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Abstract. In the present work, we propose a new method to numerically appateipar-
tial differential equations of bond pricing problems. Existing finite differe schemes are not
always accurate at boundaries since the partial differential equagenérates into hyperbolic.
Furthermore, a different method is required for each bond pricidplem. Our proposed
method is a new central black box finite volume scheme to solve bond prcotdems. It
is a predictor corrector technique that uses cell averages. We &ditppoint values from non-
oscillatory piecewise-linear reconstruction of cell averages. Duringdhector step, we make
use of the staggered averaging along with the predicted mid values to rbalisgolution of
these averages. Finally, numerical experiments are presented fuwrtilug the performance of
our scheme for different bond pricing problems. We also show thabapmations are bounded
by their initial conditions.

1 Introduction

Bond pricing valuation is a subject of tremendous importance in modegindial theory and
practice. A bond is a financial instrument or contract which is paid fefropt and yields a
known cash dividend at fixed times during the life of the contr&tt [The cash dividend is
usually called a coupon, and is often paid semiannually or annually. Biangsneral carry
coupons and there also exists a special kind of bond without coupomsgkas the zero-coupon
bond (ZCB) B]. A ZCB is a bond which is bought at a lower price than its face value, with the
face value repaid at time of maturity. Only, in some rare cases, the aaalictions of ZCB
pricing have been giverlip, 6].

With rapidly growing complexity of financial products, various numerioathods have been
developed for approximating bond pricing][ Wang [20] presented a novel numerical method
for a degenerate Black-Scholes partial differential equation. Thensehs based on a fitted
finite volume spatial discretization and an implicit time stepping technique. Eixten and
other applications of the fitted volume method can be found®13, 4, 19, 5].

Chernogorova and Valko\8] have numerically approximated a degenerate parabolic equa-
tion with dynamical boundary conditions of zero-coupon bond pricingeyTimplemented a
finite volume method to discretize the differential problem. More on contiputal methods for
problems arising in finance has been mentioned in the bdoHs<I].

In this paper, we focus on finite volume methods for approximating beinthg problem
since classical since finite difference methods may fail to give accaggieoximations near
boundary B]. Finite volume can be divided into upwind method and central method.pfdwe
totype of upwind method is the first order Godunov scheme in which awise&onstant inter-
polant, based on previously computed averages, is evolved exactlynexhstep according to
the conservation law. Central method on the other hand can be viewddgisextension of the
Lax-Friedrich (LxF) scheme. In its staggered version, the LxF sehisrbased on constructing
a piecewise constant reconstruction which is then evolved exactly in timéreatigt projected
on staggered cell averagels].

In our work, we propose a new central finite volume (CFV) schemedas the NT scheme
[11] for bond pricing problems that has a black box approach. Our CIR€érse is a predictor-
corrector technique where we predict point values using non-oscillgiecewise-linear re-
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Figure 1. Evaluation of the right hand side of the parabolic equatibd)(

constructions of given cell averages. During the corrector step, akemse of the staggered
averaging along with the predicted mid-values to realise the evolution of #wesages. The
motivation for the construction of a new black box central finite volumesthoriginates from
many points.

« The approach of certain existing methods shows result in major cortteexdiaith the bond
pricing problem. For example, the model used 3 \vas supposed to give a forward
parabolic equation (FPE) that always has zero as right hand sidesudovas illustrated in
Figurelthis is not the case for ZCB premium.

« Finite difference methods may fail to give accurate approximationshwmardaries 3.

+ Each different bond pricing problem require a new method.

This paper is organised as follows. In Section 2, we discuss the boridgopartial differ-
ential equation form with basic assumptions followed by some basic defwitionSection 3,
we present the derivation of our proposed central finite volume sehesolve the bond pricing
problems followed by some numerical experiments in Section 4. Finallydtid®e5, we make
a concise conclusion.

