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Abstract. Taking into account a new free energy expressed by the minimal state of a viscous
fluid with memory, we prove an existence and uniqueness theorem for the related thermal con-
vection problem, defined on arbitrary bounded domains of the three-dimensional space. Some
conditions, related with the Rayleigh number, allow us to prove the exponential decay in the
linearized problem.

1 Introduction

In recent years, energy stability results for some special classes of viscoelastic fluids have been
studied by many authors. Assuming a linearized expression for a Newtonian viscous term, the
energy stability of shear flows was derived by Preziosi and Rionero in [16]. Moreover, Lozinsky
and Owens [14] and Doering and others [9] have investigated nonlinear energy stability for a
fluid of Oldroyd-B type. In particular, Lozinsky and Owens have derived an a priori estimate
for plane channel flow, whereas Doering and others have shown that in some cases a nonlinear
energy functional cannot be constructed to yield a decay result. Finally, a comprehensive review
of these issues can be found in [18].

In the paper [2] the problem of heating a viscoelastic fluid has been studied, by consider-
ing the Bénard problem for a viscous fluid with fading memory and employing the Boussinesq
approximation in the temperature effects. In this work, for an incompressible viscoelastic fluid
with memory, the existence and uniqueness of the solution for the linearized system of equations
has been proved under a suitable restriction for the Rayleigh number.

Specifically, in this paper we consider the similar problem presented in [2], by means of a
new free energy recently introduced for viscoelastic solids in [13] and [8] and for viscoelastic
fluids in [1]. Such a functional has the property of being defined in a very much large domain of
minimal states (see, for example, [3]). So in this framework, we generalize Slemrod’s stability
results [17], as well as an analogous problem considered in [2]. Hence, by the semigroup theory
(see [6], [8] and [11]) the exponential stability is shown in a large domain of initial conditions
defined by the notion of minimal state.

The layout of the paper is as follows. In Section 2, after introducing the constitutive equation
for viscoelastic fluids, we recall the related thermodynamic restriction. Hence, in Section 3,
some free energies and the internal dissipation properties are recalled. In Section 4, the basic
equations are given in the linear approximation and some results, derived in the previous work
[2], are also recalled. Finally, in Section 5, by using the new free energy, we prove an existence
and uniqueness theorem for the linearized thermal problem and the conditions for the exponential
stability.
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2 Incompressible fluids with fading memory

Consider simple incompressible viscous fluids with memory, characterized by the following
equations

T(x, t) = −p(x, t)I + 2
∫ ∞

0
µ(s)Dt(x, s)ds, (2.1)

∇ · v = 0, (2.2)

where T is the stress tensor, p denotes the pressure, I is the unit tensor, Dt(x, s) = D(x, t − s)
∀s ∈ R+ is the history up to time t of the strain rate tensor D = 1

2

(
∇v +∇vT

)
:= ∇ṽ and µ is

the relaxation function, which describes the fading memory and is such that the Second Law of
Thermodynamics holds.

The extra stress TE , defined by

TE(x, t) = T(x, t) + p(x, t)I, (2.3)

taking account of (2.1) and integrating by parts, can be expressed by one of the following two
forms

TE(x, t) = 2
∫ ∞

0
µ(s)Dt(x, s)ds = 2

∫ ∞
0

µ′(s)Et
r(x, s)ds, (2.4)

where Et
r(x, s) denotes the relative history of the infinitesimal strain tensor E with respect to the

configuration at time t, defined by

Et
r(x, s) = Et(x, s)−E(t) ∀s ∈ R+ = (0,∞), (2.5)

Et(x, s) = E(x, t− s) ∀s ∈ R+ being the history up to time t of E.
The dependence on x will be often omitted later on.
In [12] the authors have derived the constraint imposed by Thermodynamics on the constitu-

tive equation, by proving the following theorem.

Theorem 2.1. The constitutive equation (2.1) for linear viscoelastic fluids is compatible with the
Second Law of Thermodynamics if and only if for every relaxation function µ ∈ L1(R+), so that∫∞

0 µ(s)ds 6= 0, the following inequality

µ̂c(ω) :=
∫ ∞

0
µ(s) cosωs ds > 0 ∀ω ∈ R (2.6)

holds.

Here µ̂c(ω) denotes the half-range Fourier cosine transforms of µ.
We now consider isotropic, homogeneous and incompressible viscoelastic fluids in the linear,

isothermal approximation, characterized by the constitutive equation (2.1), in which µ ∈ L1(R+)
and

∫∞
0 µ(s)ds 6= 0; thus, Theorem 2.1 holds. Moreover, we suppose that in (2.4)2 the kernel

µ′(·) ∈ L1(R+) and the shear relaxation function

µ(s) :=
∫ s

∞
µ′(ξ)dξ ∀s ∈ R+ (2.7)

is such that µ(·) ∈ H2(R+). Hence, we have

lim
s→∞

µ(s) = 0. (2.8)

In what follows we shall assume the following inequalities

µ(s) > 0, µ′(s) < 0, µ′′ (s) ≥ 0 ∀s ∈ R+ (2.9)
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and
0 6= |µ′(0)| <∞. (2.10)

