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Abstract. In this paper, we study some properties of GC-n-flat modules, where C is a semid-
ualizing module and we investigate the relation between the m-GC-yoke with the m-C-yoke of
a module as well as the relation between the GC-n-flat resolution and the n-flat resolution of a
module over GFn-closed rings. We also obtain a criterion for computing the GC-n-flat dimen-
sion of modules.

1 Introduction

Auslander and Bridger introduced in [1] the G-dimension for finitely generated modules over
Noetherian rings. Then, Enochs and Jenda introduced in [4] the Gorenstein projective dimen-
sion for arbitrary modules over a general ring, which is a generalization of the G-dimension.
Foxby [5], Vasconcelos [14] and Golod [6] independently initiated the study of semidualizing
modules, which are common generalizations of dualizing modules and finitely generated projec-
tive modules of rank one. Christensen [3] defined semidualizing complexes, and studied them
in the context of derived categories. Recently, Holm and White [9] extended the definition of
the semidualizing module to a pair of arbitrary associative rings. Especially, they defined the so-
called C-projective, C-injective and C-flat modules, to characterize the Auslander class AC(R)
and the Bass class BC(R), with respect to a semidualizing module C. The notion of C-projective
(C-injective, C-flat) modules is important for the study of the relative homological algebra with
respect to semidualizing modules. For example, Holm and Jørgension [8] used these modules
to define C-Gorenstein projective (resp., injective, flat) modules and introduced the notions of
C-Gorenstein projective (resp., injective, flat) dimensions. Further, White introduced in [15]
the GC-projective modules and gave a functorial description of the GC-projective dimension of
modules with respect to a semidualizing module C over a commutative ring; and in particular,
many classical results about the Gorenstein projectivity of modules were generalized in [15]. In
this paper, we give a functorial description of the GC-n-flat dimension of modules with respect
to a semidualizing module.

This paper is organized as follows. In Section 2, we recall some notions and definitions
which will be needed in the later sections. In Section 3, we introduce the notions of C-n-flat,
C-n-absolutely pure R-modules and using these modules, we further introduce GC-n-flat and
GC-n-absolutely pure R-modules. Also, we establish the relation between the m-GC-yoke with
the m-C-yoke of a module as well as the relation between the GC-n-flat resolution and the n-flat
resolution of a module over a GFn-closed ring.

In Section 4, we get some properties of GC-n-flat dimension of modules. In particular, as
an application of the results obtained in Section 3, we get a criterion for computing such a
dimension. Let R be a GFn-closed ring and let M be a left R-module and m ≥ 0. We prove
that the GC-n-flat dimension of M is at most m if and only if for every non-negative integer t
such that 0 ≤ t ≤ m, there exists an exact sequence 0 → Xm → · · · → X1 → X0 → M → 0 in
R-Mod such that Xt is GC-n-flat and Xi ∈ AddRC for i ̸= t.
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2 Preliminaries

Unless stated otherwise, throughout this paper all rings are associative with identity and all
modules are if not specified otherwise, left R-modules. Let R be a ring, we denote by R-Mod
(resp., Mod-R) the category of left (resp., right) R-modules. A left R-module M is called n-
flat [10] if TorR1 (N,M) = 0 holds for all finitely presented right R-modules N with projective
dimension ≤ n and a right R-module M is called n-absolutely pure [10] if Ext1

R(N,M) = 0
holds for all finitely presented right R-modules N with projective dimension ≤ n.

First we recall some notions from [9, 15].

Definition 2.1. [15] A degreewise finite projective (resp., free) resolution of an R-module M is
a projective (resp., free) resolution P of M such that each Pi is a finitely generated projective
(resp., free). Note that M admits a degreewise finite projective resolution if and only if it admits
a degreewise finite free resolution. However, it is possible for a module to admit a bounded
degreewise finite projective resolution but not to admit a bounded degreewise finite free resolu-
tion. For example, if R = k1 ⊕ k2, where k1 and k2 are fields, then M = k1 ⊕ 0 is a projective
R-module, but it does not admit a bounded free resolution.

Definition 2.2. [9] Let R and S be rings. An (S,R)-bimodule C is called semidualizing if the
following conditions are satisfied:

(1) SC admits a degreewise finite S-projective resolution;

(2) CR admits a degreewise finite Rop-projective resolution;

(3) The homothety map SSS → HomRop(C,C) is an isomorphism;

(4) The homothety map RRR → HomS(C,C) is an isomorphism;

(5) ExtiS(C,C) = 0 for any i ≥ 1;

(6) ExtiRop(C,C) = 0 for any i ≥ 1.

