functor Rad : R-Mod — R-Mod, that is, for all R-modules A and C,

Exteompi (C, A) = Extareqt(C, A) = Rad(Extg(C, A)).

(iii) If Rad R = 0, then
Suppl & CoNeat & Neat = Compl,

and the functors Extsypp; and Exteonreqr are not factorizable as

Extr H
R-Mod x R-Mod —— R-Mod —— R-Mod

for any functor H : R-Mod — R-Mod .

(iv) If Rad R # O, then
Suppl & CoNeat = Neat = Compl,

2.2 The proper class Co-Closed

For the proof that the class Co-Closed defined using coclosed submodules forms a proper class,
see [44, 5.9] or [48, Theorem 4.6.4] or [36, Theorem 3.11]; what is being used for that is essen-
tially [65, Lemma A.4] and [17, 3.7]. Zoschinger calls Co-Closed-coinjective modules weakly in-
Jjective (=modules that are coclosed in every module containing them) in [65]. In his recent article
[66], he deals with Compl-coprojectives which he calls weakly flat; over a commutative Noethe-
rian ring R, he also shows that closed submodules are coclosed if and only if coclosed submod-
ules are closed if and only if R is a distributive ring (thatis, (/ +J)NK = (INK) + (JNK)
for all ideals I, J, K of R). In [36], Suppl-coprojectives and Co-Closed-coprojectives are con-
sidered, they call them absolute co-supplement and absolute co-coclosed modules (this absolute
terminology come from the notion of absolutely pure modules which means Pure-coinjectives;
so for example by absolutely supplement modules, they mean Suppl-coinjectives).
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3 Proper classes generated by simple modules

The following three proper classes defined below that are projectively, flatly or injectively gen-
erated by simple (left or right) modules are natural ways to extend the concept of neat subgroups
to modules; so we name all of them using ‘neat’:

(i) Neat = Neat™ = n~'({R/P | P is a maximal left ideal of R}) is the proper class projec-
tively generated by all simple R-modules.

(i) Neat™ = 7~ ({R/P | P is a maximal right ideal of R}) is the proper class flatly generated
by all simple right R-modules.

(iii) Neat* = ~'({R/P | P is a maximal left ideal of R}) is the proper class injectively gener-
ated by all simple R-modules.

Note that when R is a commutative ring, the last two proper classes above coincide with P-Pure:
Neat' = Neat™ = P-Pure if R is a commutative ring.

The last equality is obvious (see Example A.1-(4)); for the first one see for example [18, Propo-
sition 3.1] or [31]. The equality N'eat* = P-Pure holds more generally for rings R such that
R/P is an Artinian ring for every left primitive ideal P of R; see [42, Corollary 2.6].

By the relations given in Section 2, we have:

(1) Compl C Neat and Suppl C CoNeat C Neat* for every ring R.

(i1) If the ring R is commutative, then Co:Neat C Neat* = Neat™ = P-Pure.
(iii) If R is a semilocal ring, then Co-Neat = Neat.
(iv) If R is a left perfect ring, then Suppl = CoNeat = Neat".

Note that for a commutative ring R, [31] calls the short exact sequences in Neat” co-neat
(and since the ring is commutative N'eat”™ = P-Pure = Neat'). In [15], the short exact se-
quences in Neat” are called s-pure, following the terminology in [18]. In [14], the short exact
sequences in Neat® are called co-neat. But we reserve the word co-neat in the way we have
defined; being a co-neat submodule is equivalent to being a Rad-supplement.

3.1 Commutative domains where N eat = P-Pure: N-domains

A natural question to ask is when neatness and P-purity coincide. Suppose that the ring R is
commutative. Then P is the collection of all maximal ideals of R. Recently L4szl6 Fuchs has
characterized the commutative domains for which these two notions coincide; see [31]. Fuchs
calls aring R to be an N-domain if R is a commutative domain such that neatness and P-purity
coincide, that is, Neat = P-Pure. Unlike expected, Fuchs shows that N-domains are not
just Dedekind domains; they are exactly the commutative domains whose all maximal ideals
are projective (and so all maximal ideals are invertible ideals and finitely generated). For a
commutative domain R, Fuchs has proved that Neat = P-Pure if and only if the projective
dimension of every simple module is < 1. Note that the projective dimension of the simple
R-modules is important when the ring R is commutative Noetherian because then the global
dimension of the ring is the supremum of the projective dimensions of all simple R-modules. So
among commutative Noetherian domains, the N-domains are just Dedekind domains.