The infinitesimal strain tensor E = 1
2

(
∇u +∇uT

)
:= ∇ũ and the strain rate tensor D, we

have already introduced, yield

Et
r(s) = ∇ũt

r(s), Dt(s) = ∇ṽt(s) (2.11)

and allow us to write (2.4) in the form

TE(t) = 2
∫ ∞

0
µ′(s)∇ũt

r(s)ds = 2
∫ ∞

0
µ(s)∇ṽt(s)ds. (2.12)

3 Free energies

In linear viscoelasticity there is a family F of free energies (see e.g. Coleman and Owen [5]),
which is a convex set, with a minimum and a maximum element denoted by ψm and ψM , respec-
tively. Some expressions for the free energies have been derived for viscoelastic fluids in [1],
by adapting their forms introduced for viscoelastic solids; in such a paper, for any of these free
energies the related internal dissipation function D(t), which is a non-negative function because
of the Second Law of Thermodynamics, has been also evaluated.

In particular, for our fluids we recall the maximum free energy, considered in [10] and ex-
pressed by

ψM

(
Et
)
= −1

2

∫ ∞
0

∫ ∞
0

µ
′
(|s− s′|)∇ut

r(s) · ∇ut
r(s
′)dsds′, (3.1)

together with the representation of the minimum free energy proposed by Bruer-Onat in [4] in
the form

Ψm(Ėt
m) =

1
2

∫ ∞
0

∫ ∞
0

µ(|s1 − s2|)∇vm(s1) · ∇vm (s2) ds1ds2, (3.2)

where ∇vm is the optimal process which yields the maximum recoverable work. Unfortunately,
this functional is not a state function.

In [2], in order to derive a stability theorem for their fluids, the authors have considered the
Graffi-Volterra functional, frequently used in applications, and given by

ΨG(∇ut
r) = −

1
2

∫ ∞
0

µ′(s)∇ut
r(s) · ∇ut

r(s)ds, (3.3)

under the hypothesis that the kernel satisfies (2.9).
In this paper we shall be concerned with the new free energy, considered, in particular, in

[13] and [8] for viscoelastic solids and denoted by ψF . The form assumed by such a functional
for our fluids, already derived in [1], is given by

ψF (t) = −
1
4

∫ ∞
0

1
µ′(τ)

Ĭt(1)(τ) · Ĭ
t
(1)(τ)dτ, (3.4)

where, taking into account what we have observed to write (2.12), the function Ĭt(τ) is given by

Ĭt(τ) = −2
∫ ∞

0
µ′(τ + s)Et

r(s)ds = −2
∫ ∞

0
µ(τ + s)∇ṽt(s)ds ∀τ ∈ R+ (3.5)

and Ĭt(1)(τ) denotes its derivative with respect to τ , that is

Ĭt(1)(τ) :=
∂

∂τ
Ĭt(τ) = −2

∫ ∞
0

µ′(τ + s)∇ṽt(s)ds. (3.6)
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Since the functional (3.4) must give a non-negative quantity, still now we must assume that
relations (2.9)-(2.10) hold.

We observe that no problem arises in (3.4) from the presence of 1/µ′(τ), which diverges as
τ tends to infinity, because this factor is multiplied by other factors, which assure the existence
of the integral under consideration. Moreover, the domain of definition of the functional ψF is
characterized by the following space of functions

H ′F (R+) =

{
Ĭt;
∣∣∣∣∫ ∞

0

1
µ′(τ)

Ĭt(1)(τ) · Ĭ
t
(1)(τ)dτ

∣∣∣∣ <∞} , (3.7)

which yields a very much larger space with respect to that one corresponding to the Graffi-
Volterra free energy ψG.

From (3.5)2-(3.6), taking into account (2.12)2, it follows that

Ĭt(0) = −2
∫ ∞

0
µ(s)∇ṽt(s)ds ≡ −TE(t), (3.8)

Ĭt(1)(0) = −2
∫ ∞

0
µ′(s)∇ṽt(s)ds. (3.9)

Finally we recall the internal dissipation related to this last free energy, which has been de-
rived in [1] and has the following expression

DF (t) =
1
4

∫ ∞
0

µ′′(τ)

[µ′(τ)]2
Ĭt(1)(τ) · Ĭ

t
(1)(τ)dτ −

1
4

1
µ′(0)

Ĭt(1)(0) · Ĭ
t
(1)(0) ≥ 0, (3.10)

which is a non-negative quantity for all histories because of the hypotheses (2.9)3, on the second
derivative of µ(s), and (2.9)2-(2.10), on µ′(0).

4 Basic equations

Let Ω ⊂ R3 be an arbitrary bounded domain occupied by an incompressible fluid with memory
effects. In order to study the thermal convection in such a fluid, we consider the Boussinesq
approximation related to the density, that is by assuming the density constant except in the body
force due to gravity.