Definition 2.3. [9] Let C be a semidualizing module for a ring R. An R-module is C-projective
if it has the form C ⊗R P for some projective module P . An R-module is called C-injective if it
has the form HomR(C, I) for some injective module I . Set

PC(R) = {C ⊗R P |P is R− projective},

and

IC(R) = {HomR(C, I) | I is R− injective}.

Definition 2.4. [9] An R-module is called C-flat if it has the form C ⊗R F for some flat module
F . Set FC(R) = {C ⊗R F |F is R-flat}.

Setting C = R in the above definitions, we see that PC(R), IC(R) and FC(R) are the classes
of ordinary projective, injective and flat R-modules, which we usually denote P(R), I(R) and
F(R) respectively.

Definition 2.5. [16] An R-module is C-FP -injective if it has the form HomR(C,E) for some
FP -injective module E. Set FPC(R) = {HomR(C,E) |E is R-FP -injective}.

Any semidualizing module defines two important classes of modules, namely the Auslander
and Bass classes, with a certain nice duality property.

Definition 2.6. [15] The Auslander class AC(R) with respect to C consists of all modules M
satisfying:

(A1) TorRi (C,M) = 0 for any i ≥ 1;

(A2) ExtiR(C,C ⊗R M) = 0 for any i ≥ 1; and

(A3) The natural evaluation homomorphism µM : M → HomR(C,C⊗RM) is an isomorphism.

The Bass class BC(R) with respect to C consists of all modules N satisfying:

(B1) ExtiR(C,N) = 0 for any i ≥ 1;

(B2) TorRi (C,HomR(C,N)) = 0 for any i ≥ 1; and
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(B3) The natural evaluation homomorphism νN : C ⊗R HomR(C,N) → N is an isomorphism.

Definition 2.7. [13] A left R-module M is said to be Gorenstein n-flat, if there exists an exact
sequence of n-flat left R-modules,

· · · → F1 → F0 → F 0 → F 1 → · · ·

such that M ∼= Im(F0 → F 0) and such that E ⊗R − leaves the sequence exact whenever E is
an n-absolutely pure right R-module.

Definition 2.8. [13] A right R-module M is said to be Gorenstein n-absolutely pure, if there
exists an exact sequence of n-absolutely pure right R-modules

· · · → A1 → A0 → A0 → A1 → · · ·

such that M ∼= Im(A0 → A0) and such that HomR(E,−) leaves the sequence exact whenever
E is an n-absolutely pure right R-module.

Definition 2.9. [2] Let R be a ring and let X be a class of left R-modules.

(1) X is closed under extensions: If for every short exact sequence of left R-modules 0 → A →
B → C → 0, the conditions A and C are in X implies B is in X.

(2) X is closed under kernels of epimorphisms: If for every short exact sequence of left R-
modules 0 → A → B → C → 0, the conditions B and C are in X implies A is in X.

(3) X is projectively resolving: If it contains all projective modules and it is closed under both
extensions and kernels of epimorphisms. i.e., for every short exact sequence of R-modules
0 → A → B → C → 0 with C ∈ X, the conditions A ∈ X and B ∈ X are equivalent.

Definition 2.10. [12] Let R be a ring. We call R GFn-closed if the class of Gorenstein n-flat
R-modules is closed under extensions.

3 GC-n-flat modules

In this section, we first introduce C-n-flat and C-n-absolutely pure modules as follows:

Definition 3.1. (1) An R-module is called C-n-flat if it has the form C ⊗R F for some n-flat
module F . Set Fn

C(R) = {C ⊗R F |RF is n-flat }.

(2) An R-module is C-n-absolutely pure if it has the form HomR(C,E) for some n-absolutely
pure module E. Set AbnC(R) = {HomR(C,E) |E is n-absolutely pure R-module }.

Let M ∈ R-Mod. M I (resp., M (I)) is the direct product (resp., sum) of copies of a module
M indexed by a set I . We denote AddRM (resp., ProdRM ) the subclass of R-Mod consisting
of all modules isomorphic to direct summands of direct sums (resp., direct products) of copies
of M. We start with the following proposition

Proposition 3.2. Fn
C(R) = AddRC.