Motivated by Fuchs’ result for commutative domains, one wonders whether for some class
of commutative rings larger than commutative domains, neatness and P-purity coincide if and
only if all the maximal ideals of the ring are projective and finitely generated. In [58], the answer
is shown to be yes if every maximal ideal of the commutative ring contains a regular element
(that is an element that is not a zero-divisor) so that the maximal ideals of R that are invertible
in the total quotient ring of R will be just projective ones as in the case of commutative domains
(see for example [37, §2C]). Indeed, this condition is also weakened and its suffices to require
that the socle of the commutative ring R is zero, that is, R contains no simple submodules. A bit
less to assume is that the commutative ring R contains no simple submodules that are not direct
summands of R. See [58, Ch. 4].

It is known that a proper class of short exact sequences of modules that is projectively gener-
ated by a set of finitely presented modules is flatly generated by ‘the’ Auslander-Bridger trans-
pose of these finitely presented modules. So to generalize the sufficiency of the Fuchs’ character-
ization of N-domains to all commutative rings, it is shown in [58, §4.4] that for a commutative
ring R, an Auslander-Bridger transpose of a finitely presented simple R-module .S of projective
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dimension 1 is isomorphic to S. This enables us to prove that if R is a commutative ring such
that every maximal ideal of R is finitely generated and projective, then neatness and P-purity
coincide.

3.2 The Auslander-Bridger Transpose of Finitely Presented Simple Modules

See Subsection A.2 for the Auslander-Bridger transpose of finitely presented modules. We can
extend the results in [31] for the Auslander-Bridger transpose of finitely presented simple mod-
ules of projective dimension < 1 over a commutative domain to commutative rings:

Theorem 3.1. [58, Theorem 4.4.4] Let R be a commutative ring and P be a finitely generated
maximal ideal of R that is projective. Take the following presentation of the simple R-module
S = R/P (where { is the inclusion monomorphism and g is the natural epimorphism):

f g
v P R S 0

(i) If S is projective, then S* # 0 and Tr(S) = 0.
(ii) If S is not projective, then S* = 0 and Tr.,(S) = Exty (S, R) = S.
(iii) S is projective if and only if S* # 0.
Nunke shows that I=!'/R = R/I if I is a non-zero ideal of a Dedekind domain R (see
[45, Lemma 4.4]). For an invertible maximal ideal P of a commutative ring R, we show next that
P~!/R = R/P where the invertibility is in the total quotient ring of R, that is, the localization

of R with respect to the set of all regular elements of R, and P~! consists of all ¢ in the total
quotient ring of R such that gP C R.

Proposition 3.2. [58, Proposition 4.4.5] If R is a commutative ring and P is a maximal ideal of
R that is invertible in the total ring of quotients of R, then for the simple R-module S = R/P
and for the presentation

f g
v P R S 0

of S (where f is the inclusion monomorphism and g is the natural epimorphism), we have
Tr,(S)= P"'/R= S =R/P.

Using Theorem 3.1, we obtain the following sufficient condition for AMeat = P-Pure over
commutative rings as in Fuchs’ characterization of /N-domains:

Theorem 3.3. [58, Theorem 4.5.1] If R is a commutative ring such that every maximal ideal of
R is finitely generated and projective, then N eat = P-Pure.

For the converse, we have the following:

Theorem 3.4. [S8, Corollary 4.5.4] The following are equivalent for a commutative ring R such
that for each simple R-module S, S* = 0 or S is projective:

(i) Neat = P-Pure.

(ii) Every maximal ideal P of R is projective and finitely generated.

3.3 Noetherian distributive rings

Turning back to our motivation in abelian groups for the characterizations of neat subgroups
given in Subsection 1.2, we ask for which commutative rings R it is true that

Compl = Neat = P-Pure,

that is, the proper class Compl is projectively generated and flatly generated and injectively
generated by all simple modules (since P-Pure = Neat”™ = Neat® for a commutative ring).
The answer is given in [25] by using the characterization for commutative Noetherian distributive
rings in [66] which we mentioned in Subsection 2.2.

Theorem 3.5. [25] For a commutative ring R, Compl = Neat = P-Pure if and only if R is a
Noetherian distributive ring.
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3.4 Coprojectives and coinjectives with respect to the proper classes generated by
simple modules

The notion of max-injectivity (a weakened injectivity in view of Baer’s criterion) has been
studied by several authors; see, for example, [19], [20] and [59]: A module M is said to be
maximally injective or max-injective if for every maximal left ideal P of R, every homomor-
phism f : P — M can be extended to a homomorphism ¢ : R — M (max-injective
modules are called m-injective modules in [19]). A module M is max-injective if and only
if Ext}%(S, M) = 0 for every simple module S (see [19, Theorem 2]). Since Neat is the proper
class projectively generated by all simple modules, we have then that max-injective modules
are just Neat-coinjective modules. It has been proved by Patrick F. Smith that for a ring R,
Soc(R/I) # 0 for every essential proper left ideal I of R (that is, R is a left C-ring) if and only
if every max-injective module is injective [53, Lemma 4]. This result is also stated in [22] and
for its proof the reference to [53] has been given. A proof of this result with our interest in the
proper classes Neat and Compl and with further observations is given in [48, §4.2]. A module
M is Compl-coinjective if and only if M is a complement submodule (=closed submodule) of its
injective envelope E(M/). Since M is essential in E()/), we obtain that Compl-coinjective mod-
ules are just injective modules. If R is a left C-ring, then Compl = Neat by Theorem 2.1 and so
all max-injective modules(=N eat-coinjective modules) are just injective modules. Conversely,
if all Neat-coinjective modules are injective, then R is a left C-ring. We have the following
characterizations of left C-rings:

