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Abstract. In this paper, we study a rings in which every maximal ideal is finitely generated
provided some of its power is finitely generated. This notion is raised by Gilmer in 1971 and
Roitman shows that coherent domains satisfy this property in 2001. We establish the transfer of
this notion to direct products, trivial ring extensions, pullbacks, and the amalgamation of rings.
Our results generate new families of examples of non-coherent rings (with zerodivisors) satisfy
this condition.

1 Introduction

All rings in this paper are commutative with unity. First, we consider the following question:

Question 1: Suppose that some power Mn of the maximal ideal M of a ring R is finitely
generated. Does it follow that M is finitely generated ?

This question is raised by Rober Gilmer in [11, page 74] and was mentioned in a talk given
by Robert Gilmer at the AMS meeting in Auburn, Alabama in November 1971 in an integral
domain. It is also listed, for the case of a quasilocal integrally closed domain, as Problem 8 in
the questions list on pages 174-176 in the 1973 Notices of the AMS from the problem session
organized by Graham Evans at the January 1973 AMS meeting in Dallas.

In 1999, R. Gilmer, W. Heinzer and M. Roitman gives a positive answer to Question 1 under
each of the following conditions (see [14, Theorem 1.24]):
(1) M is a minimal prime over a principal ideal, in particular, htM ≤ 1.
(2) R is integrally closed, and either M is a minimal prime over a 2-generated ideal, or htM ≤ 2.

On the other hand, by [14, Examples 3.1 and 3.2], Gilmer, Heinzer and Roitman shows that
the answer of Question 1 is negative, in general.

A ring R is coherent if every finitely generated ideal of R is finitely presented; equivalently,
if (0 : a) and I ∩ J are finitely generated for every a ∈ R and any two finitely generated ideals I
and J of R. Examples of coherent rings are Noetherian rings, Boolean algebras, von Neumann
regular rings, and Prüfer/semihereditary rings. For instance see [9, 18].

Recall that Roitman shows that Question 1 hold in every coherent domain (see [24, Theorem
1.8]. At this point, we make the followwing definition:

Definition 1.1. A commutative ring R is called a Gilmer-ring (G-ring for short) if R verify a
question 1.

Let A be a ring and E an A−module. The trivial ring extension of A by E (also called ideal-
ization of E over A) is the ring R := A ∝ E whose underlying group is A × E with multiplication
given by (a, e)(a′, e′) = (aa′, ae′ + ea′).

Trivial ring extensions have been studied extensively. Considerable work, part of is summa-
rized in Glaz’s book [9] and Huckaba’s book [17], has been concerned with trivial ring extension.
These extensions have been useful for solving many open problems and conjectures in both com-
mutative and non-commutative ring theory. See for instance [2, 9, 17, 18].
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Let T be a domain and let K be a field which is a retract of T , that is T := K + M where
M is a maximal ideal of T . Each subring D of K determines a subring R := D + M of T . This
construction arises frequently in algebra, especially in connection with counterexamples. The
original of D + M construction involved a valuation domain T with K := T/M, where M is the
maximal ideal of T and K ⊂ T . A throughout account of results about D + M construction can
be find in [3, 4, 9].

Let A and B be two rings with unity, J be an ideal of B and let f : A → B be a ring
homomorphism. In this setting, we can consider the following subring of A × B:

A ./ f J := {(a, f (a) + j) | a ∈ A, j ∈ J}

called the amalgamation of A and B along J with respect to f . See for instance [5, 6].

In this paper, we investigate the transfer of this notion to direct products, trivial ring exten-
sions, pullbacks, and the amalgamation of rings. Our results generate new families of examples
of non-coherent rings (with zerodivisors) satisfy this condition.

2 Main results

First, we study the transfer of G-property to direct product of rings.

Theorem 2.1. Let (Ri)i=1,...,n be a family of commutative rings. Then R =
∏i=n

i=1 Ri is a G-ring if
and only if so is Ri for each i = 1, ..., n.

We need the following Lemma before proving Theorem 2.1.

