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Abstract In this work, we investigate for finding exact solitary wave solutions of the (2 +
1)-dimensional Zoomeron equation and the Tzitzeica–Dodd–Bullough (TDB) equation by using
the direct algebraic method. The direct algebraic method is promising for finding exact traveling
wave solutions of nonlinear evolution equations in mathematical physics. The competence of
the methods for constructing exact solutions has been established.

1 Introduction

The aim of this article is to look for new study relating to the direct algebraic method for solving
the renowned Tzitzeica–Dodd– Bullough equation

uxy − e−u − e−2u = 0,

and the (2 + 1)-dimensional Zoomeron equation(uxy
u

)
tt
−
(uxy
u

)
xx

+ 2
(
u2)

xt
= 0,

to demonstrate the suitability and straightforwardness of the method.
The investigation of the travelling wave solutions for nonlinear partial differential equations
plays an important role in the study of nonlinear physical phenomena. Nonlinear wave phe-
nomena appears in various scientific and engineering fields, such as fluid mechanics, plasma
physics, optical fibers, biology, solid state physics, chemical kinematics, chemical physics and
geochemistry. Nonlinear wave phenomena of dispersion, dissipation, diffusion, reaction and
convection are very important in nonlinear wave equations. In the past several decades, new ex-
act solutions may help to find new phenomena. A variety of powerful methods, such as inverse
scattering method [1,9], Hirota bilinear tranformation[5,12], the tanh–sech method [6,11,13,8],
sine–cosine method [10,2] and Exp-function method [3,7,14,4] were used to develop nonlinear
dispersive and dissipative problems.

2 An Analysis of the Method

For a given partial differential equation

G(u, ux, ut, uxx, utt, ....), (2.1)

Our method mainly consists of four steps:
Step 1: We seek complex solutions of Eq. (2.1) as the following form:

u = u(ξ), ξ = ik(x− ct), (2.2)

Where k and c are real constants. Under the transformation (2.2), Eq. (2.1) becomes an ordinary
differential equation

N(u, iku′,−ikcu′,−k2u′′, .....), (2.3)

Where u′ = du
dξ .

Step 2: We assume that the solution of Eq. (2.3) is of the form

u(ξ) =
n∑
i=0

aiF
i(ξ), (2.4)
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Where ai(i = 1, 2, .., n) are real constants to be determined later.F (ξ)expresses the solution of
the auxiliary ordinary differential equation

F ′(ξ) = b+ F 2(ξ), (2.5)

Eq. (2.5) admits the following solutions:

F (ξ) =

{
−
√
−b tanh(

√
−bξ), b ≺ 0

−
√
−b coth(

√
−bξ), b ≺ 0

F (ξ) =

{ √
b tan(

√
bξ), b � 0

−
√
b cot(

√
bξ), b � 0

F (ξ) = − 1
ξ , b = 0

(2.6)

Integer n in (2.4) can be determined by considering homogeneous balance [3] between the non-
linear terms and the highest derivatives of u(ξ)in Eq. (2.3).
Step 3: Substituting (2.4) into (2.3) with (2.5), then the left hand side of Eq. (2.3) is converted
into a polynomial in F (ξ), equating each coefficient of the polynomial to zero yields a set of
algebraic equations for ai, k, c.
Step 4: Solving the algebraic equations obtained in step 3, and substituting the results into (2.4),
then we obtain the exact traveling wave solutions for Eq. (2.1).

3 The Tzitzeica–Dodd–Bullough (TDB) equation

In this sub-section, we will exert the MSE method to obtain new and more general exact solutions
and then the solitary wave solutions of the Tzitzeica–Dodd–Bullough equation,

uxy − e−u − e−2u = 0 (3.1)

Using the transformation v = e−uEq. (3.1) transforms into the following partial differential
equation,

vvxt − vxvt + v3 + v4 = 0. (3.2)

We use the wavetransformationv = v(ξ), with wave complex variableξ = ik(x − ct), where k
and c are real constants. System (3.2) takes the form as

ck2vv′′ − ck2(v′)2 + v3 + v4 = 0. (3.3)

Considering the homogeneous balance between vv′′ and v4in (3.3), we required that3m = m+
2⇒ m = 1. So the solution takes theform

u = a1F + a0, (3.4)