Let (v(x, t), θ(x, t), p(x, t)) denote a perturbation to a steady solution, where v, θ and p
denote velocity, temperature and pressure. This perturbation must satisfy a system of differential
equations, which can be linearized and, with a few change with respect to the general case studied
in [18], due to the presence of the memory effects, put in a non-dimensional form already derived
in [2]. We get

vt = −∇p+
∫ t

0
µ(s)∇2v(t− s)ds+Rθk +∇ · F, (4.1)

Pr θt = ∇2θ +Rv · k + r. (4.2)

In these equations R is the Rayleigh number, Pr is the Prandtle number and k = (0, 0, 1);
moreover, we have put

µ(0) = 1 (4.3)

and introduced the tensor function F(x, t) such that

∇ · F(x, t) = f(x, t) +

∫ ∞
0

µ(s+ t)∇2v0(−s)ds,
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where f and r are the perturbations to the corresponding quantities in the steady state.
To these equations we associate the following boundary conditions

v(x, t) = 0, θ(x, t) = 0 ∀x ∈ ∂Ω (4.4)

and we must add the initial conditions. For this purpose, we recall that it is always possible to
change variables from the most general initial conditions, having the form

v(x, 0) = v0(x), θ(x, 0) = θ0(x), v(x,−s) = v0(x,−s) ∀s ∈ R+, (4.5)

f(x, 0) = f0(x), r(x, 0) = r0(x), (4.6)

with a suitable modification of the sources, in order to reduce them to the following ones

v(x, 0) = 0, θ(x, 0) = 0, vt=0(x, s) = v0(x, s) ∀s ∈ R+, (4.7)

f(x, 0) = 0, r(x, 0) = 0. (4.8)

Taking into account (2.2), we consider the space

Ḣ1
0 (Ω) =

{
v ∈ H1

0 (Ω);∇ · v = 0
}

; (4.9)

moreover, we consider the following function spaces

Kv(R+,Ω) =
{

v ∈ H1/2(R+;L2(Ω)) ∩ L2(R+; Ḣ1
0 (Ω));∫ ∞

−∞

∫
Ω

µ̂c(ω)|∇v̂+(x, ω)|2dxdω <∞
}
, (4.10)

Kϑ(R+,Ω) =
{
θ ∈ H1/2(R+;L2(Ω)) ∩ L2(R+;H1

0 (Ω))
}
, (4.11)

and

MF(R+,Ω) =
{
F ∈ L2(R+;L2(Ω));∫ ∞
−∞

∫
Ω

1
µ̂c(ω)

|F̂+(x, ω)|2dxdω <∞
}
, (4.12)

M̃F(R+,Ω) =
{
F ∈ L2(R+;L2(Ω));∫ ∞
−∞

∫
Ω

1 + |ω|
µ̂c(ω)

|F̂+(x, ω)|2dxdω <∞
}
, (4.13)

where µ̂c, v̂+ and F̂+ denote the Fourier transforms.
In [2] the authors have proved the existence and uniqueness theorem for this problem, by

means of the following definition.

Definition 4.1. A pair (v, θ) ∈ Kv(R+,Ω)×Kϑ(R+,Ω) is called a weak solution of the problem
(4.1)-(4.2), with the boundary conditions (4.4), the initial data (4.7)-(4.8), and F ∈ MF(R+,Ω)
and r ∈ L2(R+;L2(Ω)), if it satisfies the equations∫ ∞

0

∫
Ω

[
v ·wt −

∫ t

0
µ(s)∇v(t− s)ds · ∇w +Rθk ·w

]
dxdt

=

∫ ∞
0

∫
Ω

F · ∇w dxdt, (4.14)∫ ∞
0

∫
Ω

(Pr θϕt −∇θ · ∇ϕ+Rv · kϕ) dxdt =
∫ ∞

0

∫
Ω

rϕ dxdt (4.15)

for all w ∈ Kv(R+,Ω) and ϕ ∈ Kϑ(R+,Ω), such that w(x, 0) = 0 and ϕ(x, 0) = 0.
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By using the Fourier transforms and applying the Parseval-Plancherel theorem to (4.14)-
(4.15), the following theorem has been proved in [2].

Theorem 4.2. If the kernel µ ∈ H1(R+;L∞(Ω)) and satisfies the condition (2.6) and, moreover,
F ∈ M̃F(R+,Ω) and r, ṙ ∈ L2(R+;L2(Ω)), then, for sufficiently small values of R, there exists
a unique weak solution (v, θ) ∈ Kv(R+,Ω)×Kϑ(R+,Ω) defined in Definition 4.1.

5 Existence, uniqueness and exponential stability of the solution

We now consider the linearized system of equations in the non-dimensional form (4.1)-(4.2) in
order to derive an existence and uniqueness theorem for its solution and to study the exponential
stability of the solution.

For this purpose we assume that the kernel µ(s) ∈ H2(R+) satisfies (2.9)-(2.10) and that
there exists a positive constant ξ such that the following conditions

µ′(s) + ξµ(s) ≤ 0, µ′′(s) + ξµ′(s) ≥ 0 ξ > 0 (5.1)

hold.
The non-dimensional linearized system (4.1)-(4.2) with (2.2), by using (2.12), can be rewrit-

ten as follows

∂

∂t
v = −∇p+∇ ·TE +Rθk, (5.2)

∂

∂t
θ =

1
Pr

(
∇2θ +Rv · k

)
, (5.3)

∇ · v = 0, (5.4)
∂

∂t
TE = 2

∫ ∞
0

µ′(s)∇ṽt
r(s)ds, (5.5)

∂

∂t
Ĭt(1)(τ) =

∂Ĭt(1)(τ)

∂τ
− 2µ′(τ)∇ṽ(t), (5.6)

∂

∂t
vt
r(s) = −

∂vt
r(s)

∂s
− ∂v(t)

∂t
, (5.7)

where the definitions of ut
r(s) and vt

r(s) are analogous to that one in (2.5) and we have con-
sidered the supplies f = 0 and r = 0. This system (5.2)-(5.7) is supplemented the boundary
conditions (4.4).