Theorem 3.6. [48, Theorem 4.2.18] For a ring R, the following are equivalent:
(i) Risaleft C-ring;

(ii) Compl = Neat,

(iii) All max-injective (=N eat-coinjective) modules are injective;

(iv) {all simple modules}™ = {all injective modules}, where for a class M of modules, M*
consists of all modules L such that Extyy(M, L) = 0 for every M € M.

(v) N = @ R/ P, where the direct sum is over all maximal left ideals of R, is a Whitehead
P C rR

test module for injectivity, that is, for every module M, Ext}%(N , M) = 0 implies M is
injective (see [57]).

Coinjective modules and coprojective modules with respect to a proper class appear natu-
rally in many contexts, like the above max-injective modules. In cotorsion theory, this relation is
given in [44, Ch. 6]. For some kinds of relative injectivity problems, these ideas also help to see
the way. Some notions can be formulated with this language. In [9], the notion of subinjectivity
and indigence has been introduced; it turns out that for modules M and N, M is N-subinjective
if and only if N is ¢~ ({M})-coinjective, where :~!({M}) is the proper class injectively gen-
erated by the module M. For a proper class A, a module NNV is A-coinjective if and only if the
short exact sequence starting with the inclusion monomorphism N < E(N), where E(N) is
the injective envelope of [V, is in the proper class .A. Of course, every injective module is .A-
coinjective. One obvious extreme case to consider is when all .A-coinjectives consist of just all
injective modules. For example, just by definition, a module M is an indigent module if and
only if +~!({M})-coinjective modules are just injective modules because the subinjectivity do-
main Zn ' (M) equals all .~'({M})-coinjective modules. In this coinjective terminology, for
a module M and a class C of R-modules, every module C' € C is M-subinjective means M is
1~1(C)-coinjective, where 1 ~!(C) is the proper class injectively generated by the class C of mod-
ules. One can consider for example what happens when C is the class of all simple modules.
Another related notion introduced in [3] is test modules for injectivity by subinjectivity (shortly
t.i.b.s.): a module N is said to be a t.i.b.s. if the only /N-subinjective modules are injective
modules.

For further investigation on the coinjectives and coprojectives of the proper classes generated
by simple modules, see [15], [14] and [13]. In our terminology:

(i) Absolutely s-pure modules in [15] are N eat” -coinjective modules.
(ii) Neat-flat modules in [15] and [13] are A eat-coprojective modules.

(iii) Co-neat-flat modules in [14] are N eat*-coprojective modules; by co-neat submodules, they
mean N eat’-submodules.
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4 The proper classes T-Compl and T7-Suppl

For definitions and elementary properties of preradicals, see [54, Ch. VI], [11] or [17, §6]. A
preradical T for R-Mod is defined to be a subfunctor of the identity functor on R-Mod. Let 7 be
apreradical for R-Mod. The following module classes are defined: the preradical or (pre)torsion
class of 7 1s

T,={Ne€RMod| 7(N)=N}

and the preradical free or (pre)torsion free class of T is
F, ={N € R-Mod | 7(N) = 0}.

7 is said to be idempotent if 7(7(N)) = 7(N) for every R-module N. 7 is said to be a radical if
7(N/7(N)) = 0 for every R-module N. For example, Soc is an idempotent preradical and Rad
is aradical on R-Mod.

In the definition of co-neat submodules, using any radical 7 on R-Mod instead of Rad, the
following result is obtained. It gives us the definition of a T-supplement in a module because
the last condition is like the usual supplement condition except that, instead of U NV <« V, the
condition U NV C 7(V) is required.

Proposition 4.1. (see [17, 10.11] or [1, 1.11]) Let T be a radical for R-Mod. For a submodule
V C M, the following statements are equivalent.

(i) Every module N with T(N) = 0 is injective with respect to the inclusion V< M.
(ii) There exists a submodule U C M such thatU +V = M andU NV = 7(V).
(iii) There exists a submodule U C M such thatU +V = M and U NV C 7(V).

If these conditions are satisfied, then V is called a T-supplement in M.