Lemma 2.2. [20, Lemma 2.5]
Let (Ri)i=1,2 be a family of rings and Ei an Ri-module for i = 1, 2. Then E1

∏
E2 is a finitely

generated R1
∏

R2-module if and only if Ei is a finitely generated Ri-module for i = 1, 2.

Proof of Theorem 2.1.
By induction on n, it suffices to prove the assertion for n = 2. Assume that R1

∏
R2 is a G-ring

and let M1 be a maximal ideal of R1 such that Mn
1 is finitely generated ideal of R1 for some

positive integer n. Then, M := M1 × R2 is a maximal ideal of R1
∏

R2 and Mn := Mn
1 × Rn

2 is a
finitely generated ideal of R1

∏
R2 by Lemma 2.2. Hence, M := M1 × R2 is a finitely generated

ideal of R1
∏

R2 since R1
∏

R2 is a G-ring and so M1 is a finitely generated ideal of R1 by Lemma
2.2. Therefore, R1 is a G-ring.
The same argument shows that R2 is a G-ring.
Conversely, assume that R1 and R2 are G-rings and let M be a maximal ideal of R1

∏
R2 such

that Mn is finitely generated ideal of R1
∏

R2 for some positive integer n. Since M := R1
∏

M2
or M := M1

∏
R2, where Mi is a maximal ideal of Ri for i = 1, 2, the conclusion follows easily

as the above argument and from Lemma 2.2.

Now, we study the transfer of the G-property to trivial ring extension.

Theorem 2.3. Let A be a ring, E an A−module and R := A ∝ E be the trivial ring extension of
A by E. Then, the following statements hold:

(i) If A is a G-ring and E is a finitely generated A-module, then R is a G-ring.

(ii) Assume that E is a Noetherian A-module. Then, R is a G-ring if and only if so is A.

(iii) Assume that A is an integral domain which is not a field, K = q f (A), and E is a K−vector
space. Then, R is a G-ring if and only if so is A.

(iv) Assume that (A,M) is a local ring, E is a non-zero A−module with ME = 0. Then:
a) Assume that M is a finitely generated ideal of A. Then:
i) A is a G-ring.
ii) R is a G-ring if and only if E is a finitely generated A-module.
b) Assume that M is a non finitely generated ideal of A. Then, R is a G-ring if and only if
so is A.
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We need the following lemma before proving this Theorem.

Lemma 2.4. Let A be a ring, E an A−module, R := A ∝ E be the trivial ring extension of A by
E, I be an ideal of A and F be a submodule of E such that IE ⊆ F. Then:

(i) (I ∝ F)n = In ∝ (In−1F) for every positive integer n.

(ii) If I and F are finitely generated, then I ∝ F is a finitely generated ideal of R.

(iii) Assume that A is an integral domain which is not a field, K = q f (A), E is a K−vector space,
and let I be a nonzero ideal of A. Then I ∝ E is a finitely generated ideal of R if and only if
I is a finitely generated ideal of A.

Proof. Straightforward.

Proof of Theorem 2.3.
1) Assume that A is a G-ring and E is a finitely generated A-module and let M be a maximal
ideal of R such that Mn is finitely generated for a positive integer n. The ideal M has the form
M := m ∝ E, where m is a maximal ideal of A. Hence, Mn = (m ∝ E)n = mn ∝ mn−1E (by
Lemma 2.4(1)) is a finitely generated ideal of R and so mn is a finitely generated ideal of A.
Therefore, m is a finitely generated ideal of A since A is a G-ring and so M := m ∝ E is a finitely
generated ideal of R by Lemma 2.4(1) since E is a finitely generated A-module, as desired.

2) Assume that R is a Noetherian A-module. If A is a G-ring, then so is R by (1). Conversely,
assume that R is a G-ring and let m be a maximal ideal of A such that mn is finitely generated
for some positive integer n. But mn−1E is a finitely generated A-module since mn−1E ⊆ E and
E is a Noetherian A-module. Hence, (m ∝ E)n(= mn ∝ mn−1E) (by Lemma 2.4(1)) is a finitely
generated ideal of R by Lemma 2.4(2) and so m ∝ E is a finitely generated ideal of R since R is
a G-ring. Therefore, m is a finitely generated ideal of A and so A is a G-ring, as desired.

