Palestine Journal of Mathematics

Vol. 5(Special Issue: 1) (2016)13-31 © Palestine Polytechnic University-PPU 2016

When Only Finitely Many Intermediate Rings Result
from Juxtaposing Two Minimal Ring Extensions

David E. Dobbs and Jay Shapiro
Communicated by Ayman Badawi

MSC 2010 Classifications: 13B99; Secondary 13B21, 13G05.

Keywords and phrases: Commutative ring, minimal ring esitam FIP, integral, integrally closed,
ramified, inert, decomposed, FCP, seminormalizationgiatedomain

Abstract. Let R C S andS c T be minimal ring extensions of (commutative)
rings. Necessary and sufficient conditions are giverrfar 7' to satisfy FIP, that
is, to have only finitely many intermediate rings. These criteria are givenrmste
of the kind of minimal ring extensions th& c S andS C T are (that is, flat
epimorphism, inert, ramified or decomposed). Examples are given strdte all
the FIP possibilities and all the non-FIP possibilities. An application paydapec
attention to ring extensions that have exactly one properly included inteataed
ring.

1 Introduction

This paper is a sequel td7]. All rings considered below are commutative with
identity; all subrings, inclusions of rings, and ring/algebra homomonphiare
unital. Recall that ifA C B is a ring extension, thed C B is said to satisfy
FCP if each chain of rings contained betwe¢mand B is finite; and thatd C B
is said to satisfy FIP if there are only finitely many rings contained betweand
B. Itis clear that FIP= FCP, but the converse is false. Whenexder B satisfies
FCP, one has a finite (maximal) chain of rinds= Ao C ... C A; C A;11 C

. C A, = B for some positive integet, such thatd; c A;,1 is a minimal ring
extension foralk = 0, ... ,n — 1. (As usual,C denotes proper inclusion. Some
useful background on minimal ring extensions is given in the nextgoaph.)
Not all such “compositions” of minimal ring extensions produce a rirgresion
A C B that satisfies FCP. We focus on the case 2. Suppose thakR c S and
S C T are each minimal ring extensions. White2] studied when the resulting
“composition"R c T satisfies FCP, this paper is devoted to a comprehensive study
of when that compositio® C T satisfies FIP.

Recall (cf. [L3]) that a ring extensiom c B is aminimal ring extensiorif
there does not exist a ring properly contained betwéemnd B. A minimal ring
extensionA C B is either integrally closed (in the sense thais integrally closed
in B) or integral. IfA C B is a minimal ring extension, it follows froml},
Théoreme 2.2 (i) and Lemme 1.3] that there exists a unique maximal Adezt
A (called thecrucial maximal idealof A ¢ B) such that the canonical injective
ring homomorphismA,; — By (= Ba\a) €an be viewed as a minimal ring
extension while the canonical ring homomorphigim — Bp is an isomorphism
for all prime idealsP of A exceptd. A minimal ring extensiom C B is integrally
closed if and only ifA — B is a flat epimorphism (in the category of commutative
rings). If A C B is an integral minimal ring extension with crucial maximal ideal
M, there are three possibilitiest C B is said to be respectiveiypert, ramified
or decomposedf B/M B (= B/M) is isomorphic, as an algebra over the field
K := A/M, to a minimal field extension o, K[X]/(X?), or K x K. (As usual,

X will denote an indeterminate over the ambient base ring.)
Apart from illustrative examples and remarks, fis’enotation so thatR c S
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andS c T are minimal ring extensions, with crucial maximal idedlsand NV,
respectively. Each of these could be of four types, namely, integrakhed, inert,
ramified, or decomposed. Our work will show that there are examphesair C
T satisfies FIP for each of the resulting 16 cases, but not all of thess aliew the
possibility thatR C T fails to satisfy FIP. Each time we obtain an answer for one
of the 16 cases, we follow that theoretical result with at least one regiairkg
relevant examples whet C T satisfies FIP and, if theoretically possible, where
R C T fails to satisfy FIP. This work is carried out in Sections 2 and 3. A summary
of that work is given in Theorem.1 The rest of Section 4 pays special attention
to ring extensions® C T that have exactly one ring properly contained between
R andT. (Apart from certain extensions of finite fields, only a couple of spiorad
examples of suclR c T seem to have occurred on the literature. For instance,
in the integrally closed case, one could tdkéo be a two-dimensional valuation
domain with quotient field"; and one hasls, Remarks 4.15 (a)] as an example in
the integral case.) Section 2 is short, as some of the wotkra]lows us to settle
matters when at least one Bfc S andS C T is integrally closed. Consequently,
the bulk of this paper is carried out in Section 3, which concerns the 8 gdsare
bothR C S andS C T are integral (that is, either inert, ramified, or decomposed).
If D is a (commutative integral) domain, it will be convenient tollétdenote
the integral closure ab (in its quotient field). IfA is a ring, then Spédel) (resp.,
Max(A)) denotes the set of prime (resp., maximal) idealstoff £ is a module
over a ring4, then thesupportof E is SUpgE) := Supm(E) := {P € SpecA) |
Ep (= Eap) # 0}; MSupps(E) := Max(A) N Supg E); and L4 (E) denotes
the length of thed-moduleE. If A C B are rings, therj, A denotes the seminor-
malization ofA in B; and|[A, B| denotes the set of intermediate rings (that is, the
set of ringsC' such thatd C C' C B). Also, as usuallF, denotes the finite field of
cardinalityq. Any unexplained material is standard, asi6][ [18].

2 The essentially known cases

Theorem2.1 summarizes from12] that we know under which condition® c T
satisfies FIP, provided that at least one of the given minimal ring extess C S
andS C T is integrally closed. Then Rematk2 develops or collects relevant
examples exhibiting all the associated FIP or non-FIP possibilities.

Theorem 2.1.(a) Let R c S andS C T be minimal ring extensions such that
S c T isintegrally closed. The® c T satisfies FIP.

(b) Let R ¢ S andS c T be minimal ring extensions such thAtc S is
integrally closed and' c T is integral. LetM (resp.,N) be the crucial maximal
ideal of R C S (resp.,S c T'). Thenk c T satisfies FIP ifand only iNnR Z M.

Proof. (a) Let the data be as in (a). K C S is integrally closed (resp., integral),
then the assertion is contained in part (b) (resp., part (cQ2froposition 2.1].
(b) The assertion is contained ihZ, Theorem 2.3]. ]

Remark 2.2.(a) One case of Theorefhl (a) states that if bott® ¢ S andS c T
are integrally closed minimal ring extensions, therc 7' satisfies FIP. One way
toillustrate these hypotheses is to tdké be a two-dimensional valuation domain
with (unique) height 1 prime idedP, setS := Rp and takeT to be the quotient
field of R (cf. [18, Theorem 65; Exercise 29, page 43)). In fact, a characterization
of the general situation where bathc S andS C T are integrally closed minimal
ring extensions is, locally, just a pullback of the example that we just §aeenext
give those details.

An integrally closed minimal ring extensioh C B is an example of a “normal
pair" (A, B), in the sense of4]; that is, a ring extensiol C B such that each
C € [A, B] is integrally closed inB. It happens that if bottR ¢ S andS c T
are integrally closed minimal ring extensions, thiéT") is a normal pair, since a
“composition” of normal pairs is a normal patt9, Theorem 5.6, Chapter I] (see
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also B, Lemma 6.1]). Now, suppose that bathc S andS c T are integrally
closed minimal ring extensions, witfR, M) quasilocal. Then by the pullback
characterization of normal pairs with a quasi-local base &g heorem 6.8] R
has a divided prime ided) (that is,Q € Spe¢R) such that) Ry = Q) such that
T = R/QandD := R/Q is a valuation domain. Observe tHatQ is the quotient
field of D. Lety : T'— T/Q be the canonical surjection. A8 C S andS c T are
both minimal ring extensions, it follows from a standard homomorphisioréme
(cf. [7, Lemma 11.3]) thatD c S/Q andS/Q C T/Q are also both minimal ring
extensions (and conversely). Then, sirgas a valuation domain with overring
S/@Q and quotient field'/Q, it follows from the facts recalled above frorhd] that
D must be two-dimensional, with/Q the localization ofD at its height 1 prime
ideal P (as in the above example). Singe= ¢~ 1(D) andS = ¢~1(5/Q) =

¢ 1(Dp), we have the pullback® = S xp, D andS = T x7,o Dp. By
applying a fundamental gluing result4, Theorem 1.4] to the latter pullback and
considering the order-theoretic upshot, we see$hatquasi-local (as werg and
T).

Conversely, suppose théR, T') is a given normal pair with quasi-local and
suppose one has a divided prime idéabf R such thatl" = R/Q and D :=
R/Q is a valuation domain. Once again, let: T — T/Q be the canonical
surjection. Suppose thd? is two-dimensional with height 1 prime ide&l. Put
S = p~Y(Dp). Then by the above reasoning, bathc S andS ¢ 7 are minimal
ring extensions. Moreover, using the well known behavior of intedadure in
pullbacks (cf. [14]), both of these extensions are integrally closed.