The usual definitions are then given for a radical 7 on R-Mod as follows. For submodules
U and V of a module M, the submodule V is said to be a 7-supplement of U in M or U is said
to have a T-supplement V in M if U +V = M and U NV C 7(V). A module M is called a
T-supplemented module if every submodule of M has a 7-supplement in M. For 7 = Rad, the
above definitions give Rad-supplement submodules of a module, Rad-supplemented modules,
etc. By these definitions, a submodule V' of a module M is a co-neat submodule of M if and
only if V' is a Rad-supplement of a submodule U of M in M. In [16], some properties of Rad-
supplemented modules and in general 7-supplemented modules have been investigated; it was
shown that every left R-module is Rad-supplemented if and only if R/W is left perfect where
W is the sum of all left ideals I of R such that Rad I = I.

For a radical 7 on R-Mod, we have by Proposition 4.1 that the proper class

7-Suppl = 17 (F,) = 7' ({N € R-Mod | 7(N) = 0})

consists of all short exact sequences (1.1) of modules such that Im( f) is a 7-supplement in B.
Similarly we have:

Proposition 4.2. (see [17, 10.6] or [1, 1.6]) Let T be an idempotent preradical for R-Mod. For
a submodule V- C M, the following statements are equivalent.

(i) Every module N with 7(N) = N is projective with respect to the natural epimorphism
M — M/V.

(ii) There exists a submodule U C M such that VNU =0and T(M/V)= (U +V)/V =2 U.
(iii) There exists a submodule U C M such that VU =0and 7(M/V) C (U +V)/V = U.

If these conditions are satisfied, then V' is called a T-complement in M.
For an idempotent radical 7 on R-Mod, we have by Proposition 4.2 that the proper class
7-Compl = 7~ (T,) =7 '({N € R:-Mod | 7(N) = N})

consists of all short exact sequences (1.1) of modules such that Im( f) is a 7-complement in B.
Carlos Federico Preisser Montafio in his PhD Thesis [44] studied homological objects of
7-Suppl and 7-Compl and related other proper classes. He proved that a module I is 7-Suppl-
injective if and only if [ is a direct summand of a module of the form E @ F' with E injective
and 7(F) = 0. Similarly 7-Compl-projective modules are exactly direct summands of the mod-
ules of the form P ¢ @ with P projective and 7(QQ) = 0. Every 7-torsion module N (that is,
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7(N) = N) is 7-Compl-coinjective. If 7(R) = 0, then 7-Compl-coprojective modules are pro-
jective. If every injective module is 7-torsion, then every 7-Compl-coinjective module is injec-
tive. Every 7-torsionfree module N (that is, 7(N) = 0) is 7-Compl-coprojective. He also studied
the proper class Co-Closed induced by coclosed submodules and proved that every Co-Closed-
coprojective module that has a projective cover is projective. If the module V is fully non-small
(see [17, 8.11]), then N is Co-Closed-coinjective. Generalizing the notion of §-small submodule
introduced by Zhou in [61], he defines C-small submodules and C-supplement submodules and
the corresponding proper class, where C is a class of submodules closed under submodules and
factor modules. Dually, he defines C-essential submodules, C-complements and the correspond-
ing proper class. His another important contribution is to relate the language of proper classes of
short exact sequences of modules with cotorsion pairs, covers and envelopes; see the monograph
[26] for the latter concepts.

5 The smallest proper class containing YV S over a hereditary ring

Unfortunately not all classes of short exact sequences of modules generated by various types
of supplements are proper. In these cases, the smallest proper classes containing these classes
are studied. The definition of the classes Small, S, WS, CAS and WS have been given in
Subsection 1.3.

If X is a Small-submodule of an R-module Y, then Y is a supplement of X in Y, so X is
an S-submodule of Y. If U is an S-submodule of an R-module Z, then a supplement V' of U in
Z is also a weak supplement, therefore U is a WS-submodule of Z. These arguments give the
relation Small C S € WS for any ring R. Our next example shows that neither of the classes
Small, S or WS need to be a proper class in general. Therefore, it makes sense to study the
smallest proper classes generated by them. It turns out that for left hereditary rings, these three
classes generate the same proper class denoted by WS. The class WS consisting of the so called
extended weak supplement short exact sequences of modules is described below; when R is a
left hereditary ring, WS is a proper class and we shall also see the homological objects of it. The
class C.AS is shown to be a proper class in [24].

Example 5.1. Let R = Z and consider the composition 8 o « of the monomorphisms « : 27 —
Z and B : Z — Q where « and f3 are the corresponding inclusion maps. Then the short exact

Boa
sequence 0 27 Q Q/27 0 is in Small and therefore in WWS, but the short

exact sequence 0 27— 57 7./27 0 isnotin WS as RadZ = 0.

For a homomorphism f : A — B and a module C', we will denote the induced homo-
morphisms Exty(1¢, f) : Extys(C,A) — Exth(C,B) and Exth(f,1¢) : Exth(B,C) —
Exth(A,C) by f. and f* as in [39, Ch. 3, §2]. Example 5.1 shows that Extyys (-, -) need not be
a subfunctor of Ext}, (-, -) since the elements from WS are not preserved with respect to the first
variable. We begin by extending the class WS to the class WS, which consists of all images
of WS-elements of Ext(C’, A) under h* : Ext(C’, A) — Ext(C, A) for all homomorphisms
h:C—C'.