We note that (5.5) follows from (2.12)1 because

∂

∂t
TE(t) =

∂

∂t

[
2
∫ ∞

0
µ′(s)∇ũt

r(s)ds

]
= 2

∫ ∞
0

µ′(s)∇ṽt
r(s)ds;

(5.6) follows from (3.6) since, by integrating by parts, we have

∂Ĭt(1)(τ)

∂t
= 2

∫ ∞
0

µ′(τ + s)
∂

∂s
∇ṽt(s)ds = −2

∫ ∞
0

µ′′(τ + s)∇ṽt(s)ds

−2µ′(τ)∇ṽ(t) =
∂

∂τ
Ĭt(1)(τ)− 2µ′(τ)∇ṽ(t); (5.8)

(5.7) follows from the definition of vt
r(s), analogous to that one in (2.5), by differentiating with

respect to t.
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Now, let us introduce the quantity

χ = (v, θ,TE , Ĭ
t
(1),v

t
r) (5.9)

such that
χ ∈ H = Ḣ1

0 (Ω)×H1
0 (Ω)× L2(Ω)× B(Ω,R+)×D(Ω,R+), (5.10)

where

B(Ω,R+) =

{
Ĭt(1)(x, ·) : R+ → V 3; −

∫
Ω

∫ ∞
0

1
µ′(τ)

[
Ĭt(1)(x, τ)

]2
dτdx <∞

}
(5.11)

and

D(Ω,R+) =

{
vt
r(x, ·) : R+ → V 3; −

∫
Ω

∫ ∞
0

µ′(s)
[
vt
r(x, s)

]2
dsdx <∞

}
(5.12)

are Hilbert spaces with inner products defined by

〈̆It(1)1
, Ĭt(1)2

〉B = −1
2

∫
Ω

∫ ∞
0

1
µ′(τ)

Ĭt(1)1
(τ) · Ĭt(1)2

(τ)dτdx, (5.13)

〈vt
1r
,vt

2r
〉D = −

∫
Ω

∫ ∞
0

µ′(s)vt
1r
(s) · vt

2r
(s)dsdx, (5.14)

respectively. We observe that the last of these inner products can be expressed in terms of the
quantity ∇vt

1r
(s) · ∇vt

2r
(s).

Key to this work is the free energy ψF (t) introduced in (3.4), that is

ψF (̆I
t) = −1

4

∫ ∞
0

1
µ′(τ)

Ĭt(1)(τ) · Ĭ
t
(1)(τ)dτ, (5.15)

with (3.5)-(3.10) together with the Slemrod functional [17]

Ψv(v
t
r) = −

1
2

∫ ∞
0

µ′(s)vt
r(s) · vt

r(s)ds. (5.16)

For the proof of the next theorem, we need to consider the Slemrod inequality, proved in [17].
If v ∈ L2(R; Ḣ1

0 (Ω)) and µ ∈ H2(R+) is a function which satisfies the conditions (2.9)-(2.10),
then for any t ∈ R we have∫

Ω

|v(x, t)|2 dx ≤ c
[∫

Ω

|TE(x, t)|2 dx−
∫ ∞

0
µ′(s)

∫
Ω

∣∣vt
r(x, s)

∣∣2 dxds] , (5.17)

where c is a suitable positive constant depending on Ω.
We shall also use the following notation

‖v(t)‖2 =

∫
Ω

|v(t)|2 dx, ‖θ(t)‖2 =

∫
Ω

θ2(t)dx, ‖TE(t)‖2
=

∫
Ω

|TE(t)|2 dx. (5.18)

We can now show the following theorem.

Theorem 5.1. Under the hypotheses (2.9)-(2.10) and (5.1), the problem (5.2)-(5.7), for any ini-
tial conditions χ0 ∈ H, admits a unique solution χ(t) ∈ H such that

1
2
[
‖v(t)‖2 + Pr ‖θ(t)‖2]+ 1

4
‖TE(t)‖2

+

+

∫
Ω

ΨF (̆I
t)dx +

∫
Ω

Ψv(v
t
r)dx

≤Me−εt
{

1
2
[
‖v(0)‖2 + Pr ‖θ(0)‖2]+ 1

4
‖TE(0)‖2

+

∫
Ω

ΨF (̆I
t=0)dx +

∫
Ω

Ψv(v
t=0
r )dx

}
, (5.19)



On Energy Stability for a Thermal Convection 151

where M and ε are suitable positive constants.