(b) Next, we give a simple example illustrating the case of Thedzehia)
whereR C S is integral (andS C T is integrally closed). LeX be an analytic
indeterminate ove®(v/2), and set? := Q + XQ(vV2)[[X]], S := Q(v2)[[X]]
andT := Q(v/2)((X)). By the well-known description of the overrings and the
integral closure for the classic&) + M construction (as ing, Theorem 2.1]),
we see that botlR ¢ S andS c T are minimal ring extensions, witk c S
being integral and' C T being integrally closed. (Alternatively, one could use
[7, Lemma 11.3] and 14] to conclude thal? C S inherits the property of being an
integral minimal ring extension fro c Q(v/2), while S ¢ T has the asserted
properties becausgis a one-dimensional valuation domain with quotient fiElj

(c) To close the section, we give references that show that all théopibes
suggested by the statement of Theor2r(b) can actually occur. For an exam-
ple whereR C S is an integrally closed minimal ring extension and the integral
minimal ring extensiorS c T is decomposed (resp., inert; resp., ramified) with
R C T not satisfying FIP, see Example 3.1 (resp., Example 3.2; respmpbe
3.3) of [12]. On the other hand, se&2, Corollary 4.2] for the corresponding ex-
amples wherer C T satisfies FIP (withR c S an integrally closed minimal ring
extension and the integral minimal ring extensi®nc 7' being, as one wishes,
decomposed or inert or ramified).

3 The integral cases

We continue to assume th& c S andS C T are minimal ring extensions and
to determine conditions under whi¢h C T satisfies FIP. Because of the material
in Section 2, we may assume henceforth that ®tlt S andS c T are inte-
gral. Propositior8.1 collects a number of useful facts, and Lem&2aapplies B,
Theorem 5.18] to the present setting.

Proposition 3.1.Let R ¢ S andS C T be integral minimal ring extensions, with
crucial maximal ideal9/ and N, respectively. Then:

(a) R C T satisfies FIP if and only iR, C Ty, satisfies FIP.

(b) Suppose thalv N R # M. ThenR C T satisfies FIP.

(c) Suppose thalv N R = M. ThenR,; C Sy, is a minimal ring extension of
the same typéthat is, inert, ramified, or decomposgeais R C S and has crucial
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maximal idealM R,,. Additionally, Sy, C Ty, is a minimal ring extension of the
same type a§ C T and has crucial maximal ideal,; (= NSy = NTy).

(d) PutP := NNR. If P=M,then|[R,T]| = |[Rm,Tn]|. If P# M, then
(R, T]| = |[Rar, Ti]| - [[Rp, TP = 4.

Proof. (a), (b): By considering the chaik c S C T, we see via$, Corollary 3.2]
that SuppS/R) = {M, N N R}. (By integrality, this set is also MSup§/R).)
In particular, SupfS/R) is finite. Therefore, by§, Proposition 3.7 (@)Jk C T
satisfies FIP if and only if boti®,; C T andRynr C Tnnr Satisfy FIP. Hence,
to prove (a), it is enough to show th&ly~r C Tnnr Satisfies FIP ifN N R #
M. However, by a property of the crucial maximal ideédl that was recalled in
the Introduction,N N R # M implies thatRynr = Syngr canonically, and so
Rynnr C Tnag 1S Simply Synr € Tnnr, Which being a minimal ring extension
(cf. [13, Lemme 1.3]), certainly satisfies FIP. Finally, to prove (b), it remainlg o
to prove that ifN N R # M, thenR,, C T, satisfies FIP. Howevety N R # M
implies S); = Ty, [8, Lemma 2.5], and so, as abov®,, C Ty, is simply the
minimal ring extensiorR,; C Sys (and hence satisfies FIP).

(c) The assertions concernitity,; C Sy, were proved in10, Proposition 4.6].
We next prove the assertions 65, C Ty,. First, Sy, € Ty is a minimal ring
extension, thanks t@[ Lemma 2.5]. Of course, there are now three cases. Suppose
firstthatS C T is inert; that is,S/N C T/N are fields. Localizing ak \ M leads
(up to isomorphism) to the integral extensiSn, /Ny C Tar /Ny of domains.
Moreover, these are fields, as the going-up property of integral &rten(cf. [L§,
Theorem 44]) ensures that is maximal with respect to being a prime idealof
(resp.,T’) that is disjoint fromR \ M. Hence,Sy; C Ty is inert. In addition, its
crucial maximal ideal isV,,, sinceT being a finitely generated-module implies
that(SM . TM> = (S . T)R\M = Ny.

The proof in cases ¢ T is decomposed (resp., ramified) follows from the
generator-and-relations characterization of decomposed (rasgfied) minimal
ring extensions11, Proposition 2.12]. Indeed, suppose that there existd" \ S
such thatl’ = S[q] andNgq C S, as well asg> — ¢ € N (resp., as well ag? ¢
S, q3 S S) Then(]/l S T]W\SM is such thafnu = SM[(]/].] andNM(q/].) C S,
as well as(q/1)2 — g/1 € Ny (resp., as well agg/1)? € Sy, (¢/1)% € Sw).

(d) The extensiorR C T is clearly integral. Moreover, it satisfies FCP &/ [
Corollary 4.3] (which applies sincB ¢ S andS c T are each integral ring ex-
tensions that satisfy FCP). Also, recall from the proof of (a) that MB6pR) =
{M,N n R}. Therefore, an application 08] Theorem 3.6 (b), (c)] gives the as-
serted expressions fiR, T'||. Itremains only to prove th&tR ., Ta]|-|[Rp. Tp]| >
4if (NNR =) P # M. Note that|[Rys, Ta]| > 2 sinceRy C Sy is @ mini-
mal ring extension. (We need make no comment alsqutC 7, here.) Thus, it
suffices to prove thafRp, T]| > 2. Recall from the proof of (a) thatp = Sp
canonically. Thus, we need only prove thtt ¢ Tp. In fact, sinceRp = Sp
canonically and? C S is integral, it follows easily thalv is the only prime ideal
of S that lies overP, and so an application oB] Lemma 2.4 (b)] yields that
Sp = Sy canonically andl’> = T canonically. In other words, the canonical
ring homomorphismsr» — Sy andTp — T are each isomorphisms. Thus, the
ring extensionSp C T can be identified wittby C T, which is a minimal ring
extension (sincéV is the crucial maximal ideal of c T), whenceSp C Tp. D

Lemma 3.2.Let (R, M) be a quasi-local ring, and |& C S andS C T be integral
minimal ring extensions. Defing := RadT), A := R+ J,C = (R: A), and
foreachi > 0, M; := M + AM*, R, := R+ AM', and, ifR # A, M! :== M,/C
andR, := R;/C. ThenA = L R. Moreover, eithel? = A, or M = (R : A), or
there exists an integer > 1 such that\/™ C (R : A) with M"~1 ¢ (R : A).
FurthermoreR C T has FIP if and only if either R/M is finite or) whenR /M is
infinite, the following three properties hold:

(i) There existsy € T' such thatl’ = A[y] and~ is algebraic oved;

(i) EitherR = A, or M = (R : A), or Lg(M;/M;1) = 1forall 1< i <
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n—1;

(iii ) If R # A, then there exists € A such thatd = R;[a] anda® € AM,
and, withA’ := Rj[a?] andA” := R + A’M, there exist$3 € A such thatd’ =
A"[BlandB® € A'M.

Proof. To indicate how the assertion is just a restatemeni8pfTheorem 5.18]
adapted to the current hypotheses, one need only checkthaf is an integral
extension that satisfies FCP. This checking has already been doribe ggeof of
Proposition3.1 (d). m]

Among other things, Propositidh3resolves 7 of the 9 cases that are before us
in this section.

Proposition 3.3.Let R ¢ S andS C T be integral minimal ring extensions, with
crucial maximal ideal9/ and N, respectively. Then:

(a) Suppose tha;M(RM) = Ryr and thatv N R = M. ThenR C T satisfies
FIP if and only if eitherR/M is finite or there existss € T, such thatl, =
R[]

(b) Suppose that botk S andS c T are inert and thaV N R = M. Then
7., (Rar) = Ry, and soR C T satisfies FIP if and only if eitheR /M is finite or
there existsy € T, such thatf’y; = R [].

(c) Suppose thak c S is decomposed;y C 7' is inert,andV N R = M. Then
7., (Ra) = Ry andR C T satisfies FIP.

(d) Suppose that botR c S andS c T are decomposed and thsith R = M.
Thenj, (Ry) = Ry andR C T satisfies FIP.

(e) Suppose thak c Sis inert,S c T is decomposed an¥ N R = M. Then
7., (Ba) = Ry andR C T satisfies FIP.

(f) If R c S is ramified, thers C ©R.

(g) If R c Sisramified andS c T is decomposed, theR c 7" satisfies FIP.

(h) If R C Sis decomposed anfl C T is ramified, thenk? C T satisfies FIP.

(i) If R c Sisramified andS C T is inert, thenk C T satisfies FIP.