Substituting (3.4) into Eq. (3.3) yields a set of algebraic equations for a1, a0, k, c and solving
these equations with Maple package we have

a1 = ±k
√

1
2k
√

2(b2+1)

a0 = − 1
2

c = ± 1
2k
√

2(b2+1)

(3.5)

From (2.6),(3.4) and (3.5), we obtain the complex travelling wave solutions of (3.1) as follows

v1 = ±k
√

1
2k
√

2(b2 + 1)

[√
−b tanh(

√
−bik(x∓ 1

2k
√

2(b2 + 1)
t)]−

1
2
,

So we have

u1 = − ln

[
±k
√

1
2k
√

2(b2 + 1)

[√
−b tanh(

√
−bik(x∓ 1

2k
√

2(b2 + 1)
t)]−

1
2

]

Where b ≺ 0and k is an arbitrary real constant. And

u2 = − ln

[
±k
√

1
2k
√

2(b2 + 1)

[√
−b coth(

√
−bik(x∓ 1

2k
√

2(b2 + 1)
t)]−

1
2

]
,
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Where b ≺ 0and k is an arbitrary real constant.

u3 = − ln

[
±k
√

1
2k
√

2(b2 + 1)

[√
b tan(

√
bik(x∓ 1

2k
√

2(b2 + 1)
t)]−

1
2

]
,

Where b � 0and k is an arbitrary real constant.

u4 = − ln

[
±k
√

1
2k
√

2(b2 + 1)

[√
b cot(

√
bik(x∓ 1

2k
√

2(b2 + 1)
t)]−

1
2

]
,

Where b � 0and k is an arbitrary real constant.For b = 0

u5 = − ln

[
∓

√
1

2
√

2k
i

x∓ 1
2
√

2k
t
− 1

2

]
,

In these cases if assumeu1,2,3,4,5 = ln [D] , D Must be greaterthan zero (or D > 0 ).

4 The (2 +1)-dimensional Zoomeron equation

Let us consider the Zoomeron equation(uxy
u

)
tt
−
(uxy
u

)
xx

+ 2
(
u2)

xt
= 0 (4.1)

whereu(x, y, t) is the amplitude of the relative wave mode. The traveling wave transformation

u = u(ξ), ξ = ik(x+ y − ωt) (4.2)

Reduces Eq. (4.1) into the following ODE:
k2(1− ω2)u′′ − 2ωu3 +R = 0. (4.3)

whereR is a constant of integration.Balancing the highest order derivative u′′ and nonlinear term
of the highest order u3, yields m = 1.So the solution takes the form

u = a1F + a0, (4.4)

Substituting (4.4) into Eq. (4.3) yields a set of algebraic equations for a1, a0, k, c and solving
these equations with Maple package we have

a1 = ±k
√

1−ω2

ω

a0 = ±k
√

1−ω2

3ω

(4.5)

From (2.6),(4.4) and (4.5), we obtain the complex travelling wave solutions of (4.1) as follows

u1 = ±k
√

1− ω2

ω

[√
−b tanh(

√
−bik(x+ y− ω t)]± k

√
1− ω2

3ω
,

Where b ≺ 0and k is an arbitrary real constant. And

u2 = ±k
√

1− ω2

ω

[√
−b coth(

√
−bik(x+ y− ω t)]± k

√
1− ω2

3ω
,

Where b ≺ 0and k is an arbitrary real constant.

u3 = ±k
√

1− ω2

ω

[√
b tan(

√
bik(x+ y− ω t)]± k

√
1− ω2

3ω
,

Where b � 0and k is an arbitrary real constant.

u4 = ±k
√

1− ω2

ω

[√
b cot(

√
bik(x+ y− ω t)]± k

√
1− ω2

3ω
,

Where b � 0and k is an arbitrary real constant.For b = 0

u5 = ∓k
√

1− ω2

ω

i

k(x+ y − ωt)
± k
√

1− ω2

3ω
,
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Solitary complex wave solutions for (2 +1)-dimensional Zoomeron equation in (1+1)-dimentional:
y is constant(in this figure y=1)

5 Conclusion

In this work direct algebraic method applied successfully for solving the system of non-linear
evolution equations. The performance of this method is reliable and effective and gives more
solutions. This method has more advantages: it is direct and concise. Thus, we deduce that the
proposed method can be extended to solve many systems of non-linear fractional partial differ-
ential equations.
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