Proof. Let us introduce the functional

E(t) =
1
2
[
‖v(t)‖2 + Pr ‖θ(t)‖2]+ 1

4
‖TE(t)‖2

+

∫
Ω

ΨF (̆I
t)dx +

∫
Ω

Ψv(v
t
r)dx, (5.20)

which espresses the total energy of the system.
In order to evaluate d

dtE(t), firstly let us differentiate the free energy (5.15), for which, using
(5.6), integrating by parts and taking account of (2.12)2, (3.8)2 and of the equality TE · ∇ṽ =
TE · ∇v, we obtain

∫
Ω

∂

∂t
ψF (̆I

t)dx = −1
2

∫
Ω

∫ ∞
0

1
µ′(τ)

[
∂

∂τ
Ĭt(1)(τ)− 2µ′(τ)∇ṽ(t)

]
·̆It(1)(τ)dτdx =

1
4

∫
Ω

{∫ ∞
0

d

dτ

[
1

µ′(τ)

] [
Ĭt(1)(τ)

]2
dτ

+
1

µ′(0)

[
Ĭt(1)(0)

]2
}
dx +

∫
Ω

∇ṽ(t) ·
[
−Ĭt(0)

]
dx

= −1
4

∫
Ω

∫ ∞
0

µ′′(τ)

[µ′(τ)]2
Ĭt(1)(τ) · Ĭ

t
(1)(τ)dτdx

+
1

4µ′(0)

∫
Ω

Ĭt(1)(0) · Ĭ
t
(1)(0)dx +

∫
Ω

TE(t) · ∇v(t)dx. (5.21)

We note that the first term and the second one in (5.21)3 are non-positive quantities by virtue of
the hypotheses (2.9)3, on the second derivative of µ(s), and (2.9)2-(2.10), on the first derivative
of µ(s).

Moreover, from (5.16), taking account of (5.7) and integrating by parts, we obtain

∫
Ω

∂

∂t
Ψv(v

t
r)dx = −1

2

∫
Ω

[∫ ∞
0

2µ′(s)
∂vt

r(s)

∂t
· vt

r(s)ds

]
dx

=

∫
Ω

{∫ ∞
0

µ′(s)

[
∂vt

r(s)

∂s
+
∂v(t)

∂t

]
· vt

r(s)ds

}
dx

= −1
2

∫
Ω

∫ ∞
0

µ′′(s)vt
r(s) · vt

r(s)dsdx

+

∫
Ω

[∫ ∞
0

µ′(s)vt
r(s)ds

]
· ∂v(t)

∂t
dx. (5.22)

Finally, equation (5.5), by integrating by parts and using (4.4)1, allows us to obtain

∫
Ω

∂

∂t

[
1
4
|TE(t)|2

]
dx =

∫
Ω

[∫ ∞
0

µ′(s)∇ṽt
r(s)ds

]
·TE dx

= −
∫ ∞

0
µ′(s)

[∫
Ω

vt
r(s) · (∇ ·TE) dx

]
ds,
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whence, by eliminating −∇ ·TE by means of equation (5.2) and integrating by parts, we get∫
Ω

∂

∂t

[
1
4
|TE(t)|2

]
dx =

∫
Ω

∫ ∞
0

µ′(s)vt
r(s)ds

·
(
−∇p− ∂v

∂t
+Rθk

)
dx = −

∫
Ω

[∫ ∞
0

µ′(s)vt
r(s)ds

]
·∂v(t)

∂t
dx +R

∫
Ω

[∫ ∞
0

µ′(s)vt
r(s)ds

]
· kθ(t) dx, (5.23)

since the term in which ∇p is involved vanishes by virtue of (4.4)1 and (5.4).
Summing (5.22)3 and (5.23)2, we obtain∫

Ω

∂

∂t

[
Ψv(v

t
r) +

1
4
|TE(t)|2

]
dx = −1

2

∫
Ω

∫ ∞
0

µ′′(s)vt
r(s)

·vt
r(s)dsdx +R

∫
Ω

[∫ ∞
0

µ′(s)vt
r(s)ds

]
· kθ(t) dx. (5.24)

It remains to evaluate the time derivative of 1
2‖v(t)‖

2 and Pr
2 ‖θ(t)‖

2.
For this purpose, we consider the scalar product of the differential equation (5.2) by v(t)

and the other equation (5.3) multiplied by ϑ(t). Thus, from (5.18)1, taking into account the first
differential equation (5.2) and integrating by parts, we obtain

1
2
d

dt
‖v(t)‖2 ≡

∫
Ω

∂v(t)

∂t
· v(t)dx = −

∫
Ω

TE(t) · ∇v(t)dx

+R

∫
Ω

θ(t)k · v(t)dx = − (TE ,∇v) +R (θ,k · v) . (5.25)

Here, we have used the boundary condition (4.4)1 in evaluating the integral with∇·TE , for which
we have deduced that (∇ ·TE ,v) = − (TE ,∇v); moreover, as we have already observed for
the term with ∇p in (5.23), we have obtained − (∇p,v) = (−p,∇ · v) = 0 by virtue of (5.4).

Analogously, from (5.18)2, using the second differential equation (5.3) and integrating by
parts, we have

1
2

Pr
d

dt
‖θ(t)‖2 ≡ (θ̇,Pr θ) ≡ Pr

∫
Ω

∂ϑ(t)

∂t
ϑ(t)dx

=

∫
Ω

(
∇2θ +Rv · k

)
ϑdx = −

∫
Ω

|∇θ|2 dx

+R

∫
Ω

ϑ(t)k · v(t)dx = −‖∇θ‖2 +R (θ,k · v) , (5.26)

by virtue of (4.4)2.
Thus, the time derivative of (5.20), taking into account (5.21)3, (5.24), (5.25)3 and (5.26)5, is

given by

d

dt
E(t) = 2R(ϑ,k · v) +R

∫
Ω

[∫ ∞
0

µ′(s)vt
r(s)ds

]
· kθ dx

−‖∇θ‖2 − 1
4

∫
Ω

∫ ∞
0

µ′′(τ)