Proof. (a) By Propositior3.1 (a), R C T satisfies FIP if and only iRy, C Ty
satisfies FIP. AV N R = M, Proposition3.1(c) allows us to replace the tower
R c S c T of integral minimal ring extensions with the towgn, C Sy C T

of integral minimal ring extensions. Thus, without loss of genera(i§, M) is
quasi-local witht. R = R, and our task is to prove thd@ c 7T satisfies FIP if
and only if eitherR /M is finite or there exists € T such thatl’ = R[y]. In the
notation of Lemm&.2 A = 7. R = R, and so the assertion follows directly from
Lemma3.2

(b) By Propositior3.1(c), the hypotheses imply th&t,, c Sy, andSy, C T
are inert extensions, with crucial maximal idedlsR,, and N Sy, respectively.
However, by the INC property of integral ring extensions (df8,[Theorem 44]),
the facts that\/ € Spe¢S) (owing to R C S being inert) andVv N R = M force
N = M, whenceN Sy = MSy; = MR, and so the Jacobson radicalBf; is
MR,,. Therefore, by the first assertion in LemB\2, ;M(RM) =Ry+MRy =
Rys. The final assertion follows at once from (a).

(c) Arguing as in the above proof of (a) and taking Proposioh(c) into
account, we may assume thi&, /) is quasi-local. We claim thgtR = R. Since
R C S is decomposedS has exactly two distinct maximal ideals, namely, :=
N and (say)V,. Furthermore, th&k-algebra homomorphismg/M — S/N; are
isomorphisms (foi = 1,2). AsS C T is inert, there is a unique maximal ideal
(sayQ) of T that lies overN, and N is the only prime (maximal) ideal ¢f that
meetsS in N. If J denotes the Jacobson radicallgfthen it follows from the first
assertionin Lemma.2that;.R = R+J = R+(QNN) C R+ N C S. However,
+R # S sinceR C S is not subintegral (the point being that the canonical function
Spe¢sS) — Spe¢R) is not an injection). Therefore, the minimality & c S
implies thatl. R = R, as claimed. Therefore, by (a), we may assume Byat is
infinite.
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As the maximal ideals df’ are necessarily comaximal, the Chinese Remainder
Theorem vyields that’/M = T/N x T/Q. SinceR C S is decomposed and
has crucial maximal ideal/, we have thatR/M = S/N canonically. Hence,
R/M cC T/N is identified withS/N c T/N, which is a minimal field extension
and hence satisfies FIP. On the other hand, si¥icés not the crucial maximal
ideal of S C T, we have the canonical identificatioss;, = T, and, by B,
Lemma 2.4 (b)].I'n, = T. Thus,Sn, = T. Equating residue fields, we get that
S/N, = T/Q. Recall thatR /M = S/N, canonically sincer? C S is decomposed.
The upshot is the identificatidfi/M = T/N xT/Q = T/N x R/M. We can now
use condition (4) in§, Theorem l111.5] to conclude tha& /M c T /M satisfies FIP
(sinceR/M c T/N identifies with the FIP extensiofi/N ¢ T/N andR/M C
R/M = (R/M)[0] trivially satisfies FIP). Therefore, by [ Proposition 11.4],R C
T also satisfies FIP.

(d) As in the proof of (c), we may assume th{d, M) is quasi-local, and we
will first prove that}. R = R. Also as in the proof of (c), the “decomposed" hypoth-
esis forkR C S (in conjunction withN N R = M) gives that MaxS) = { N1, N2}
whereN; = N £ N,. SinceS c T is decomposed and has crucial maximal ideal
N, there are exactly three distinct maximal idealsiof Denote these maximal
ideals byP; and P, which each lie ovetN and@ which lies overN,. Also, note
thatP, N P, = N sinceS C T is decomposed. Then, with once again denot-
ing the Jacobson radical @f, we see from the first assertion in LemB2 that
+R=R+J = R+(QNPINP,) = R+(QNSNN) = R+(N,NN) = R+M = R,
as desired. Therefore, by (a), we may assumeRHaf is infinite.

As the maximal ideals of" are pairwise comaximal, the Chinese Remainder
Theorem yields thal’/M = T /P, x T/P, x T/Q. Since the given minimal ring
extensions are decomposed, we have canonical identificaipht = S/N; =
T/ P; (fori = 1,2) as(R/M)-algebras. Moreover, as in the proof of (c), we see that
the identificationsSy, = T, = T¢ lead toS/N, = T'/Q. Moreover, sincek C S
is decomposed, we have thRfM = S/N, canonically, whenc&k/M = T/Q).
The upshot is that asR/M)-algebras,T/M = R/M x R/M x R/M. It now
follows easily via condition (4) in§, Theorem I11.5] thatR/M C T/M satisfies
FIP. Hence, byT, Proposition II.4],R C T satisfies FIP.

(e) As in the proof of (c), we may assume th&t M) is quasi-local, and we will
first prove that. R = R. As in the proof of (b), the “inert" hypothesis implies that
N = M, and the INC property ok C S implies thatV is the unique maximal ideal
of S. Next, sinceS c T is decomposed and has crucial maximal id€athere are
exactly two distinct maximal ideals @f, sayQ; andQ,; andQ: N Q, = N = M.
Then, with.J denoting the Jacobson radical ©f the first assertion of Lemni&2
yieldsthattR = R+ J = R+ (Q1NQ2) = R+ M = R, as desired. Therefore,
by (a), we may assume th&Y/ M is infinite.

Since MaXT') = {Q1,Q2}, T/M = T/Q1 x T/Q2. As S C T is decomposed
with crucial maximal idealV = M, we have canonical identificatiorfy/ M =
T/Q,; fori = 1,2. Hence,T'/M = S/M x S/M as(R/M)-algebras. ByT,
Proposition 11.4], it suffices to prove thd/M C S/M x S/M satisfies FIP. To
do so, we will use the following fact, which is of independent interest beaibs to
have gone unnoticed in the literature.Hfis an infinite field and< C L is a field
extension that satisfies FIP, théh— L x L (given bya — (a,a)) also satisfies
FIP. (Here is a quick proof of this fact. Since the fi&ds infinite, it follows from
condition (4) in [7, Theorem Ill.5] thatX — B := K x L x L satisfies FIP. Then,
applying [L, Proposition 3.3 (a)] to the idedl := K x {0} x {0}, we have that
K/(INK) C B/I satisfies FIP; that isKk C L x L satisfies FIP, as asserted.)
Applying this fact, withK := R/M andL := S/M completes the proof.

(f) The assertion follows becaugec S is subintegral (as a consequence of its
being ramified) and. R is the union of all the subintegral extensionsrothat are
contained irfl".

(g) By Proposition3.1 (b), we may assume, without loss of generality, that
N N R = M. Note that sinceS ¢ T is decomposed, two distinct prime ideals of
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T lie over N. Hence, these prime ideals @feach meeR in M. In particular,
R C T is not a subintegral extension, and s8 # 7. As (f) now ensures that
S C LR c T, the minimality of S C T yields that; R = S. According to B,
Theorem 5.9], it suffices to show that each of the extensioas R, 7R C LR,
and%.R C T satisfies FIP. (As usual, R denotes the t-closure @t in T.) The
first of these conditions holds becauseC R = S is a minimal ring extension.
The final two conditions also hold because of the minimalityyof T, as’.R is
constrained to be eithétor T

(h) By [8, Lemma 2.8], the hypotheses yield the existence of some (uniquely
determined)S* € [R, T] such thatkR ¢ S* is ramified ands* C T is decomposed.
Hence an application of (g) completes the proof of (h). (For the sakelafer
application, we note also the8,[Lemma 2.8] gives thafR, T'|| = 4.)

(i) Once again, Propositia®.1 (b) allows us to assume thatn R = M. Also,
by (f), S C 7.R. It suffices to prove that R # T, for one can then repeat the second
half of the proof of (g). Hence, it is enough to show t#at 7" is not subintegral.
To that end, note that the “inert" hypothesis ensuresshat Max(7"). As N lies
over M, it will be enough to prove that the canonical injective ring homomorphism
f : R/M — T/N is not surjective. In fact, using the canonical isomorphism
R/M — (R+ N)/N, we see that the image gfis (R+ N)/N C S/N Cc T/N,
to complete the proof. ]

Among the various parts of the next remark, the reader will find illustratidn
the “FIP" assertions in Propositich3.

Remark 3.4.(a) We begin by illustrating Propositiah1 (b) by giving an exam-
ple of inert (integral minimal ring) extension& C S andS C T, with crucial
maximal ideals\ and N respectively, such thal N R # M. TakeK C L to be
any minimal field extension. PR := K x K, S := K x L,andT := L x L.
Note thatM = (R : S) = K x {0} andN = (S : T) = {0} x L. Then
R/M C S/M can be identified wit{0} x K C {0} x L and, hence, witli C L.
Therefore,R C S is an inert extension having crucial maximal idéal Similarly,

S C T is an inert extension having crucial maximal id@al sinceS/N C T/N
can be identified with’K' x {0} ¢ L x {0} and, hence, withk ¢ L. Also,
NNR={0} x K € K x {0} = M. Hence, by parts (b) and (d) of Proposi-
tion 3.1, R C T satisfies FIP and R, T]| > 4. In fact, this second assertion is
sharp since the present data sati§f; 7']| = 4, with [R, T]| = {R, S, T, L x K }.