Proof. It is clear that Fn
C(R) ⊆ AddRC. Now, we show AddRC ⊆ Fn

C(R). For any M ∈
AddRC, there exists N ∈ R-Mod such that M ⊕ N ∼= C(J) for some cardinal J. Note that
BC(R) is closed under direct sums and direct summands by [9, Proposition 4.2]. Since C ∼=
C ⊗R R ∈ BC(R) by [9, Lemma 5.1], both C(J) and M are in BC(R). Since HomR(C,M) ⊕
HomR(C,N) ∼= HomR(C,C(J)) ∼= R(J), HomR(C,M) ∈R-Mod is n-flat. Thus, M ∈ Fn

C(R)
by [9, Lemma 5.1].

Definition 3.3. A complete FFn
C-resolution is a AbnC(R)⊗R − exact exact sequence:

X : · · · → F1 → F0 → C ⊗R F 0 → C ⊗R F 1 → · · · (1)

in R-Mod with all Fi and F i n-flat. A module M ∈ R-Mod is called GC-n-flat if there exists
a complete FFn

C-resolution as in (1) with M = Coker(F1 → F0). Set GFn
C(R) is the class of

GC-n-flat modules in R-Mod.

Definition 3.4. A complete AbnC-resolution is a HomR(AbnC(R),−) exact exact sequence:

Y : · · · → E1 → E0 → E0 → E1 → · · · (2)

in Mod-R with all Ei ∈ AbnC(R) and Ei n-absolutely pure. A module M ∈Mod-R is called GC-
n-absolutely pure if there exists a complete AbnC-resolution as in (2) with M = Im(E0 → E0).
Set GAbnC(R) is the class of GC-n-absolutely pure modules in Mod-R.
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It is trivial that in case RCR = RRR, the GC-n-flat modules are just the usual Gorenstein
n-flat modules.

Using the definition, we immediately get the following results.

Proposition 3.5. If (Fi)i∈I is a family of GC-n-flat modules, then
⊕

Fi is GC-n-flat.

Proposition 3.6. A module M is GC-n-flat if and only if TorR≥1(HomR(C,E),M) = 0 and M

admits a Fn
C-resolution Y with HomR(C,E)⊗R Y exact for any n-absolutely pure E.

Theorem 3.7. If M is a GC-n-flat R-module then M+ is a GC-n-absolutely pure R-module.

Proof. Let M be a GC-n-flat R-module, there exists a C-n-flat R-modules F 0, F 1, · · · , together
with an exact sequence

X : 0 → M → C ⊗R F 0 → C ⊗R F 1 → · · · .

Then

X+ : · · · → HomR(C,F
1+) → HomR(C,F

0+) → M+ → 0

is exact and each F i+ is an n-absolutely pure R-module. Let J be any n-absolutely pure R-
module. Then

ExtiR(HomR(C, J),M
+) ∼= TorRi (HomR(C, J),M)+ = 0 ∀ i ≥ 1,

HomR(HomR(C, J),X+) ∼= (HomR(C, J)⊗R X )+

is exact. Hence M+ is a GC-n-absolutely pure R-module.

The following result is due to [11].

Proposition 3.8. Let C be a semidualizing R-module. Then the class GFn
C(R) is closed under

kernels of epimorphisms and extensions.

Proposition 3.9. If F is n-flat R-module, then F and C ⊗R F are GC-n-flat. Thus, every R-
module admits a GC-n-flat resolution.

Proof. Follows from [8, Example 2.8(a) and (b)] and since the class of GC-n-flat modules con-
tains the class of n-flat modules, every R-module admits a GC-n-flat resolution.

Definition 3.10. [9] A semidualizing module C is faithfully semidualizing if and only if for any
R-module N , the condition HomR(C,N) = 0 implies N = 0.

Theorem 3.11. Let C be a semidualizing module, then the class GFn
C(R) of GC-n-flat R-

modules is projectively resolving and closed under direct summands.

Proof. Using the dual of Theorem 2.8 in [15] and together with the [11, Lemma 5.2], we see
that GFn

C(R) is projectively resolving. Now, comparing Proposition 2.5 with Proposition 1.4 in
[7], we get GFn

C(R) is closed under direct summands.

Theorem 3.12. Let R be commutative n-coherent and C is faithfully semidualizing R-module. If
M0 → M1 → M2 → · · · is a sequence of GC-n-flat R-modules, then the direct limit lim−→ Mm is
again GC-n-flat.

Proof. By [9, Proposition 5.3], the class Fn
C(R) is preenveloping on the category of R-modules.

So we pick for each m a co-proper right Fn
C-resolution Fm of Mm, as illustrated in the next

diagram.

F0

��

0 // M0

��

// C ⊗R F 0
0

��

// C ⊗R F 1
0

��

// · · ·

F1

��

0 // M1

��

// C ⊗R F 0
1

��

// C ⊗R F 1
1

��

// · · ·

...
...