[µ′(τ)]2
Ĭt(1)(τ) · Ĭ

t
(1)(τ)dτdx

+
1

4µ′(0)

∫
Ω

Ĭt(1)(0) · Ĭ
t
(1)(0)dx−

1
2

∫
Ω

∫ ∞
0

µ′′(s)
∣∣vt

r(s)
∣∣2 dsdx. (5.27)
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Let us observe that only the first two terms in the right-hand side of (5.27) are terms which
may lead to instability. In the classical Bénard problem the second term obviously is not present.
The last three terms yield the viscous dissipation related to the considered two free energies; the
internal dissipation related to ψF (̆I

t) is given by (3.10). This is weaker than the term −‖∇v‖2

which is found in the classical Navier-Stokes theory. The hyperbolic nature of viscoelasticity
manifests itself this way.

Let us estimate the effects of the first two terms.
For the first term, by introducing an arbitrary positive α, the arithmetic-geometric mean in-

equality allows us to derive the following inequality

2R(ϑ,k · v) ≤ R

α
‖θ‖2 + αR‖v · k‖2 ≤ R

α
‖θ‖2 +Rα‖v‖2. (5.28)

For the last term, following [10], we find

R

∫
Ω

[∫ ∞
0

µ′(s)vt
r(s)ds

]
· kθ dx ≤ R

∫
Ω

∣∣∣∣−∫ ∞
0

µ′(s)vt
r(s)ds

∣∣∣∣ |ϑ| dx
≤ R

∫
Ω

[∫ ∞
0

√
−µ′(s)

√
−µ′(s) |vt

r(s)|
2
ds

]
|ϑ| dx

≤ R
∫

Ω

|ϑ|√
β

√
β

√∫ ∞
0
−µ′(s)ds

√∫ ∞
0
−µ′(s) |vt

r(s)|
2
ds dx

≤ R
[

1
2β
‖θ‖2 − β

2

∫
Ω

∫ ∞
0

µ′(s)
∣∣vt

r(s)
∣∣2 dsdx] , (5.29)

where (4.3), i.e. µ(0) = 1, has been used together with the arithmetic-geometric mean inequality
with another arbitrary β > 0.

Introducing these two results into (5.27) we have the following inequality

d

dt
E(t) ≤ −‖∇θ‖2 − 1

4

∫
Ω

∫ ∞
0

µ′′(τ)

[µ′(τ)]2
Ĭt(1)(τ) · Ĭ

t
(1)(τ)dτdx

+
1

4µ′(0)

∫
Ω

Ĭt(1)(0) · Ĭ
t
(1)(0)dx−

1
2

∫
Ω

∫ ∞
0

[µ′′(s)

+βRµ′(s)]
∣∣vt

r(s)
∣∣2 dsdx +

(
1
α
+

1
2β

)
R‖θ‖2 +Rα‖v‖2. (5.30)

By virtue of the Poincarè inequality there exists a constant C1(Ω), which depends on the
domain Ω, such that ∫

Ω

θ2dx ≤ C1(Ω)

∫
Ω

|∇θ|2 dx. (5.31)

We can now use (5.31) and Slemrod’s inequality (5.17) to modify the last two terms in (5.30).
Thus, we have

d

dt
E(t) ≤ −

[
1− C1(Ω)

(
1
α
+

1
2β

)
R

]
‖∇θ‖2 − 1

4

∫
Ω

∫ ∞
0

µ′′(τ)

[µ′(τ)]2
Ĭt(1)(τ)

·̆It(1)(τ)dτdx +
1

4µ′(0)

∫
Ω

Ĭt(1)(0) · Ĭ
t
(1)(0)dx−

1
2

∫
Ω

∫ ∞
0

[µ′′(s)

+(2αc+ β)Rµ′(s)]
[
vt
r(s)

]2
dsdx + αcR

∫
Ω

|TE(t)|2 dx. (5.32)
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Since the extra stress TE is continuous with respect to the free energy ψF , from the expres-
sion (2.12)1 and (3.8) it follows that

TE(t) = −Ĭt(0) = 2
∫ ∞

0
µ′(s)∇ṽt(s)ds, (5.33)

where the quantity Ĭt(0) can be written as

Ĭt(0) = −
∫ ∞

0

∂

∂τ
Ĭt(τ)dτ (5.34)

and thus can be estimated as follows∣∣∣̆It(0)∣∣∣ ≤ ∫ ∞
0

∣∣∣̆It(1)(τ)∣∣∣ dτ ≤ ∫ ∞
0

√
−µ′(τ)

√
1

−µ′(τ)

∣∣∣̆It(1)(τ)∣∣∣2dτ
≤

[∫ ∞
0
−µ′(τ)dτ

] 1
2
[∫ ∞

0

1
−µ′(τ)

∣∣∣̆It(1)(τ)∣∣∣2 dτ] 1
2

≤
[∫ ∞

0

1
−µ′(τ)

∣∣∣̆It(1)(τ)∣∣∣2 dτ] 1
2

, (5.35)

where we have used (4.3), i.e. µ(0) = 1.
From (5.33) and (5.35)4 we have the following estimate

|TE |2 =
∣∣∣̆It(0)∣∣∣2 ≤ −∫ ∞

0

1
µ′(τ)