3) Assume that A is an integral domain which is not a field, K = q f (A), and E is a K−vector
space. Assume that R is a G-ring and let m be a maximal ideal of A such that mn is a finitely
generated ideal of A for some positive integer n. Hence, (m ∝ E)n = mn ∝ E is a finitely
generated ideal of R by Lemma 2.4(3) and so m ∝ E is a finitely generated ideal of R since R is
a G-ring. Therefore, m is a finitely generated ideal of A and A is a G-ring, as desired.
Conversely, assume that A is a G-ring and let M := m ∝ E be a maximal ideal of R such that
(m ∝ E)n is a finitely generated ideal of R for some positive integer n, where m is a maximal
ideal of A. Since (m ∝ E)n = mn ∝ E is a finitely generated ideal of R, then mn is a finitely
generated ideal of A and so m is finitely generated since A is a G-ring. Therefore, M := m ∝ E
is a finitely generated ideal of R by Lemma 2.4(3), as desired.

4) Assume that (A,M) is a local ring, E is a non-zero A module with ME = 0.
(a) Assume that M is a finitely generated ideal of A.
(i) Straightforward.
(ii) Assume that R is a G-ring. But (M ∝ E)2 := M2 ∝ 0 is a finitely generated ideal of R since
M is a finitely generated ideal of A. Hence, M ∝ E is a finitely generated ideal of R since R is a
G-ring and so E is a finitely generated A-module, as desired.
Conversely, assume that E is a finitely generated A-module. Then, M ∝ E is finitely generated
by Lemma 2.4(2) and so R is a G-ring, as desired.
(b) Assume that M is a non finitely generated ideal of A.
Assume that R is a G-ring and assume that Mn is finitely generated for some positive integer n.
Then (M ∝ E)n := Mn ∝ 0 is finitely generated and so M ∝ E is finitely generated since R is a
G-ring. Hence, M is finitely generated, a contradiction. Therefore, Mn is a non finitely generated
ideal of A foe every positive integer n and so A is a G-ring.
Conversely, assume that A is a G-ring and (M ∝ E)n is finitely generated for some positive in-
teger n. Hence, Mn ∝ 0 := (M ∝ E)n is finitely generated and so Mn is finitely generated. This
means that M is finitely generated since A is a G-ring, a contradiction. Therefore, (M ∝ E)n is a
non finitely generated ideal of R foe every positive integer n and so R is a G-ring. This completes
the proof of Theorem 2.3.

Theorem 2.3 enrichies the literature with original examples of non-coherent G-rings.

Example 2.5. Let A be a coherent domain which is not a field, K := q f (A), and let R := A ∝ K
be the trivial ring extension of A by K. Then:
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(i) R is a G-ring by Theorem 2.3(3).

(ii) R is not coherent by [18, Theorem 2.8(1)].

Example 2.6. Let (A,M) be a local coherent domain such that M is a non-finitely generated ideal
of A, and let R := A ∝ E, where E is an A-module such that ME = 0. Then:

(i) R is an G-ring by Theorem 2.3(4).

(ii) R is not coherent by [18, Theorem 2.6] since M is a non-finitely generated ideal of A.

The following Theorem develops a result on the transfer of the G-property to pullbacks, spe-
cially D + M-constructions.

Theorem 2.7. Let T := K+M be a local domain, where K is a field and M is the unique maximal
ideal of T; and R := D + M, where D is a subring of K. Then:

(i) Assume that D is not a field. Then, R is a G-ring if and only if so is D.

(ii) Assume that D is a field with [K : D] = ∞. Then, R is a G-ring.

(iii) Assume that D is a field with [K : D] < ∞. Then, R is a G-ring if and only if so is T .

We need the following lemmas before proving Theorem 2.7.