A short exact sequence E : 0 A B C 0 is said to be extended
weak supplement if there is a short exact sequence

u

E':0 A B’ c’ 0

of modules such that Im u has (is) a weak supplement in B (that is, £’ is in WWS) and there is a
homomorphism h : C — C’ such that £ = h*(FE’), that is, there is a commutative diagram as
follows:

E: 0 A B C 0
la \L hl
E 0 Ao p c 0

We denote by WS the class of all extended weak supplement short exact sequences.

Theorem 5.2. [4, Theorem 3.12 and Corollary 3.13] If R is a left hereditary ring, then WS is a
proper class and

(Small) = (S) = (WS) =WS.
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It turns out that when the ring is a Dedekind domain, extended weak supplement has a de-
scription in terms of some type of supplement:

Theotﬂ 5.3. [4, Theorem 5.3] Over a Dedekind domain R, the class CAS coincides with the
class WS.

Now we focus on the study of the main homological objects of the proper class YWS when
R is a left hereditary ring, that is, WWS-injective, WS-projective, YWS-coinjective and WS-
coprojective modules. We begin by studying YWS-coinjective modules; this will allow us to
prove that the proper class WWS has global dimension bounded by 1.

Theorem 5.4. [4] Let R be a a left hereditary ring. For an R-module A, the following are
equivalent:

(i) A is WS-coinjective.

(ii) There is a submodule N of A such that N is small in the injective envelope E(A) of A and
A/N is injective.

(iii) A has a weak supplement in its injective envelope E(A).
(iv) A has a weak supplement in some injective module I.

If R is a left hereditary ring, the class of WWS-coinjective R-modules is closed under ex-
tensions and factor modules. This class contains torsion-free modules with finite rank. Over
a Dedekind domain, coatomic modules and bounded modules are WWS-coinjective ([4]). Re-
call that a module M over a commutative ring R is said to be bounded if rM = 0 for some
0#reR.

WS-coinjective modules need not be injective or coatomic. For example, in abelian groups,
the group J, of p-adic numbers is YWS-coinjective but not coatomic.

Over a discrete valuation ring R, if A is a reduced torsion module, B is a bounded submodule
of A and A/B is divisible, then A is also bounded ([21, Lemma 4.5]). If M is a torsion and
reduced module over a discrete valuation ring, then M is WS-coinjective if and only if M is
coatomic ([4]).

Theorem 5.5. [6, Theorem 2] If J is a class of modules closed under extensions, then k(J)
consists of all short exact sequences f.(E) where E is a short exact sequence of the form

E: 0 J B C 0

with J € J and f : J — A is a homomorphism.

A module M is called small if M can be embedded as a small submodule into some submod-
ule N, or equivalently if M is small in its injective envelope E(M) (see [38]).

The following proposition shows that WS is a coinjectively generated proper class when R
is a left hereditary ring:

Proposition 5.6. [4]
(i) For a left hereditary ring R, WS = k(Sm), where Sm is the class of all small modules.
(ii) Over a Dedekind domain R, WS = k(coA) where coA is the class of all coatomic modules.

If R is a left hereditary ring, then gl. dim k() < 1 for every coinjectively generated class
k(J) (see [2]). So using Proposition 5.6, we obtain the following evaluation for the global
dimension of the class WS.

Theorem 5.7. [4] For a left hereditary ring R, gl.dimWS < 1.

We do not know whether there are VWS-injective modules which are not injective in general,
but for Dedekind domains we have the following proposition:

Proposition 5.8. [4] Over a Dedekind domain R, the only WS-injective (= WS-injective) mod-
ules are the injective R-modules.

We finish this section with some results about WS-projective and WS-coprojective modules.
By Proposition 5.6 and by the dual statement of [49, Proposition 1.2], WS is generated by the
short exact sequences of the form

0 M I B 0

where M is a small module and I is injective. By [49, Proposition 2.4], we have the following
criteria for the YWS-projective modules:
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Proposition 5.9. [4] For a left hereditary ring R, a module C is WS-projective if and only if
Extr(C, M) = 0 for every small module M. Over a Dedekind domain R, a module C is WS-
projective if and only if Extg(C, M) = 0 for every coatomic module M.

Corollary 5.10. [4] For a left hereditary ring R, every finitely presented module is WS-coprojective.

Corollary 5.11. [4] If R is a discrete valuation ring, CAS = WS = k(CA) = WS and so WS
is also a proper class.