∣∣∣̆It(1)(τ)∣∣∣2 dτ ≡ 4ψF (t). (5.36)

Thus, by integrating (5.36)2 on Ω, the inequality (5.32) becomes

d

dt
E(t) ≤ −

[
1− C1(Ω)

(
1
α
+

1
2β

)
R

]
‖∇θ‖2 − 1

4

∫
Ω

∫ ∞
0

{
µ′′(τ)

[µ′(τ)]2

+
4αcR
µ′(τ)

}[
Ĭt(1)(τ)

]2
dτdx +

1
4µ′(0)

∫
Ω

[
Ĭt(1)(0)

]2
dx

−1
2

∫
Ω

∫ ∞
0

[µ′′(s) + (2αc+ β)Rµ′(s)]
[
vt
r(s)

]2
dsdx. (5.37)

The right-hand side of this inequality is non-positive if the following conditions

1 ≥ C1(Ω)

(
1
α
+

1
2β

)
R,

µ′′(s) ≥ −4αcRµ′(s) > 0, (5.38)

µ′′(s) ≥ − (2αc+ β)Rµ′(s) > 0,

are satisfied. Using (5.1)2, we see that this occurs if

R ≤ 2αβ
C1(Ω) (α+ 2β)

(5.39)

and moreover if

µ′′(s) ≥ −ξµ′(s) ≥ −4αcRµ′(s), (5.40)

µ′′(s) ≥ −ξµ′(s) ≥ − (2αc+ β)Rµ′(s) > 0, (5.41)
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which are satisfied by choosing R such that

R ≤ ξ

4αc
, R ≤ ξ

β + 2αc
. (5.42)

Therefore, the conditions for stability are characterized by (5.39) and (5.42), that is by the
following condition

R ≤ min
{

2αβ
C1(Ω) (α+ 2β)

,
ξ

β + 2αc
,

ξ

4αc

}
. (5.43)

Then, (5.37), by using (5.40)1, that is −µ′′(s) ≤ ξµ′(s), can be written as follows

d

dt
E(t) ≤ −

[
1− C1(Ω)

(
1
α
+

1
2β

)
R

]
‖∇θ‖2

+
1
4
(ξ − 4αcR)

∫
Ω

∫ ∞
0

1
µ′(τ)

[
Ĭt(1)(τ)

]2
dτdx +

1
4µ′(0)

∫
Ω

[
Ĭt(1)(0)

]2
dx

+
1
2
[ξ − (2αc+ β)R]

∫
Ω

∫ ∞
0

µ′(s)
[
vt
r(s)

]2
dsdx =: −ρ(t), (5.44)

where we remember that µ′(s) < 0.
Keeping in mind the definitions (5.15) and (5.16), it is easy to obtain the following different

but expressive form of this last inequality

d

dt
E(t) ≤ −

[
1− C1(Ω)

(
1
α
+

1
2β

)
R

]
‖∇θ‖2

− (ξ − 4αcR)
∫

Ω

ΨF dx +
1

4µ′(0)

∫
Ω

[
Ĭt(1)(0)

]2
dx

− [ξ − (2αc+ β)R]

∫
Ω

Ψvdx, (5.45)

in terms of the assumed free energies ψF (̆I
t) and Ψv(vt

r).
From (5.44), by assuming that R satisfies (5.43), it follows that

d

dt
E(t) ≤ −ρ(t) ≤ 0. (5.46)

Thus, by integrating on (0, t), we have

E(t)− E(0) ≤ −
∫ t

0
ρ(η)dη. (5.47)

Hence, it follows that

0 ≤ E(t) ≤ E(0)−
∫ t

0
ρ(η)dη ≤ E(0) (5.48)

and also

E(0) ≥ E(t) +
∫ t

0
ρ(η)dη ≥

∫ t

0
ρ(η)dη ∀t ∈ R+. (5.49)

Thus, by considering the integral on (0,∞), we obtain

E(0) ≥
∫ ∞

0
ρ(η)dη ≥

∫ ∞
0

{[
1− C1(Ω)

(
1
α
+

1
2β

)
R

]
‖∇θ‖2

−1
4
(ξ − 4αcR)

∫
Ω

∫ ∞
0

1
µ′(τ)

[
Ĭt(1)(τ)

]2
dτdx− 1

4µ′(0)

∫
Ω

[
Ĭt(1)(0)

]2
dx

−1
2
[ξ − (2αc+ β)R]

∫
Ω

∫ ∞
0

µ′(s)
[
vt
r(s)

]2
dsdx

}
dt. (5.50)
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This relation can be rewritten as

E(0) ≥
∫ ∞

0

{[
1− C1(Ω)

(
1
α
+

1
2β

)
R

]
‖∇θ‖2

+(ξ − 4αcR)
∫

Ω

ψF (̆I
t)dx +

1
2
[ξ − (2αc+ β)R]

∥∥vt
r(s)

∥∥
D

− 1
4µ′(0)

∫
Ω

[
Ĭt(1)(0)