Lemma 2.8. Let T and R be as in Theorem 2.7. Then, every maximal ideal of R contain M.

Proof. Let P be a maximal ideal of R. Two cases are then possible:
Case 1: P ⊆ M. In this cases, P = M since P is a maximal ideal of R and so D is a field.
Case 2: P * M. Let d + m ∈ P − M, where d(, 0) ∈ D and m ∈ M. Hence, (d + m)M =

(d + m)T M = T M = M since d + m is invertible in T (since (T,M) is local and d + m < M).
Therefore, M = (d + m)M ⊆ (d + m)R ⊆ P since d + m ∈ P, as desired.

Lemma 2.9. Let T , D, K, M, and R be as in Theorem 2.7. Assume that D is not a field or D is
a field and [K : D] = ∞. Then, Mn is never a finitely generated ideal of R for every positive
integer n.

Proof. Assume that Mn is a finitely generated ideal of R for some positive integer n. Then,
Mn/Mn+1 := Mn ⊗R (R/M) is a finitely generated D-module. On the other hand, Mn/Mn+1 :=
Mn ⊗T (T/M) = (T/M)(I) is a K-vector space. Also, Mn/Mn+1 , 0 by Nakayama Lemma since
M ⊆ J(R) (by Lemma 2.8). Therefore, (T/M)(I) and so K := T/M is a finitely generated D-
module and so D is a field and [K : D] < ∞, a contradiction. Hence, Mn is never a finitely
generated ideal of R for every positive integer n, as desired.

Proof of Theorem 2.7.
1) Assume that D is not a field. Then, any maximal ideal P of R has the form P := P0 + M
(=P0R) by Lemma 2.8, where P0 is a nonzero maximal ideal of D (since D is not a field).
Assume that R is a G-ring and let P0 be a nonzero maximal ideal of D such that Pn

0 is finitely
generated for some positive integer n. Then, P := P0 + M (=P0R) is a maximal ideal of R and
Pn := (P0 + M)n = Pn

0 + M = Pn
0R) is a finitely generated ideal of R. Hence, P := P0 + M is

a finitely generated ideal of R since R is a G-ring and so P0 is a finitely generated ideal of D.
Therefore, D is a G-ring.
Conversely, assume that D is a G-ring and let P := P0 + M (=P0R) be a maximal ideal of R such
that Pn := (P0 + M)n = Pn

0 + M is a finitely generated ideal of R. Hence, Pn
0 is a finitely generated

ideal of D and so P0 is finitely generated since D is a G-ring. Therefore, P := P0R is a finitely
generated ideal of R, as desired.

2) Assume that D is a field and [K : D] = ∞. Then, M is the only maximal ideal of R
by Lemma 2.8. On the other hand, Mn is never a finitely generated ideal of R by Lemma 2.9.
Therefore, R is a G-ring.

3) Assume that D is a field with [K : D] < ∞. Then, M is the only maximal ideal of R by
Lemma 2.8.
Assume that R is a G-ring and assume that Mn is a finitely generated ideal of T for some positive
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integer n. Then, Mn is a finitely generated ideal of R (since T is a finitely generated R-module)
and so M is a finitely generated ideal of R since R is a G-ring. Therefore, M is a finitely gener-
ated ideal of T , as desired.
Conversely, assume that T is a G-ring. Then, R is a G-ring as argue above and this completes the
proof of Theorem 2.7.

Theorem 2.7 enrichies the literature with original examples of non-coherent G-rings.

Example 2.10. Let R := Z + XR[[X]] and T := R[[X]]. Then:

(i) R is a G-ring by Theorem 2.7(1).

(ii) R is not coherent by [9, Theorem 5.2.3].

The last Theorem develops a result on the transfer of the G-property to amalgamation of rings
A ./ f J.

Theorem 2.11. Let A and B be a pair of rings, f : A → B be a ring homomorphism and J be a
proper ideal of B. Then, the following statements hold:

(i) Assume that J ⊆ Rad(B) and J is a finitely generated ideal of f (A) + J. If A is a G-ring,
then so is A ./ f J.