(b) Suppose that we are in the situation of Proposi8@(b), namely, where
bothR C S andS C T are inert extensions and their crucial maximal ideals satisfy
N N R = M. Then the assertion in Propositi83 (b) (likewise, the assertion in
Proposition3.3 (a)) is best possible. Indeed, examples exist showing that such
R C T can satisfy (resp., need not satisfy) FIP. The most accessiblegantples
come from field theory, thanks to the following version of the Primitive Eleime
Theorem: ifK C L is a finite-dimensional field extension (in the sense {hat
K] < o), then there existy € L such thatL = K(v) (= Kv]) if and only if
K C L satisfies FIP. Tak& C S C T to be a chain of field& C F C L such that
bothK ¢ FandF c L are minimal (hence, finite-dimensional) field extensions.
In other words, botti ¢ F andF C L are field extensions that are inert (integral
minimal ring) extensions. These extensions each have the crucial ielaxieal
{0}, and so the N N R = M" condition is also satisfied. Now, if we specialize
to the situation wher& has characteristic O (more generally, whérés a perfect
field), classical field theory provides an element L such thatl = K(v), and
SoK C L (thatis,R c T) satisfies FIP. Perhaps, the simplest example of this is
provided by takingk ¢ F ¢ L to beQ ¢ Q(v2) c Q(v/2,+/3). However, one
can take the chain of fields ¢ F c Ltobe suchthak c L (thatis,R C T) does
not satisfy FIP. Perhaps the best known classical example of thissooguetting
X andY be (commuting algebraically independent) indeterminates over the finite
field F, and then taking the chaif ¢ F C L to beF,(X?,Y?) C F,(X?,Y) C
F,(X,Y).
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Each explicit example in the preceding paragraph was such that thauges
field of the) field R was infinite. However, the statement of Proposit® (b)
allows R/M to be finite, in which case (given the other ambient assumptions),
R c T satisfies FIP. To illustrate this possibility, it suffices to take the above chain
K c F c L of minimal field extensions to consist of finite fields (that is, tdke
to be a finite field). According to the classical Galois Theory of finite fields, th
occurs precisely when there exist prime numbeggs, p, and a positive integet
suchthatR = K = Fp», S = F = Fpnr, andT = L = Fpnnr. The classical
theory also gives the following facts (which suggest a theme that will bgupd
in Section 4). Ifp1 = py, then|[R, T]| = 3, but if p1 # py, then|[R,T]| = 4. In
particular, taking the chaik’ ¢ F C Lto belF, c F, C Figleads tq[R, T]| = 3.

Ring-theorists should not dismiss the preceding paragraph (or theeforeb
it) as field-theoretic ephemera. To see thisklée a field that is the “top part” of
a chain of minimal field extensions, c F, C k. Then let 1< d < oo and take
(V, M) to be ad-dimensional valuation domain of the forth = k£ + M. Then
A:=F+MC B:=F,+M C C:=k+ M is achain of inert (integral minimal
ring) extensions, each of which has crucial maximal idealwith A, B, C each
beingd-dimensional domains. MoreoveéfA, C|| = |[F1, k]| since the assignment
E — E + M gives a bijectior]A, C] — [F4, k]. (These assertions all follow easily
from the well known description of the overrings of a classieal M/ construction
[3, Theorem 3.1].) Thus, by takinf; C F, C k to be a suitable chain of finite
fields as in the preceding paragraph, wedydimensional domains forming a chain
A C B C C of inert extensions whergA, C]| is either 3 or 4 (and each of these
values can be arranged).

(c) Next, we will illustrate Propositio3.3 (c) by giving an example of a de-
composed extensioR C S and an inert extensiof c 7', with crucial maximal
ideals M and N respectively, such thaV N R = M and R C T satisfies FIP.
To that end, take? := K to be a field that has a minimal field extensibn Put
S:= K x KandT := K x L. Of course,R C S is a decomposed extension with
crucial maximal ideall/ := {0}. To see thatS C T is an inert extension with
crucial maximal idealV := (S : T') = K x {0}, observe thatv € Max(7") and
the extensiory/N C T'/N can be identified wit{0} x K c {0} x L, that is, with
K c L. Of course,N N R = M. It follows from Propositior3.3(c) thatR c T
satisfies FIP. One can also show this directly, by applyifhgrheorem 111.5], as
follows: if K is finite (resp., infinite), use its condition (1), bearing in mind that
[L: K] < o (resp., condition (4), bearing in mind that = K/0]).

(d) We will illustrate Propositior8.3 (d) by giving an example of decomposed
extensionsk C S andS c T, with crucial maximal ideald/ and N respectively,
such thatv N R = M andR C T satisfies FIP. LeK be a field, and puR := K,
S:=KxK,andT := K x K x K, with S — T via (a,b) — (a,a,b). By arguing
as in the proof of (c), we are left only with showing th&tc T is a decomposed
extension having crucial maximal ideal := (S : T) = {0} x K € Spe¢sS)
(which is identified with{0} x {0} x K < T). In fact, S/N C T/N can be
identified with K x {0} C K x K x {0}, thatis withK' ¢ K x K, which, being
a minimal ring extension, certainly satisfies FIP.

(e) We will illustrate Propositior3.3 (e) by giving an example of an inert ex-
tensionR C S and a decomposed extensienc T, with crucial maximal ideals
M and N respectively, such tha¥ N R = M andR C T satisfies FIP. First, re-
call the following fact which was proved in Propositi8r8 (e). If K is an infinite
field andK C L is a field extension that satisfies FIP, theén— L x L (given by
a — (a,a)) also satisfies FIP. Now, takk := K to be an infinite field that has a
minimal field extensiort := L. PutT := L x L. ThenR C Sisinert,S C T'is
decomposed, the crucial maximal ideals trivially satidfyy R = M, andR C T
satisfies FIP by virtue of the above-noted fact. (As an interesting sidelmalso
note via Propositio.3(e) that there exists € L x L such thatk'[y] = L x L.)

() Next, we will illustrate Propositior8.3 (g) by giving an example of a ram-
ified extensionk c S and a decomposed extensienc 7', with crucial maximal
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ideals M and N respectively, such thaV¥ N R = M (and, necessarilyk ¢ T
satisfies FIP). Lef be a finite field, and puk := K, S = K[X]/(X?), and
T = K[X]/(X?) x K, with S < T via (a + bx) > (a + br,a), wherea,b € K
andzr = X + (X?) satisfiesr # 0 = 22. Of course,R C S is ramified, with cru-
cial maximal idealM := {0}. AsN := (S :T) = Sz = Kz satisfiesNNR = M,

it remains only to observe th&y/N C T'/N can be identified with\ ¢ K x K.
While Proposition3.3 (g) ensures thakR C T satisfies FIP, this conclusion also
follows directly via condition (1) in7, Theorem III.5].

(g) We will illustrate Propositior3.3(h) by giving an example of a decomposed
extensionR C S and a ramified extensiafi C 7', with crucial maximal ideal$/
andN respectively, such thal N R = M (and, necessarilyp C T satisfies FIP).
Let K be a finite field, and puk := K, S := K x K, andT := K[X]/(X?) x K.
Of course,R C S is decomposed, with crucial maximal ide@d := {0}. As
N = (S:T) = {0} x K, it remains only to observe th&y/N c T'/N can be
identified with X' ¢ K[X]/(X?). While Propositior3.3 (g) ensures thak ¢ T
satisfies FIP, this conclusion also follows directly via condition (1)/irTheorem
I1.5].

(h) Finally, we will illustrate Propositior8.3 (i) by giving an example of a
ramified extensiork C S and an inert extensiof C T, with crucial maximal
ideals M and N respectively, such thaV N R = M (and, necessarilyR c T
satisfies FIP). LeK be a finite field. Then there exists a fidldsuch thatk c L
and[L : K] = 2. PutT := L[X]/(X?) = L@ Lz, wherex := X + (X?) € T
with = # 0 = 2. Then define the ringR := K @ Kz andS := K @ Lz. Observe
thatR ¢ S ¢ T, with M := (R: S) = KzandN = (S : T) = Lz. In
particular, NN R = M. Itis easy to see thet C T is inert having crucial maximal
ideal N, sinceN € Max(S) N Max(T') andS/N c T'/N can be identified with the
(minimal) field extensior’ C L. It remains only to prove thak c S is ramified.
We will do this somewhat indirectly, by proving th&tc S is an integral minimal
ring extension which is neither decomposed nor inert (and, hence ghyrticess
of elimination, must be ramified).

To prove thatR C S is a minimal ring extension, we will show thatf is any
ring such that? C A C S, thenA = R. Consider the sét := {u € L | ux € A}.
Itis easy to see thatt C V C L, thatV is a K-vector subspace adf, and that
A= K+ Vx. Note thatV c L (for, otherwise) = L, whenced = K+ Lx = S,

a contradiction). Asdim(L) = [L : K| = 2 andV # L, it must be thal’ = K.
ThenA = K + Kz = R, as desired. This proves th& c S is a minimal
ring extension. Moreover, this extension is integral, siScis generated as an
R-algebra by the (nilpotent, hence integral) elementsain

By the lying-over property of integral extensions (cf8] Theorem 44])S has
only only one maximal ideal, since the quasi-local ring integral overS. There-
fore, R C S cannot be a decomposed extension. It is also not an inert extension,
since M ¢ Max(S), the point being tha\f = Kz is properly contained in the
proper idealLz of S. This completes the proof th&t C T is ramified and that the
data have all the asserted properties. Incidentally, we observe that,Rvbpesi-
tion 3.3(g) ensures thak C T satisfies FIP, this conclusion also follows directly
via condition (1) in [, Theorem I1.5], ag" = L + Lz is finite(-dimensional as a
vector space ovek).