2 Bond Pricing Partial Differential Equation

To fix ideas and notation, we consider a single factor maglelTfhis factor is the instantaneous
risk free interest rate which is assumed to follow a stochastic process of the form

dr = 0(r)dt + w(r)dz, (2.1)

whered(r) is the instantaneous drift,(r) is the instantaneous volatility and is the increment

of a Wiener processg]. Since the spot rate, in practice, is never greater than a certain number
which is assumed, and never less than or equal to zero, we suppose-thdD, R]. We also
mention the following assumption8][

Assumption 2.1.6(r) is a Lipschitz function, satisfying
6(0) >0, 6(R)<0O. (2.2)
Assumption 2.2.w(r) is a non-negative and smooth bounded function, satisfying

w(0) =w(R)=0, w(r)>0 re(0,R). (2.3)
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The degenerate parabolic equations are used in producing sevetelsnod mathematical
finance R, 7, 15]. The ZCB satisfying the following backward parabolic equation is taken into
consideration15]:

P+ %wz(r)PM +(0(r) + A(t) +w(r) P, =P =0, (rt)eQ=[0,R]x[0,T), (2.4)

P(r,T) = Z, (2.5)

whereT is the maturity and’ is a fixed constant. Functiox(¢) in (2.4) is called the market price
risk. For the given functiong, w and), the problem of ZCB pricing consists of the determination
of the solutionP(r, t) from equation 2.4), which is often referred to as a direct problem.

Being different from the classical parabolic equation in which the primcipefficient is as-
sumed to be strictly positive, the parabolic equatidd)(goes with the second order differential
equations with non negative characteristic form. The main difficulty in $yjod of problems is
the degeneracy. Without any difficulty it can be pointed out that-at0 andr = R, equation
(2.4) degenerates into hyperbolic equation with positive and negative ¢bassics respectively

oP op

S 005 =0, (2.6)
oP op
5 TO(R) 5~ = RP. 2.7)

By the Fichera’s theoryl]Z] for degenerate parabolic equations, we have that at the degen-
erate boundaries = 0 andr = R boundary conditions should not be given. Therefore, the
maturity dataP(r, T') finalises the solutio(r, ¢t) of problem @.4) and @.5) in an exceptional
way. A

By making the change of variable= 7' — ¢ and letting\(¢) = A\(T — t), when coming back
to ¢, the functionP satisfies the following parabolic equation

o T2 gz (0(r) + A(t) +w(r))%—]: +rP=0, (rt)eqQ (2.8)

with initial condition
P(r,0) = Py(r). (2.9)

For the concrete mode2(4) and @.5), we considetPy(r) = Z.

If the functionsd andw satisfy Assumption®.1and2.2and the initial data(r) is a continu-
ous function then there exists a classical solution of the prokiteBpgnd @.9); P has continuous
first derivative with respect toand second derivative with respectitaip to the boundarg@
and satisfies Equatior2 @) [12, 7]. In Section 4, we show that our scheme is bounded by the
following lemma B]:

Lemma 2.3.Let Assumptions 2.1 and 2.2 hold. Then,
0 < P(r,t) < Py(r). (2.10)

The Dirichlet problem on the domai{®, X') x (0,7), 0 < X < oo for the Black-Scholes
equation B, 17] has the form 2.4) with coefficients:

1,, 9?°P oP
50°T at 57 and (d(t) — D(z,t))r at B (2.11)

In [17], P denotes the value of a European call or put optierns const> 0 denotes the
volatility of the asset, the interest rate are denoted bynd D are the dividends. It is assumed
thatr > D.

Later on, in this paper, we will focus on the following fully conservativenfcof equation
(2.9 [3]:

oP 9 <w2(7°) aP

2 o\l t (0(r) + (A(t) — w’)w)P) +(r+0 +At)w' — (ww') )P =0. (2.12)
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2.1 Notations and Basic Definitions

We consider a uniform spatial grid where the cgll= [r;_;,7; 1] has width and letr; =
1(r._1 4 r. 1) be the mid-cell grid point of;. Also letAt = t*+1 — t» wheret" is then'"
2\V'j—3 Jj+3 g p J

time level and denot&] ~ P(r;,¢"). Let the approximation to the cell averagefbverI; be
given by

_n 1 n
P; :E/ij(rj’t ) dr.