(ii) Assume that (A,M) is a local ring, J2 = 0, and f (M) ⊆ J. If A ./ f J is a G-ring, then so is
A.

(iii) Assume that (A,M) is a local ring, J2 = 0, f (M) ⊆ J, and J is a finitely generated ideal of
f (A) + J. Then, A ./ f J is a G-ring if and only if so is A.

We need the following lemmas before proving this Theorem 2.11.

Lemma 2.12. Let (A, B) be a pair of rings, f : A → B be a ring homomorphism and J be a
proper ideal of B such that J ⊆ Rad(B). Then, Max(A ./ f J) = {m ./ f J/m ∈ Max(A)}.

Proof. Assume that J ⊆ Rad(B). Then J is contained in Q for all Q ∈ Max(B). Consequently,
the set {Q

f
} in [6, Proposition 2.6 (5)] is empty and so Max(A ./ f J) = {m ./ f J/m ∈ Max(A)},

as desired.

Lemma 2.13. Let (A, B) be a pair of rings, f : A → B be a ring homomorphism and J be a
proper ideal of B. Assume that J is a finitely generated ideal of f (A) + J and let I be a finitely
generated ideal of A. Then, I ./ f J is a finitely generated ideal of A ./ f J.

Proof. Assume that I :=
∑i=n

i=1 Axi is a finitely generated ideal of A, where xi ∈ I for all i ∈
{1, .....n} and J :=

∑i=m
i=1 ( f (A) + J)ei is a finitely generated ideal of f (A) + J, where ei ∈ J for

all i ∈ {1, .....m}. It is clear that I ./ f J =
∑i=n

i=1(A ./ f J)(xi, f (xi)) +
∑i=m

i=1 (A ./ f J)(0, ei), as
desired.

Proof of Theorem 2.11.
1) Assume that J ⊆ Rad(B), J is a finitely generated ideal of f (A) + J and let M := m ./ f J be
a maximal ideal of A ./ f J (by Lemma 2.12) such that Mn(:= (m ./ f J)n) is a finitely generated
ideal of A ./ f J for some positif integer n. Hence, mn is a finitely generated ideal of A and so m
is finitely generated since A is a G-ring. Therefore, M := m ./ f J is a finitely generated ideal of
A ./ f J by Lemma 2.13, as desired.

2) Assume that (A,M) is a local ring, J2 = 0, f (M) ⊆ J, A ./ f J is a G-ring, and let m be
a maximal ideal of A such that mn is a finitely generated ideal of A for some positif integer n.
Then, M := m ./ f J is a maximal ideal of A ./ f J and Mn(:= (mn ./ f O)) (since f (M) ⊆ J
and J2 = 0) which is a finitely generated ideal of A ./ f J. Therefore, M := m ./ f J is a finitely
generated ideal of A ./ f J and so m is a finitely generated ideal of A, as desired.

3) By 1) and 2) and this completes the proof of Theorem 2.11.

Theorem 2.11 enrichies the literature with original examples of non-coherent G-rings.
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Example 2.14. Let f : A→ B be a ring homomorphism, where A is a non-coherent G-ring, and
let J be a finitely generated proper ideal of B. Then:

(i) A ./ f J is a G-ring by Theorem 2.11.

(ii) A ./ f J is a non-coherent ring by [9, Theorem 4.1.5] since A is a module retract of A ./ f J
and A is non-coherent.

Finally, we show that the hypothesis "J is a finitely generated ideal of f (A) + J" cannot be
removed in Theorem 2.11(1).

Example 2.15. Let A := K be a field, B := K ∝ E be the trivial ring extension of K by E (where
E is a K-vector space with infinite rank), J := 0 ∝ E, and f : A → B such that f (a) = (a, 0).
Then:

(i) A ./ f J is a non-G-ring since (0 ./ f J)2 = 0, 0 ./ f J is a non finitely generated ideal of
A ./ f J, and 0 ./ f J is a maximal ideal of A ./ f J.

(ii) A is a G-ring since it is a field.
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