A Terminology and notation for proper classes

For the definition of the Ext},(C, A) directly as the equivalence classes of extensions of an R-
module A by an R-module C, and for the related notation, and for the abelian groups Ext;(C, A)
for all n € Z, see [39, Ch. IIT]. Ext},(C, A) consists of the equivalence classes of short exact
sequences of R-modules starting with A and ending with C, and we shall identify the equivalence
class [E] of a short exact sequence E of R-modules starting with A and ending with C' with
any short exact sequence in the equivalence class [E]. We shall usually write Extr(C, A) for
Ext},(C, A). For rings R, S, T and bimodules Cg and s Ap, the abelian group Ext’;(C; A) can
be made an S-T-bimodule s [Exty(C, A)],; see [39, §V.3]. Similarly for bimodules rCr and
rAg, the abelian group Ext, (C; A) can be made a T-S-bimodule 7 [Extz(C, A)] 4.

For proper classes of short exact sequences modules, see [39, Ch. 12, §4], [56], [52], [43],
[17, §10] and [1].

Let A be a class of short exact sequences in R-Mod. If a short exact sequence

f g
0 A B C 0 (A.1)

belongs to A, then f is said to be an A-monomorphism and g is said to be an A-epimorphism;
both maps are said to be A-proper and the short exact sequence is said to be an A-proper short
exact sequence. The class A is said to be proper in the sense of Buchsbaum ([12]) if it satisfies
the following conditions (see [39, Ch. 12, §4] or [56] or [52]):

(1) If a short exact sequence FE is in A, then A contains every short exact sequence isomorphic
to E .

(ii) A contains all splitting short exact sequences.

(iii) The composite of two .A-monomorphisms is an .A-monomorphism if this composite is de-
fined. The composite of two A-epimorphisms is an .A-epimorphism if this composite is
defined.

(iv) If gof is an A-monomorphism, then f is an .A-monomorphism. If go f is an .A-epimorphism,
then g is an .A-epimorphism.

For a proper class A, call a submodule A of a module B an A-submodule of B, if the inclusion
monomorphism iy : A — B, is(a) = a, a € A, is an A-monomorphism.
! g
A short exact sequence 0 A B C 0 of modules is determined by the
monomorphism f or the epimorphism g uniquely up to isomorphism since it is isomorphic to
the short exact sequence

0 Imf —>B—%B/Inf —>0,

where 7 is the inclusion map and p is the natural epimorphism. So giving a proper class .A of short
exact sequences of modules means choosing for every R-module B, some kind of submodules,
which we call A-submodules.

We shall use the letters 7, ¢ and 7 for describing the concepts related with the relative versions
of ‘projective’, ‘injective’ and ‘flat’ as in [56] and [52].

Denote by A a proper class of short exact sequences in R-Mod. An R-module M is said
to be A-projective [ A-injective] if it is projective [resp. injective] with respect to all short exact
sequences in A4, that is, Hom(M, E) [resp. Hom(E, M)] is exact for every E in .A. Denote all A-
projective [A-injective] modules by 7(A) [resp. ¢(A)]. For a given class M of modules, denote
by 7= (M) [.~!1(M)], the largest proper class A for which each M € M is A-projective [resp.
A-injective]; it is called the proper class projectively generated [resp. injectively generated]
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by M. A right R-module M is said to be A-flat if M is flat with respect to every short exact
sequence FE € A, thatis, M ® E is exact for every F in A. Denote all A-flat right R-modules
by 7(A). For a given class M of right R-modules, denote by 7=!(M) the class of all short
exact sequences E of R-modules and R-module homomorphisms such that M @ E' is exact for
all M € M. 771(M) is the largest proper class A of (left) R-modules for which each M € M
is A-flat. It is called the proper class flatly generated by the class M of right R-modules. When
the ring R is commutative, there is no need to mention the sides of the modules. See [56, §2-3]
and [52, §1-3,8] for these concepts in relative homological algebra in categories of modules.
We shall use the same notation for proper classes of right R-modules. For example if M is a
class of right R-modules, then 7=! (M) denotes the proper class of right R-modules projectively
generated by M. A module M is called A-coprojective if every short exact sequence of the form

0 A B M 0

isin . A. A module M is called A-coinjective if every short exact sequence of the form

0 M B C 0

is in A. It is easily checked that A module M is called A-coinjective if and only if M is an
A-submodule of its injective envelope E(M). If A = 7~!(M) for a class M of modules, then
for an R-module A, the condition Extj, (M, A) = 0 for all M € M is equivalent to A being A-
coinjective (see [52, Proposition 9.5] and [41, Proposition 2.6.7]). Similarly, if A = +:~!(M) for
a class M of modules, then for an R-module C, the condition Ext},(C, M) = 0 for all M € M
is equivalent to C being A-coprojective (see [52, Proposition 9.4] and [41, Proposition 2.6.5])

Let M and J be classes of modules. The smallest proper class k(M) such that all modules
in M are k(M)-coprojective is said to be the proper class coprojectively generated by M. The
proper class k(J) coinjectively generated by 7 is defined dually.