3 Central Finite Volume Scheme

In this section, we discuss about the construction of our new centralfolitene (CFV) scheme
for bond pricing problems. We consider the equatigrl® where for the given functions,

w and ), the problem of bond pricing consists of the determination of the solutipnt) [3].

To approximate solutions 02(12, we introduce a piecewise-linear approximate solution at the
discrete time levelg” = nAt, based on the linear functiots§(r, t) which are supported at the
cellsi;,

P(Tv t) |t:t" = Z Sj (’I", tn)Xj (T)v

J

=2 FJ’*PJ‘ (T;:jﬂ X (r), (3.1)

wherey; () is a characteristic function of the cell aft] ~ h - 0, P(r;,t") + O(h?).
Integrating .12 over|(r;,r;+1) x (¢, t"*1)], we obtain

Tj+1 Tj+l
/ P(r,t" Y dr — / P(r,t"™) dr

J J

KW;(T) %—J: +(0(r) + (A(t) — w/)w)pﬂ:“ d&

tn+1

it Tj+1
+ / / (r+ 0 + A’ — (w'w))P drdt = . (3.2)
tm T

J+1 — .
We let [ P(r, 1) dr = hP"*L, and integrate the second part 8f2):
Tj ]+7

Tj+1 ’I"J 1 _ P/ Tii1 _ P/

/ P(r,t”)dr:/ E (Pfl-l-(r—?“j)—};)dr-l—/ (Pﬂl-i-(r—mrl)—]};l) dr,
. T To1
i+3

J J

1- = 1
—h <§<pjn + )+ 5 (Pl - P;H)) | (3.3)
We subsequently use the mid point rule for the time integration of equaiay (

gt 9 2
Wy At wy n+1 1 n+ 1
[ FEreO-GupasG (%(Pj Y 0 O - ) P

(3.4)
Finally, we replace? by (P; + (r —r; %Y in the last part of equatior8(2) and on integrating
J J) h
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we obtain,

n+1

t Tj+1
/ / (r+6 + X' — (Ww) )P drdt
tm T

g+l v _ P!
/ (rH0 A - (Ww)) (Pj +(r— rj)#) drdt

A’L
tn+l
+ /
tn

o Pin
/ (r+6 4+ ' — (Ww)) (Pjﬂ + (r—rjs1) jh ) drdt.
T
it3

(3.5
Simplifying equation 8.5), we get
2
At | (T - —n+i 1, _n+d
7[(22+%%**Ah‘w%9%% (Bt q0)
r 1
A 2 1 Pn+§ / il 2
—% %+93+()\7’+2—w)w3>Pj+%—( jh )/ z(r—+9+(x\”+%—w')w) dr]

1
A PTH? I 2
0 B / (% +6+ (A"t —w’)w) dr| .
o1
Jit3

Hence, when adding simplified terms 8f2) together, we obtain an expression as shown below:

1 - - 1 At
e = 5B+ j+l)_§< ;+1_P;)+EA’

where,

2
_n+% TJJr% ntl , rjz_
P S O (N e |+
2
_ 4 .2
2 h: n+j +1
el B e T R

We letg(r,t) = 6(r) + (A\(t) — w'(r))w(r) and® = [ ¢dr. We note thatb can be evaluated
exactly for the examples considered, and for the sake of simplicity thex@ ieed to find any
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constant of integration. On simplifying the expressionAowe obtain,

h n+3 n+3 —~ —n+3 h n+
A==grabiy —5nb Py’ - B 2){3_ j+%}
1 ntd 1 : ntd
+ @(P;:_*lz) (4“}2—0—1 + 12 i1+ SCDJIIZ) _ g(Pjsz)/ <4<,uj2 + hzrj + 8CDj+z)

In general, we obtain the central scheme as shown below:

P"H (Fj + Fj1) = (Gjp1 — Gj) + Q41

where
_ﬁn At n+2 n+2
F=—4-5, (127,75 4 1272,
(Pn)/ Ath “n+i At —n+3 n+3
Gy =L = S () - s (PR (42 + nr; + 80777,
At 5 n+; ! n+s
Qi3 = h2 <(P 2)/ B (Pj+12) ) CDH%Z