The two remaining cases for (type &f C S, type of S C T) are (inert, ram-
ified) and (ramified, ramified), each under the assumptionXhatR = M. Re-
markably, both of these cases can be illustrated by examples \Wher€& satisfies
FIP and by other examples wheRec T fails to satisfy FIP. Those examples sat-
isfying FIP (resp., non-FIP) are collected below in Remau& (resp., Example
3.7). First, in keeping with a promise made in the Introduction, Proposiién
gives necessary and sufficient conditions for each of the contexsigth(inert,
ramified) and (ramified, ramified)) to allo® C T to satisfy FIP. Given the na-
ture of the examples in Remagk6 and Example3.7 (especially the complicated
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construction of the first example in Exam@e (b)), it may not be surprising that
the formulations in Propositiod.5are somewhat cumbersome, lacking the signif-
icantly more succinct nature of the statements for the other 7 cases iosRrop
3.3

Proposition 3.5.(a) Let R ¢ S C T be rings such thak c S is an inert(integral
minimal ring) extension with crucial maximal ideal/, S c T is a ramified
(integral minimal ring extension with crucial maximal ide&l, andN N R = M.

DefineJ := RadTy), A := Ry + J, and for each > 0, M; := My, + AM?,

Ri = Ry + AM', M := M;/My; andR} := R;/My;. ThenA =7, (Ry). Fur-

thermore,R C T has FIP if and only if(either R/M is finite or) when R/M

is infinite, the following two properties hold: there exisise T, such that
Ty = An|y]; and there exista € A such thatd = Rj[a] anda® € AM, and,
with A’ ;= Ry[a?] andA” := Ry, + A’ M, there exist® € A such thatd’ = A”[3]

andp® € A'M.

(b) Let R ¢ S C T berings such thaR c S andS c T are each ramified
(integral minimal ring extensions, whose respective crucial maximal idéaksnd
N satisfyN N R = M. DefineJ := RadTy), A= Ry + J,C = (Rum : A),
and for each > 0, M; := My, + AM®, R; := Ry + AM', M] := M,/C and
R, = R;/C. ThenA = }M(RM). Moreover, eithetM; = (Ry @ A) or there
exists an integen > 1 such thatMy, C (R : A) with M}t & (Ry : A).
FurthermoreR C T has FIP if and only if either R/M is finite or) whenR /M is
infinite, the following three properties hold: there exists T, such thatl,, =
Apn[y); eitherMy, = (Ry : A) or Lg,, (M;/M;+1) =1forall1<i<n-—1;and
there existsx € A such thatd = R;[a] anda® € AM, and, withA’ ;= R;[a?] and
A" = Ry + A'M, there existg3 € T such thatd’ = A”[3] ands® € A’ M.

Proof. By parts (a) and (b) of PropositioB.1, we may assume thaiR, M) is
quasi-local. The assertions are direct applications of LerBriavhose notation
we use freely here, once we prove in part (a) (resp., in part (B) th: A) = M
(resp., thatd = T).

(a) Since(R, M) is quasi-local andk C S is inert, the usual argument involving
INC shows that S, M) is quasi-local. In particulaty = M. As S C T is ramified,
T is quasi-local and its unique maximal ided! satisfie M/')2 C M c M’. The
Jacobson radical df is thenJ = M’, and scA = R+ J = R+ M’. Itfollows that
A # R, sinceM c M’ (in conjunction withM’ N R = M) ensures thad/’ < R.
Also, sinceA # R, we see thatR : A) = M (sinceM M’ C (M')?> C M C R).
Then the assertion follows from Lemn3a2, noticing that condition (ii) has been
verified.

(b) Since bothr c S andS c T are subintegral, so iR c T. It follows that
A = 1R =T. Then the assertion follows from Lemr8e2 O

We next collect the two remaining examples that satisfy FIP.

Remark 3.6.(a) It is easy to construct an example of ringsc S ¢ 7 such that
R C Sisinert,S c T is ramified (resp., decomposed; resp., inert), the crucial
maximal ideals satisfW N M = R, andR C T satisfies FIP. Indeed, ¢t C L
be a minimal (field) extension of finite fields, and take:= K, S := L, and
T := L[X]/(X?) (resp.,L x L; resp., a minimal field extension of the finite field
L). The first several assertions are clear, and the “FIP" assertilom$odirectly
from condition (1) in [/, Theorem I11.5] since dimp (T") < co.

(b) It is harder to construct a chain of ramified (integral minimal ringee-
sionsR c S ¢ T such that the crucial maximal ideals satisfyn M = R and
R C T satisfies FIP, but we do so next. L&t be a field. PutR := K and
S = K[X]/(X?) = K[r] = K + Kz, wherer := X + (X?) satisfiest # 0 = 22.
Of course,R C S is ramified, with crucial maximal ideal/ := {0}. LetY be an
indeterminate oves, and put? := S[Y]/(Y3,Y2 — z). Observe thal’ = Ky,
wherey ==Y + (Y3 Y? — z) satisfieg/® = 0 andy? = z. It is important to verify
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thatS — T that is, the canonicaR-algebra homomorphist — T is an injec-
tion. This comes down to showing thatifb € K with a+bx € (Y3, Y2 —2)S[Y],
thena = 0 = b. Applying theS-algebra homomorphism that seridgo 0, we get
thata + br € S = Kz, whencen = 0. Thenbz € (Y3,Y2 — z)S[Y] leads easily
tob = 0, as desired, and so we can viénwC 7. Similar reasoning allows us to
conclude that’ ¢ K + (Y3, Y2—2)S[Y]andY?2 ¢ K + KY + (Y3, Y2 —2)S[Y].
Thus, as & -vector space] = Ko KyoKy? = Ko Kr® Ky = S® Ky; and the
multiplication among generators satisfigs= 0, > = = andy® = yz = 0. Itis
now easy to check that := (S : T) = y?S = y?°K = zK. Clearly, N N R = M.
To show thatS c T is ramified with crucial maximal ideaN, it is enough to
prove that { = S/N C) T/N = K[W]/(W?) for some indeterminat&’. In
fact, this holds sinc& /N = Ky]/y?’K = K © Kz, wherez := y + y?K satisfies
0 # z = 22. It remains only to prove thak c T satisfies FIP. IfK is finite (resp.,
infinite) this follows from condition (1) (resp., condition (3)) iR, [Theorem I11.5].

We come now to somewhat more intricately constructed examples. Thay sh
that FIP can fail to be satisfied in each of the two contexts that (for the mme
remain open before us.

Example 3.7.(a) There exists a chain of ring8 ¢ S C T such thatk c S
is an inert(integral minimal ring extension ands C 7' is a ramified(integral
minimal ring) extension, whose respective crucial maximal idéaland N satisfy
NN R= M,andR c T does not satisfy FIP.

(b) There exists a chain of ringe ¢ S C T such thatk c S andS C
T are each ramifiedintegral minimal ring extensions, whose respective crucial
maximal idealsV/ and N satisfyN N R = M, andR C T does not satisfy FIP.

Proof. (a) Let K be an infinite field and<{ c L a minimal field extension. Take
R:= K, S := L,andT = L[X]/(X?). Of course,R C S is inert, with crucial
maximal idealM := {0}; andS C T is ramified, whose crucial maximal ideal
N := {0} trivially satisfiesN N R = M. By inspecting the conditions (especially
condition (3)) in [7, Theorem 111.5] (and bearing in mind thatis quasi-local), we
see that the conclusion th&atc T fails to satisfy FIP is equivalent to the assertion
that there does not exist an elementc 7' such thatl’ = K[a] anda® = 0.
Suppose, on the contrary, that suclexists. We can writex = a + bz for some
a,b € K. As o® = a® + 3a2bz, the condition that® = 0 is equivalent ta; = 0.
ThenT = K[bz] D K implies thatb # 0, and soS = Kz] = K[bz] = T, the
desired contradiction.