For a class A of short exact sequences of R-modules and for R-modules A, C, denote by
Ext! (C, A) or just by Ext4(C, A), the equivalence classes of all short exact sequences in A
which start with A and end with C, i.e. a short exact sequence in 4 of the form (A.1). If A
is a proper class, then this turns out to be a subgroup of Extj(C, A) and a bifunctor Ext! :
R-Mod x R-Mod — Ab is obtained which is a subfunctor of Ext}% (see [39, Ch. 12, §4-
5]). Conversely, given a class A of short exact sequences, if Exth is a subfunctor of Ext}%,
Ext (C, A) is a subgroup of Extp(C, A) for all R-modules A, C' and if the composition of two
A-monomorphisms (or .A-epimorphisms) is an .A-monomorphism (an .A-epimorphism respec-
tively), then A is a proper class (see [46, Theorem 1.1]).

Using the functor Ext 4 for a proper class A, the A-projectives, A-injectives, A-coprojectives,
A-coinjectives are simply described as extreme ends for the subgroup Ext 4(C, A) C Extg(C, A)
being 0 or the whole of Exty(C, A):

(i) An R -module C is A-projective if and only if
Ext4(C, A) = 0 for all R-modules A.

(i) An R -module C' is A-coprojective if and only if
Ext4(C, A) = Extg(C, A) for all R-modules A.

(iii) An R -module A is A-injective if and only if
Ext4(C, A) = 0 for all R-modules C.

(iv) An R -module A is A-coinjective if and only if
Ext4(C, A) = Extg(C, A) for all R-modules C.

For a proper class A, and for each n € Z™, the congruence classes of the A-proper n-fold
exact sequences give the abelian group Ext’y (C, A) (see [39, Ch. 12, §4-5] and [44, §17]).

For a proper class A of short exact sequences of R-modules, the global dimension of A is
defined as follows: If there is no n € Z* U {0} such that Ext’y"' (C, A) = 0 for all R-modules A
and C, then gl. dim A = oo; otherwise, it is defined to be

gl. dim A = min({n € Z* U {0} | Ext’{"'(C, A) = 0 for all R-modules A and C}).

A proper class A is said to be inductively closed if for every direct system {E;(i € I); 7! (i <
7)} in A, the direct limit F = lim E; is also in A (see [29] and [52, §8]). For a proper class A,
—

the smallest inductively closed proper class containing A4 is called the inductive closure of A.
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Two functors that are frequently used for relations between relative injectivity, projectivity
and flatness are the R-dual functor

(=)* =Homg(—, R) : R-Mod — Mod-R
and the character module functor

For a (left) R-module M, its R-dual M* = Hompg (M, R) is a right R-module. The character
module functor (—)” : R-Mod — Mod-R uses the injective cogenerator Q/Z for Z-Mod: For
a (left) R-module M, M” = Homgz(M,Q/Z) is a right R-module.

For a functor T" from a category A of left or right R-modules to a category B of left or right
S-modules (where R, S are rings), and for a given class F of short exact sequences in B, let
T~1(F) be the class of those short exact sequences of .A which are carried into F by the functor
T. If the functor T is left or right exact, then T~ !(F) is a proper class; see [56, Proposition 2.1].

Example A.1. The third purity example below (generalized from pure subgroups of abelian
groups) is the main motivation for relative homological algebra; this is the reason why proper
classes are also called purities (see [43] for w-purities).

(1) rSplit is the smallest proper class consisting of all splitting short exact sequences of R-
modules.

(i1) gr.Abs is the largest proper class consisting of all short exact sequences of R-modules.

(iii) gPure is the classical Cohn’s purity:

1

rPure = n~'({all finitely presented R-modules})

—(
7~ 1({all finitely presented right R-modules})
= 77 '({all right R-modules})

= (=17 (splat).
= 7 Y({M’ | M is a finitely presented right R-module})

See for example [28, §1.4] for the proof of first four of these equalities. See [52, Proposition
6.2] for the last equality. The second equality above that allows us to pass from a proper
class projectively generated by a class of finitely presented modules to a flatly generated
proper class is a general idea; what is being used in this passage is the Auslander-Bridger
transpose of finitely presented modules; see the below Subsection A.2. Pure is the smallest
inductively closed proper class; see [52, §6]. The above equalities give us some present
technique to work on some of the relations between the proper classes related with neat
submodules. See [31] for the use of this technique for some relations between neat and P-
pure short exact sequences of modules. It is well known that Pure-coprojectives are just all
flat modules (this is the reason why .4-coprojectives are also called .A-flat for a proper class
A). The coprojectives of this proper class is the class of all flat modules; the second proof
of the Flat Cover Conjecture in [10] proves that for a proper class A that is flatly generated
by some set of finitely presented modules, if M is the class of all .A-coprojective modules,
then every modules has am M-cover; see also [51] for details of this second proof.