]2
dx

}
dt ≥ 0, (5.51)

where ‖vt
r(s)‖D = 2

∫
Ω

Ψv dx denotes the norm related to (5.14).
Finally, by means of Theorem 4.2, the inequality (5.51) and the definition (5.20) of E, we

have ∫ ∞
0

E(t)dt =

∫ ∞
0

{
1
2
[
‖v(t)‖2 + Pr ‖θ(t)‖2]+ 1

4
‖TE(t)‖2

+

∫
Ω

ΨF (̆I
t)dx +

∫
Ω

Ψv(v
t
r)dx

}
dt <∞. (5.52)

The system (5.2)-(5.7) can be rewritten in the following form

χ̇ = Aχ, χ(0) = χ0, (5.53)

where the operator A, given by the right-hand sides of (5.2)-(5.3) and (5.5)-(5.7), is defined on
the domain

D(A) =
{
χ = (v, θ,TE , Ĭ

t
(1),v

t
r) ∈ H; v ∈ Ḣ1

0 (Ω) ∩H2(Ω),

θ ∈ H1
0 (Ω) ∩H2(Ω),TE ∈ L2(Ω),

Ĭt(1) ∈ B(Ω,R
+), vt

r ∈ D(Ω,R+)
}
. (5.54)

With such a notation, taking account of (5.2)-(5.7), it is easy to verify that

〈χ̇, χ〉 ≡ dE(t)

dt
, (5.55)

where dE(t)
dt and χ̇ are given by (5.27) and (5.53). In fact, keeping in mind the inner products

(5.13)-(5.14), we define〈
ϑ̇, ϑ

〉
=

∫
Ω

Pr
∂ϑ

∂t
ϑdx,

〈
∂TE

∂t
,TE

〉
=

1
2

∫
Ω

∂TE

∂t
·TEdx, (5.56)〈

∂vt
r

∂t
,vt

r

〉
D
= −

∫
Ω

∫ ∞
0

µ′(s)
∂vt

r

∂t
· vt

rdsdx, (5.57)〈
∂Ĭt(1)

∂t
, Ĭt(1)

〉
B

= −1
2

∫
Ω

∫ ∞
0

1
µ′(τ)

∂Ĭt(1)(τ)

∂t
· Ĭt(1)(τ)dτdx, (5.58)

and hence we have

〈χ̇, χ〉 ≡ 〈Aχ, χ〉 =
∫

Ω

{
∂v

∂t
· v + Pr

∂ϑ

∂t
ϑ+

1
2
∂TE

∂t
·TE

−1
2

∫ ∞
0

1
µ′(τ)

∂Ĭt(1)(τ)

∂t
· Ĭt(1)(τ)dτ −

∫ ∞
0

µ′(s)
∂vt

r

∂t
· vt

rds

}
dx, (5.59)
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where the derivatives with respect to time must be substituted by the right-hand sides given by
(5.2)-(5.3) and (5.5)-(5.7). With some calculations and few integrations by parts, using again
(5.2) in the last integral, we obtain the expression (5.27) and hence (5.55) follows.

Since, by virtue of (5.53), (5.55) and (5.44)-(5.46), we have

〈Aχ, χ〉 ≡ dE(t)

dt
≤ −

[
1− C1(Ω)

(
1
α
+

1
2β

)
R

]
‖∇θ‖2

+
1
4
(ξ − 4αcR)

∫
Ω

∫ ∞
0

1
µ′(τ)

[
Ĭt(1)(τ)

]2
dτdx +

1
4µ′(0)

∫
Ω

[
Ĭt(1)(0)

]2
dx

+
1
2
[ξ − (2αc+ β)R]

∫
Ω

∫ ∞
0

µ′(s)
[
vt
r(s)

]2
dsdx ≤ 0 (5.60)

for any χ ∈ D(A), with a proof similar to one considered in [10], we can prove that the range
of (A− I) is H, then A : D(A)→H is a maximal dissipative operator on H (see [6] and [15]).
Therefore, from the Lummer-Phillips theorem, the operator A generates a strongly continuous
semigroup of linear contractions S(t) onH, so that the solutions of the system (5.2)-(5.7) can be
written as

χ(t) = S(t)χ0. (5.61)

Moreover, by virtue of the inequality (5.50), we have∫ ∞
0

E(t)dt ≡ 1
2

∫ ∞
0
〈χ(t), χ(t)〉 dt = 1

2

∫ ∞
0
〈S(t)χ0, S(t)χ0〉 dt <∞ (5.62)

for any χ0 ∈ H.
Hence, we use the following lemma due to Dakto [7].

Lemma 5.2. Given a strongly continuous semigroup of linear contractions S(t) on a Hilbert
space K, then, with two suitable constants M and ε, we have

〈S(t)y0, S(t)y0〉 =Me−εt 〈y0, y0〉 ∀y0 ∈ K (5.63)

if and only if
∫∞

0 〈S(t)y0, S(t)y0〉 dt <∞.

A necessary and sufficient condition that a strongly continuous semigroup of linear operator
S(t) satisfies the inequality

〈S(t)χ0, S(t)χ0〉 ≤M exp(−εt) 〈χ0, χ0〉 ∀χ0 ∈ H, (5.64)

where M and ε are two suitable positive constants, is that the integral∫ ∞
0
〈S(t)χ0, S(t)χ0〉 dt <∞, with χ0 ∈ H. (5.65)

Therefore, from (5.62) and by Dakto’s Lemma we obtain the inequality (5.19).
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