(b) We offer two different constructions that each prove (b). That &f these
slightly modifies the construction from Rema3l6 (b). Let K be an infinite field.
PutR := K andS := K[X]/(X?) = K[z] = K + Kz, wherez := X + (X?)
satisfiesr # 0 = 2?. Of course,R C S is ramified, with crucial maximal ideal
M = {0}. LetY be an indeterminate ovef, and (this is where the construc-
tion deviates from the earlier one) piit := S[Y]/(Y2,zY). It is important to
notice thatS — T (that is, the canonicak-algebra homomorphisii — 7' is an
injection): this holds since,b ¢ K with a + bz € (Y2,2Y) easily implies that
0=a =b. Observe thay := Y + (Y2, 2Y) satisfies 0= y? = zy. Additively, we
have thall’ = S® Sy = K+ Kz + Ky. We claim that this last sum is a direct sum:
as aK-vector space] = K & Kx @ Ky. To prove this claim, it suffices to verify
thatY ¢ K + Kz + (Y?,2Y), and this can be done as in the proof of Exangi
(b) by using suitable substitutions (in this ca¥e;+ 0) and analyzing appropriate
coefficients (in this case, the coefficient f noticing also that X «.5). It fol-
lows that dimg (7') = 3. Notice that the multiplication among generators satisfies
0 = 22 = y? = xy. Next, considery := (S : T) = Kz. ThenS/N C T/N can
be identified withK' ¢ (K + Kz + Ky)/(Kz) = K + Kz, wherez := y + Kz
satisfiesz # 0 = 22. ConsequentlyS c T is a ramified extension with crucial
maximal idealN; and of courseN N R = M. Itremains to prove thak c 7 does
not satisfy FIP.
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Although T' need not be quasi-local, we claim thAtcannot take the form
Kla] x K3 x -+ x K, for some element such that® = 0, some integer > 2,
and some fieldg(; such thatk’ C K; satisfies FIP for eacl Indeed, if one had
such a description, thefi would be semi-quasi-local, whereas the infinitely many
maximal ideals of5[Y] that containy” lead to infinitely many maximal ideals of
S[Y]/(Y?,2Y) = T (cf. [18, page 25]), the desired contradiction, thus proving
the claim. Therefore, ik C T satisfies FIP, it follows from{, Theorem I11.5] that
T = Kly| for some element € T such thaty®> = 0. To complete the proof, we
need only show that the existence of sydeads to a contradiction.

Assume thaf” = K[y]. SinceT = K + Kz + Ky, v = ¢ + ax + by for some
a,b,c € K. Thenj := v —c = ax + by € Kz + Ky satisfiesK[§] = T. We
have thaty? = a?z? + 2abzy + b%y? = 0 since 0= 2% = zy = 2. It follows
thatT = K[0] = K + K¢, whence dim (T") < 2, the desired contradiction (as we
showed above that dig(7") = 3).

We next indicate a second construction to prove (b). It depends oe ssrent
work of G. Picavet and M. Picavet-L'Hermitte involving idealizations. Oagain,
we takeR := K to be an infinite field. Let/ be a two-dimensionak -vector
space and fix a one-dimensionfdtsubspacéV of V. Consider the idealizations
S := R(+)W andT := R(+)V. Note that §, Remark 2.9] ensures th&tc Sis a
minimal ring extension sinc®’ is a simplekK-module (that is, a one-dimensional
vector space ovek); and thatkR c T does not satisfy FIP becauBé has infinitely
many R-submodules (that igs-subspaces). However, b2(Q, Lemma 2.1], both
R c SandR c T are subintegral extensions. In particul&r,C S is ramified.
To complete the verification of this example, it remains only to show $hat T
is ramified. To that end, first note th8tC 7' is a minimal ring extension, by2p,
Proposition 2.8 (3)], which applies becaus@i? has only finitely many (in fact,
two) K-submodules. Next, note that C T is integral, sincel’ is generated as
an S-algebra by the (nilpotent, hence integral) element§0p+)V. Hence, we
need only prove that C T is neither inert nor decomposed. This, in turn, follows
from the fact thafl is a quasi-local ring whose maximal ided} (+)V properly
contains(S : T') = {0}(+)W, which is the unique maximal ideal &f. o

Next, we assess the current state of our program and offer an oginitiressed
by an example, predicting what may be found by anyone who takes thgsgm
“one step further."

Remark 3.8.(a) We have now effectively determined which maximal chains of
rings of the formR c S C T lead toR C T satisfying FIP. Because of the
following example, anyone who would take this program “one step furtinery
expect to find relatively more non-FIP behavior. B&be an analytic indeterminate
over a fieldk. For each positive integér the extensiom := k + X" 1k[[X]] C
=k + X'Kk[[X]] is a ramified (integral minimal ring) extension. (Indeéd=
X*[[X]] = (A : B) and the extensiom/I C B/I can be identified with
k C k[Y]/(Y?), whereY = X°+ [ is an indeterminate over.) Consider the
tower

k4 X*%[[X]] € k+ X3K[[X]] € k + X2E[[X]] € k + X[ X]] = k[[X]]

of ramified extensions. Now, suppose further that the field infinite. Then
C = k + X*][[X]] ¢ D = k[[X]] does not satisfy FIP. To see this, consider
J = (C : D) = X*k[[X]]. Itis enough to show that' := C/J ¢ D := D/J
does not satisfy FIP (cf.7] Proposition 11.4]). Note thaD = C|x], wherex :=
X +J € Dis anilpotent element of nilpotency index 4. As= k, an application
of [1, Lemma 3.6 (a)] therefore shows ti@tc D does not satisfy FIP, as desired.
We believe that the relative ease with which this example has been built stands
contrast to the comparative difficulty of building the first (and possibnethe
second) example in Examp87 (b).

(b) The example in (a) should also be contrasted with the following example.
Assume now that the (not necessarily infinite) figltias characteristic 2; and
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still denotes an analytic indeterminate o¥elConsider the tower
R:=k+ X%+ X*%[[X]] € S =k + X?[[X]] T := k[[X]].

Reasoning as in (a), one checks easily tRat S (resp.,S c T) is a ramified
integral minimal ring extension with crucial maximal idedl := X2k + X*k[[X]]
(resp.,N = X?k[[X]]). We claim thatk C T satisfies FIP. One way to show this
is to apply Lemma3.2 Note that)/ is the uniqgue maximal ideal a® and that
(R:T)= X*[[X]] = M2, whileM ¢ (R:T).Also,,lR=A=R+N =T (as
we continue to use the notation from Lem@i2here). Hencep = 1. If k is finite,
the claim follows from Lemm&.2 If % is infinite, the claim follows from Lemma
3.2 in conjunction with the following observations: (i) holds with:= 0; (ii)
holds vacuously since = 1; sinced; = S (and A, = R), we can takex := X;
and then sincel’ = S[X?] = SandA” = R+ SM = R, we can satisfy (iii) by
taking3 := X3.

To close this section, we give a result that serves to somewhat balantteukt
of Remark3.8 (a). Recall that ifB is a (commutative) algebra over a ring
then B is said to be aseparableA-algebra if B is projective overB ® 4 B (via
(OCr i ®y) 2=y wyiz forall z;, y;, 2 € B). Itis well known that ifA is
a field, then am-algebraB is a separablel-algebra if and only ifB is isomorphic
(as anA-algebra) to a direct product of finitely many finite-dimensional sdgara
field extensions ofi. Note that PropositioB.9 (b) generalizes Propositich3 (d)
(while giving a new proof for it).

Proposition 3.9.(a) If A C B is a decomposef@ntegral minimal ring extension,
thenB is a separablel-algebra.
(b) Let A = Ry C ... C R, = B be a finite-length tower of rings such that

R;_1 C R; is adecomposed extension forak 1, ... ,n. ThenB is a separable
algebra overd. If, in addition, the crucial maximal ideal d¢; 1 C R; lies over

the crucial maximal ideal/ of A ¢ Ry foralli =2, ... ,n,thenA C B satisfies

FIP.

Proof. (a) By [10, Proposition 4.6] (or Propositio.1 (c)) and the implication (b)

= (a) in [5, Theorem 7.1, page 72], we may assume, without loss of generality,
that(A, M) is quasi-local. The has exactly two maximal ideals, say andN;

N1N N, = M; and the canonicdl4 /M )-algebra homomorphism$/M — B/N;

are isomorphisms (far = 1,2). As N; and N, are comaximal inB, the Chinese
Remainder Theorem yields th&t/M = B/N; x B/N, (2 A/M x A/M) as
(A/M)-algebras. Thus, by the above remarRs M is a separable algebra over
A/M. Therefore, by the implication (¢ (a) in [5, Theorem 7.1, page 728 is a
separable algebra ovdr.

(b) It is known that ifA ¢ ' c Q are rings such thdt is a separablé\-
algebra and? is a separabl€-algebra, thel2 is a separablé-algebra b, Propo-
sition 1.12, page 46]. In view of (a), it now follows by an easy inductioat th
B is a separable algebra over Moreover, B is a finite-type algebra and inte-
gral (hence module-finite) ovet (since eachr; is of finite-type and integral over
R;_1). Henceforth, we assume the additional condition that all the cruciaimaéx
ideals lie overM . Then, reasoning as in the proof of Proposit®8(d) (and using
an easy induction), we see that the Jacobson radidalisf\/. In particular,M is
a common ideal ofA and B. If A/M is finite, it follows, via condition (1) inT,
Theorem I11.5], thatd/M C B/M satisfies FIP (sinc&/M is a finite-dimensional
vector space ovet /M), and soA C B satisfies FIP by{, Proposition 11.4]. Thus,
without loss of generalityd /M is infinite.