(iv) Given a collection Z of right ideals of R, denote by Z7 = Z-Pure the proper class consisting

f <
of all short exact sequences 0 A B C 0 such that for all ideals I in

Z, A NIB = IA holds for A’ = Im(f). This condition is equivalent to (R/I) ® A" —
(R/I) ® B being monic (by for example [52, Lemma 6.1]). So this proper class is

I" =TPure=1"({R/I | I € I}).

When a class of £ of short exact sequences of modules does not form a proper class, the
smallest proper class containing that class £ is studied. The intersection of all proper classes
containing £ is clearly a proper class and it is denoted by (£). We say that (£) is the proper class
generated by £ (see [49]). Clearly, (£) is the smallest proper class containing &.
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A.1 Factorizable Ext 4 with respect to a proper class .4
For a proper class A of R-modules, let us say that Ext 4 is factorizable as
Extr
R-Mod x RMod —— Ab —— Ab ,
if it is a composition H o Extp for some functor H : Ab — Ab, that is, the diagram

Ext 4

R-Mod x R-Mod

Tl

Ab

Ab

is commutative: for all R-modules A, C,
Ext4(C, A) = H(Extg(C, A)).

When the ring R is commutative, since the functor Extp can be considered to have range
R-Mod, we say that Ext 4 is factorizable as

Extg
R-Mod x R:-Mod ——> R-Mod —> R-Mod ,
if it is a composition H o Extpy for some functor H : R-Mod — R-Mod, that is, the diagram

Ext 4

R-Mod x R-Mod R-Mod
k\ /
R-Mod

is commutative: for all R-modules A, C,
Ext4(C, A) = H(Extr(C, A)).

For the ring R = Z, since we identify the categories .Ab and Z-Mod, both the above two
definitions coincide so that for a proper class .4 of Z-modules (abelian groups), we just say that
Ext 4 is factorizable in the above cases.

Example A.2. Let U : Ab — Ab be the Ulm functor which associates to each abelian group
A, its Ulm subgroup U(A) = ﬂ nA. Ext,pur. is denoted by Pext in [30, §53], and by [45,

n=1
Theorem 5.1], it is shown that for abelian groups A, C,

Ext,pure(C, A) = Pext(C, A) = (] nExtz(C, A) = U (Extz(C; A)).

n=1

Thus, Ext, p,r. is factorizable.

A.2 The Auslander-Bridger Transpose of Finitely Presented Modules
Let M be a finitely presented R-module. Take a projective presentation of it, that is, take an
exact sequence

f g
v P Py M 0

where P and P are finitely generated projective R-modules. Apply the functor (—)* = Hompg(—, R)
to this projective presentation:

* *

. /
0—Homp(M, R)——>Homp(Py, R)——~Homp(P,, R)
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Fill the right side of this sequence of right R-modules by the module Tr, (M) = Coker(f*) =
P /Im(f*) to obtain the exact sequence

*

f o
N P ——> P —">Tr. (M)—>0, (A.2)

where o is the canonical epimorphism. Since Fj and P are finitely generated projective right
R-modules, the exact sequence (A.2) is a projective presentation for the finitely presented right
R-module Tr. (M) which is called the Auslander-Bridger tranpose of the finitely presented R-
module M with respect to the projective presentation . See [7] and [8].

Two R-modules A and B are said to be projectively equivalent if there exist projective R-
modules P and @) such that A© P = B@(Q. This is an equivalence relation on the class of (finitely
generated) R-modules. An Auslander-Bridger transpose of a finitely presented R-module M
is unique up to projective equivalence, that is, if v and p are two projective presentations of a
finitely presented R-module M, then Tr, (M) is projectively equivalent to Tr, (/). For a detailed
proof of this, see [40, §1] or [58, Theorem 4.2.4]). We shall just write Tr() ) for an Auslander-
Bridger transpose of the finitely presented R-module M keeping in mind that this is unique up
to projective equivalence. Similarly, the Auslander-Bridger transpose of right R-modules are
defined. Using the Auslander-Bridger transpose, we have a passage between relative flatness
and relative projectivity (see [58, §4.3] and [52, §6]):

Theorem A.3. (by for example [52, Corollary 5.1]) Let M be a finitely presented right R-module
and E a short exact sequence of R-modules. Then the sequence M ®p E is exact if and only if
Hompg(Tr(M), E) is exact.

This gives us that a proper class that is projectively generated by a set M of finitely presented
modules is flatly generated by the Auslander-Bridger transposes of the modules in M:

Theorem A.4. [52, Theorem 8.3] Let M be a set of finitely presented right R-modules.
Let Tr(M) = {Tr(M) | M € M}. We may assume that Tr(Tr(M)) = M. Then we have

7' M) =7 Y Te(M))  and 77" (M) =77 1Tr(M)).
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