1
J+3

—n+3 —n+3
B ﬁ <(15@+§) B (]37::1%) n (Pj ) + (Pj+12)/) ¢n+%.
f :

Time integrals are computed by second order accurate mid point dqurale. Taylor
expansion is used to predict the required mid valueB:of

P =PI+ > (P}")e,

and we approximatery'); from (2.4):
wd e A .
Py 2 =P} + 5 <2Prr+(9+)\w)P rP>,
NP + 7 <2_}ZZ(P )/ (6'] + A UJJ‘)# - Tij) s

where

,_(Pjya—Pja)

="

Pj' =(Pji1 = 2P; + Pj_1).

In our present work, we use the second order interpolation at thalbdes to calculate fictitious
points, which are points located outside the boundary.

4 Numerical Experiments

Experiment 1: We perform numerical experiment for our scheme with the followingftoe
cients:
(r)=a+pPr, w(r)=ocr” and A=0,

wherea = 0.02,3 = -1,y = 1 ando = 0.35. We takeR = 0.2; as a sufficiently high level of
the short rate; it corresponds to 20%; anhe: 1; the approximate analytical solution, which we
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Figure 2. Analytical solutionU = exp(In P?7), numerical solution fo’v = 80,7 = 1.

use at the right boundary condition, as well as for the comparisorthhasccuracy derived for
t — O%; hencel cannot be too large. We approximately solve the model problem with known
analytical solution given byl[6] with initial condition P = 1:

U = exp(In P?),
where
In P = —rB + %(t - B)+ (r* + qt)Z—; <32 - %(t —~ B))
2 3 6t
—qg—ﬁz (BZ(Zﬁt —1)-2B (275 - E) +212 F) :
and

B=(exp(pt) - 1)/8,  q(r) =~(2y - Do2®V + 212 Y a + ).
The calculations are performed with constant time siep; 0.00001. From Figur@, we clearly
see that the approximated solution are near the analytical solution.
Experiment 2: We perform numerical experiment for our scheme with the followindfcoe
cients By
w(r)=r(R-7), 6()=r(R—r) and X(t)=0251+t>)"1
We approximate the model problem with initial conditiéh= exp(—r). We takeR = 1 and
T = 1. The calculations are performed with constant time gtep 0.00001.

Experiment 3: We solve another problem same as experiment 2 but with coefficients take
as follows:

wr)y=r(R-7), 6(r)=r(R—7r)(0.5R—7r) and A(t)=0.25(1+t?)"1.

Experiment 4. We solve another problem same as experiment 2, which accordilgjito [
considered as a harder case. The coefficients taken are:

w(r)=r(R—7), 6(r)=(R/2—r) and \(t)= 0251+ t?)"1

From Figures3, 4 and5, we clearly observe that the lemr@a& holds.
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Figure 3. Experiment 2: Numerical solution faN = 40 and7T = 1 with initial condition

P =exp(—r).
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Figure 4. Experiment 3: Numerical solution faN = 40 and7T = 1 with initial condition

P =exp(—r).
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Figure 5. Experiment 4: Numerical solution faN = 40 and7T = 1 with initial condition

P =exp(—r).
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5 Conclusion

In this paper, we presented a new central finite volume method for xippaing zero coupon
bond pricing problems. The scheme is constructed in a similar way as tlseiNme 11]. The
strategy of the our proposed scheme is a predictor corrector techritjedirst predict point
values which are based on non oscillatory piecewise-linear reconstrdotim cell averages.
For the corrector step, we make use of the staggered averaging alitnthev predicted mid
values to realise the evolution of these averages. We performed naimexperiments for a
meaningful set of parameters. We observed that the approximatioes\are near the analytical
solution from our first experiment. Our central finite volume scheme imted by the initial
condition. This work can be extended in the sense that the stability of oame&cheeds to be
studied as we have to use a relatively small time step to solve the bond prioinigips.
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