Note thatB)y, is a finite-type separable algebra ovky; [5, Corollary 1.7, page
44]. Hence, sincel/M is infinite, it follows from [L7, Lemma 3.1] there existse
By such thatB,, = Ay [€]. As we have seen that is the Jacobson radical &,
the fact thatB has only finitely many maximal ideals leads to the Jacobson radical
of By beingM A, (since the formation of rings of fractions commutes with finite
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intersections). Therefore, by the first assertiongnheorem 5.18]; (Ay) =

Aypr. Hence, in view of the existence ¢f it now follows from [8, Theorem 5.18]
that Ay, C Bj, satisfies FIP. (To apply the cited result, one also needs to note
that A C B satisfies FCP; that, in turn, is an easy consequencs8, @ grollary
4.3].) Next, note via 8, Corollary 3.2] and the assumption concerning crucial
maximal ideals, that MSug@®/A) = {M }. Consequently, byg, Proposition 3.7
(a)], A C B satisfies FIP$& Ay, C By, satisfies FIP). ]

4 Summary and an application

Theoremd.1summarizes the earlier material in this paper by essentially listing all
the possible kinds of pairs of minimal ring extensidds: S andS c T that can
be “composed" so that c T has FIP (that is, so thaitR, T']| < co).

Theorem 4.1.Let R C S andS C T be minimal ring extensions, with crucial
maximal idealsM and N, respectively. ThemR ¢ T satisfies FIP if and only if
(exactly one of the following conditions holds:

(i) BothR C S andS C T are integrally closed.

(i) R C Sisintegral andS C T is integrally closed.

(i) R c Sisintegrally closedS c T is integral, andV N R ¢ M.

(iv) BothkR c S andS c T are integral andv N R # M.

(v) BothR c SandS c T areinert,N N R = M, and eithetR/M is finite or
there existsy € T, such thatf’y; = Ry [].

(vi) R C Sisdecomposedy C TisinertandN N R = M.

(vii) BothR c S andS c T are decomposed amd N R = M.

(viii) R c Sisinert,S c T is decomposed, andi N R = M.

(ix) R c S'is ramified,S c T'is decomposed, an® N R = M.

(X) R C Sis decomposedy C T is ramified, andV N R = M.

(xi) R C Sis ramified,S c T isinert,andVN R = M.

(xii) R C Sisinert,S c T is ramified,N N R = M, and the two conditions
stated in PropositioB.5 (a) hold.

(xiii ) BothR c S andS c T are ramified)N N R = M, and the two conditions
stated in PropositioB.5 (b) hold.

Proof. Combine the appropriate parts of Theor2y Propositior8.1, Proposition
3.3and PropositiorB.5. ]

While Theorend.1 has given a complete answer to the question at hand, we
wish to stress that various FIP- (and FCP-) theoretic studies remain tor&ecol
in other contexts. Among these, we mention here only the conteprinfgs, for
which [2] initiated such studies in some important special cases.

The rest of this section refers to the “application” mentioned in its title. For mo-
tivation, note that a minimal ring extensichC B can be characterized as a ring
extensiond C B such that[A, B]| = 2. Thus, one way to contemplate ring exten-
sions that are, in some sense, only “one step more complex than" a rhiimigna
extension would be to study (necessarily proper) ring extendioas? such that
[[R,T]| = 3. Any suchR C T must accommodate some (uniquely determined)
S € [R,T] such that bottR ¢ S andS c T are minimal ring extensions. Given
the above focus on such “composable"” pairs of minimal ring extensiorescould
combine that earlier work (as summarized in Theoref) to give a weak, formal
characterization of [f{R, T'|| = 3" by appending some common verbiage, such as
“each ring in[R, T'] is comparable witts", to each of the conditions listed in The-
orem4.1 Such a compilation would frankly be of little use. We prefer, instead,
to collect a few comments about how each of the conditions listed in Thetrem
relates to the[[R, T']| = 3" question. Remark.2emphasizes the contexts studied
in Section 2, while Remar#.3focuses on certain chains of the (inert, inert) kind.
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Remark 4.2.(a) The first paragraph of Remagk2 (a) showed one way to find
dataR c S c T, with R quasi-local, as in Theoresh1 (i) such that[R, T']| = 3.
The second and third paragraphs of Rem2ik(a) developed enough material
concerning normal pairs to show that all examples of integrally closthsions

R C S C T that illustrate Theorem.1 (i) such thatkR C T satisfies FIP, withR
quasi-local, can be obtained via pullback from the construction given ifirgte
paragraph of RemarR.2 (a). To make an example that is constructed in this way
satisfy |[R,T]| = 3, it is necessary and sufficient for the pullback to feature a
divided prime ideal) of R such thatD := R/Q is a two-dimensional valuation
domain with (quotient field}” = R/Q.

However, in general, when botR ¢ S andS c T are integrally closed min-
imal ring extensions such thdik, 7']| = 3, we do not know (even for domains)
whetherR must be quasi-local. A partial result in this vein is given next.

Let R be a finite-dimensional semi-quasi-local Prufer domain such that there
existintegrally closed minimal ring extensioRsc S andsS ¢ 7' with |[R, T]| = 3.
Then we are in the situation described in the first paragraph of Rea(k). In
other words,R is a (quasi-local) two-dimensional valuation domain and (ugto
algebra isomorphismy' is the localization ofR at its height 1 prime ideal and
is the quotient field ofk. For a proof, note that the classification of the minimal
ring extensions of a domain (cfl1, Corollary 2.5]) ensures that (up ®-algebra
isomorphism)S is an overring ofR and, hence, also a finite-dimensional semi-
quasi-local Prifer domainlp, Theorem 26.1 (1), (2)]. Similarlyl is a finite-
dimensional semi-quasi-local Priifer domain. Note thaP iand Q are distinct
maximal ideals ofR, then Rp and Ry are incomparable. Hence, we see, from
the condition that[R, T']| = 3, thatR has a unique maximal ideal (that i8,is a
valuation domain). Then, sindgR, T']| = 3 and each (valuation) overring &fis
a localization at some prime ideal &f (cf. [18 Theorem 65]), it follows thak
has a unique nonzero non-maximal prime ideal, and the assertion bsctear.

(b) We next comment on the conditions in Theorér(ii). Suppose thakz C
S is an integral minimal ring extension agdc 7 is an integrally closed minimal
ring extension. Therl[R,T]|| = 3 < wheneveru € T is not integral overRr,
then R[u] = T. For a proof, note first thaf is the integral closure oR in T.
Thus, the only way fof[R, T]| # 3 would be to have some ring € [R, T fall
to be comparable witl§ becaused contains an elementthat is not integral over
R while S is not contained imd. This is equivalent to requiring the existence of
u € T such that is not integral ove? andS ¢ R[u]. Rulingthis out means that
whenever: € T'is not integral overr, one hasS ¢ R[u] C T' (whenceR[u]| =T
by the minimality ofS c 7).

(c) We next show that the data in RemarR (b) satisfy the criterion established
in (b) for the context of Theorer.1 (ii). As before,X denotes an analytic inde-
terminate overQ(v/'2), and we takeR := Q + XQ(vV2)[[X]], S := Q(vV2)[[X]]
andT := Q(v2)((X)). Our task is to show that if € T is not integral overr,
thenR[u] = T. As S is the integral closure of in 7', we can writew = f/X",
for somef € S and minimal positive integet. Asu ¢ S and X does not divide
fin S, we see thay is a unit of S. Accordingly, by the theory of G-domain&$,
Theorem 19]S[u] = T'. Let ¢ denote the (nonzero) constant termfofif ¢ € Q,
then f is a unit of R and a direct application oflB, Theorem 19] gives[u] = T
Thus, we may suppose thate Q(+/2) \ Q and need only prove tha& C R|u].

In fact, R[u] containsQ(c) + XQ(v2)[[X]] = Q(vV2) + XQ(v2)[[X]] = S, as
desired. Hence, by (a)}R, T]| = 3.

(d) Next, we show that ifR C S is an integral minimal ring extension and
S C T is an integrally closed minimal ring extension, then it need not be the
case that[R,T]| = 3. For example, consideR := Z[2i]; S := R’ = Z[i],
the ring of Gaussian integers; affid:= Np.q Sp, Where the index set for this
intersection consists of all the prime idedtsof S other than@ := 3S. In fact,
by classical algebraic number theo®1] Theorems 6-2-1 and 6-1-1], 3 is inert
in the Gaussian numbers, and so (sisces a Dedekind domain) € Spegs)



28 David E. Dobbs and Jay Shapiro

and( is the only prime ideal o5 that lies over Z. Consequently, since every
overring of S is an intersection of localizations (at prime ideals)$f{by [16,
Theorem 26.1 (2)]), it follows that there is no ring properly containetiieens
and7'. On the other hand,/B € T'\ S, and saS C T is a minimal ring extension;
moreover, this extension is integrally closed (sirités integrally closed and”

is an overring ofS). Also, it is easy to check tha c S is an integral minimal
ring extension. It remains only to produce a ringm 7]\ {R,S,T}. Consider
A = R[1/3] € [R,T]. Observethat 3 ¢ A\ (RUS); andi € T\ A. This
completes the verification of the example.

(e) The conditions in Theorewrh.1 (iii) do not permit|[R,T]| to be 3. To see
why this is so, suppose that the minimal ring extendioa S is integrally closed,
the minimal ring extensiol§' C T is integral, and that their crucial maximal ideals
satisfyN N R ¢ M. Then the proof of the Crosswise exchange Lem@&aémma
2.7] produces aring ifR, T)\ {R, S, T}, and sq[R, T]| # 3.

() By Proposition3.1 (d) (or arguing as in (e) via the Crosswise exchange
Lemma), we see that the conditions in Theoreh(iv) lead to|[R, T|| > 4.

(g) As classical field extensions suffice to show the diversity of Fl&ed
behavior in the (inert, inert) context, we pass now to the (decomposet), éoa-
ditions in Theoren.1 (vi). We will show that those conditions admit an example
where|[R,T]| = 3. To do so, we use the data in Rema&rK (c), specializing to
the fieldsK := R andL ;= C,sothatR =R, S =R xRand7T =R x C. To
show that|[R, T]| = 3 (that is,|[R,R x C]| = 3), it suffices to prove that if3 is
anyR-subalgebra oR x C such that dim(B) = 2, thenB =R x R.

Suppose not. Then there are two cases. In the first case, there&exigtss) €
B such thatr, s € R andr # s. Thena := (r —5,0) = £ — (s,s) € B\ R. Put
A = Rla]. By considering vector space dimensions oRemwe haveAd = B.
Next, we will show thatS C A, that is, thatR x R C A. To do so, we will show
thatif a,b € R, then(a,b) € A, or equivalently, thata — b,0) € A. This, in turn,
is clear since ;= (a — b)(r — s)~! € R satisfies(a — b,0) = pa € R[a] = A,
as required. Thus, by considering vector space dimensibasS. It follows that
B = S, the desired contradiction.

In the remaining case, there exists= (u,v) € B such that{ € R and)

v e C\R. Writev =z + yi with 2,y € R (andy # 0). We havey — (u,u) =
(O, (z — u) + yi) € B. Thus, without loss of generality, = 0 and (byabus de
langagg n = (0,z + yi) € B (still with 2,y € R andy # 0). There are now two
subcases. In the first of thesez 0. Thend := (—z,yi) € B, and so sinc&” has
no nonzero nilpotentsi? = (22, —y?) is a nonzero element d8. Equivalently,
0 # (22 + y2,0) is a nonzero element a#. It follows that(1,0) € B, whence
B =R[(1,0)] = R® R(1,0). Therefore,B = {(A+ p,\) e Rx R | \,u € R};
that is,B = R x R, the desired contradiction.

In the remaining subcase,= 0, so that) = (0, yi) € Bwith0# y € R. Then
(1,0) = (1,1) — (y~*n)? € B, so that by considering vector space dimensions,
we haveB = R[(1,0)]. As in the previous subcase, this leads to the desired
contradiction.

(h) The conditions in Theorer 1 (vii) lead to|[R, T']| > 5. Indeed, by Propo-
sition 3.1 (c) and the first assertion in Propositi8ri (d), we may assume, with-
out loss of generality, thatr, M) is quasi-local. Then recall from the proof of
Proposition3.3(d) that7T'/M can be identified wittR/M x R/M x R/M. Since
I[R,T]| = |[R/M,T/M]| by a standard homomorphism theorem, it is enough to
show that[R/M,T/M]| > 5. To that end,
let the elements, b andc run independently througk/M, and consider the five
setskR/M = {(a,a,a)},{(b,a,a)},{(a,b,a)},{(a,a,b)}and{(a,b,c)} =T/M.

(i) The conditions in Theorerd.1 (viii) do not permit|[R,T]| to be 3 (or
4). Indeed, as in the proof of (h), we may assume, without loss ofrgéty,
that (R, M) is quasi-local. Then recall from the proof of Proposit®a (e) that
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T/M = S/M x S/M. Viewing this isomorphism as an identification, we have
[R/M,T/M] 2 {R/M,S/M,T/M,R/M x S/M,S/M x R/M}

and so[R,T]| = |[R/M,T/M]| > 5.

() The conditions in Theorem.1 (ix) admit an example whergRr, T]| > 3.
To show this, we use the data in Rema&rHK (f), with the minimal field extension
K C L taken to be{0,1} = F, C F4. ThenR = F,, S = F,[X]/(X?) and
T = F[X]/(X?) x Fp (with S — T viaa + bz +— (a + bz,a) as before). Itis
straightforward to verify thaB := {(0,0), (1,1), (1,0), (0, 1)} is anR-subalgebra
of T'which is notin{R, S, T'}.

(k) As we saw in the proof of Propositiagh1 (h), it follows from [8, Lemma
2.8] that the hypotheses of Theordni (x) ensure thafR, T']| > 4. For instance,
by comparing parts (f) and (g) of RemaBk4, we see that the data in Rema&4
(9) satisfyK [X]/(X?) € [R, T]\ {R, S, T}.

() The conditions in Theorem.1 (xi) do permit|[R,T]| to be 3. In fact, we
prove that, withK := Fy, the data in RemarR.4 (h) satisfy|[R,T]| = 3. As the
cardinalities ofR, S andT are 4 8 and 16, respectively, it follows from elementary
group theory that we need only show tftais the only membefs* of [R, T] that
has cardinality 8. Without loss of generality: ¢ S. Then, withz := X + (X?)
as usual, pick := A + ux € S* forsome) € L\ K, u € L. Then by adding to
the elements oR, we get

S*={0,L,z, 14+ x, A+ pz, 1+ X+ pz, A+ (L+ )z, L+ X+ (14 p)x}.

As \? = ¢2 ¢ S§* (and)\? # 0,1, )), we see by the process of elimination that
A = X+ 1, with x € K. Replacingt with ¢ — pz, we may suppose that = 0.

It is evident that the displayed set of 8 elements is not a ring since it idos#d
under multiplication (for instance, because it does not include the profluand

), the desired contradiction, which completes the proof.

(m) If the conditions in Theorem.1 (xiii) hold (so that, in particularR C T
satisfies FIP) and the fiel&®/M is infinite, then|[R,T]| = 1+ ¢[R,T], where
/[R,T] denotes the maximal length of a chain composed of membérs, @f. In
other words, ifR ¢ S andS C T are ramified extensions whose crucial maximal
ideals satisfyN N R = M andR C T satisfies FIP, thef{R, T']| is the cardinality
of a maximal chain composed of membergBfT|. (For an example illustrating
this assertion, one can use the data in Ren3afk(b), taking the fieldk to be
infinite.) For a proof, use parts (a), (c) and (d) of Proposidh in conjunction
with [9, Lemma 4.5], to reduce to the case whére M) is quasi-local; then,
sinceR C T is a (composition of) subintegral extension(s), an applicatior®of [
Proposition 4.13] completes the proof. It follows that under the stateditions,
if R c S c T is one of the chains ifiR, T| having the greatest possible length,
then it is the only such chain an?, 7']| = 3.

On the other hand, it is easy to give an example where the conditions in Theo
rem4.1(xiii) hold, the field R/M is finite and|[R, T']| = 3. To do so, one can once
again use the data in Remaslk6 (b), but this time taking the fiel& := F,. In-
deed, by the proof of Remafk6 (b), we have thak = K, S = K[z] = K[y?] and
T = K& Ky® Ky?, with 3 = 0. Thus, it suffices to show thatt := K[y +y?] €
{R, S, T}. A moment's thought shows that = (y + 4?)? € A, whenced = T,
to complete the proof.

Recall that the Introduction mentioned an example of a ring exterRianT
from [15] such that/[R,T]| = 3. The focus of 15] was on\-extensionsthat is,
ring extensionsA C B such that A, B] is linearly ordered by inclusion. The final
remark mentions three other results frobd|[that are related to thg[R, T']| = 3"
question.

Remark 4.3.(a) If K C L is afield extension, we say thatis purely inseparably
closed inL if no element ofZ \ K is purely inseparable ovéf. According to [L5,
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Proposition 3.17 (2)], ik C L is a-extension of fields, theh is algebraic over
K and eitherK is purely inseparably closed ib or L is purely inseparable over
K.

One family of field extension& C L such thatK is purely inseparably closed
in L is provided by the (algebraic) Galois field extensions. One consequénce
[15, Theorem 3.36] is that if C L is a finite-dimensional Galois field extension,
then|[K, L]| = 3 = the Galois group of./ K is cyclic of orderp™ for some prime
numberp and positive integer. An easy consequence is that a finite-dimensional
Galois field extensiork’ C L satisfieg[K, L]| = 3 < the Galois group ofL/K
is isomorphic taZ/p?Z for some prime numbey. By the Fundamental Theorem
of Galois Theory, it follows that ifK C L is a finite-dimensional Galois field
extension such thafk, L]| = 3, then[L : K] = p? for some prime number. This
generalizes the result in Remasld (b) that if ¢ is any prime-power angd is any
prime number, thef(F,,[F ]| = 3 (and that this is the only kind of extension of
finite fields that has exactly one properly intermediate field).

(b) The “p?>-dimensional" theme continues to the “purely inseparable" context,
according to the following consequence &b] Proposition 3.24]. Ik C Lis a
purely inseparable field extension of characterigtis 0 such that[K, L]| = 3,
thenL = KP " := {u € L | v”" € K}, the element ofK, L] \ {K, L} is K» ' :=
{veL|vw e K}, and[L: K] = p?.
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