...
...
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By [7, Proposition 1.8], each map Mm → Mm+1 can be lifted to a chain map Fm → Fm+1 of
complexes. Since we are dealing with sequences (and not arbitrary direct systems), each column
above is again a direct system. Thus it makes sense to apply the exact functor lim−→ to the upon
exact sequences, and doing so, we obtain an exact complex,

F = lim−→Fm = 0 → lim−→Mm → C ⊗R lim−→F 0
m → · · ·

where each module C⊗RF
k = C⊗R lim−→F k

m, k = 0, 1, 2, · · · is C-n-flat. When E is n-absolutely
pure right R-module, then HomR(C,E)⊗R Fm is exact since

C ⊗R F ∼= C ⊗R HomZ(E,Q/Z) ∼= HomZ(HomR(C,E),Q/Z)

is a C-n-flat R-module, while the first isomorphism comes from that R is n-coherent and the
second isomorphism holds by [9, Lemma 1.11], we get the exactness of

HomR(Fm, C ⊗R F ) = HomR(Fm,HomZ(HomR(C,E),Q/Z))
= HomZ(HomR(C,E)⊗R Fm,Q/Z)

and hence of HomR(C,E) ⊗R Fm, since Q/Z is a faithfully injective Z-module. Since lim−→
commutes with the homology functor, we also get the exactness of HomR(C,E) ⊗R F =
lim−→(HomR(C,E) ⊗R Fm). Thus, we have constructed the right half, F , of a complete FFn

C-
resolution for lim Mm.
Since Mm is GC-n-flat, we also have

TorRi (HomR(C,E), lim−→M) ∼= lim−→TorRi (HomR(C,E),M) = 0

for i > 0, and all n-absolutely pure right modules E. Thus, lim−→Mm is GC-n-flat.

Proposition 3.13. Let R be a GFn-closed ring. Then, every cokernel in a complete FFn
C-

resolution is GC-n-flat.

Proof. Follows from Proposition 3.6, Theorem 3.11 and [11, Lemma 5.4].

Lemma 3.14. Let R be a GFn-closed ring and let M ∈ R-Mod be GC-n-flat. Then there exists
AbnC(R)⊗− exact sequences:

0 → M → G → N → 0

and

0 → K → F → M → 0

in R-Mod with N,K GC-n-flat, G ∈ AddRC, and F n-flat.

Proof. It follows from the definition of GC-n-flat modules and Proposition 3.13 .

The following result plays a crucial role in this section.

Lemma 3.15. Let R be a GFn-closed ring and suppose that

0 → A → G1
f→ G0 → M → 0

is an exact sequence in R-Mod with G0, G1 GC-n-flat. Then, we have the following exact se-
quences:

0 → A → C1 → G → M → 0, (3)

and
0 → A → H → F → M → 0 (4)

with C1 ∈ AddRC, F n-flat, and G,H GC-n-flat.

Proof. Since G1 is GC-n-flat, there exists an short exact sequence 0 → G1 → C1 → G′ → 0
with C1 ∈ AddRC and G′ GC-n-flat by Lemma 3.14. Then, we have the following pushout
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diagram:

0

��

0

��
0 // A // G1 //

��

Im(f)

��

// 0

0 // A // C1

��

// B

��

// 0

G′

��

G′

��
0 0.

Consider the following pushout diagram:

0

��

0

��
0 // Im(f) //

��

G0 //

��

M // 0

0 // B //

��

G

��

// M // 0

G′

��

G′

��
0 0.

Since G0 and G′ are GC-n-flat, G is also GC-n-flat by Theorem 3.11. Connecting the middle
rows in the above two diagrams, we get the first desired exact sequence (3).

Since G0 is GC-n-flat, there exists an exact sequence 0 → G′′ → F → G0 → 0 with F n-flat
and G′′ GC-n-flat by Lemma 3.14. Then, we have the following pullback diagram:

0

��

0

��
G′′

��

G′′

��
0 // N //

��

F

��

// M // 0

0 // Im(f) //

��

G0 //

��

M // 0

0 0.
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Consider the following pullback diagram:

0

��

0

��
G′′

��

G′′

��
0 // A // H

� �

// N

��

// 0

0 // A // G1

��

// Im(f)

��

// 0

0 0

Since G1 and G′′ are GC-n-flat, H is also GC-n-flat by Theorem 3.11. Connecting the middle
rows in the above two diagrams, we get the second desired exact sequence (4).

Definition 3.16. Let m be a positive integer. An R-module A is called an m-C-yoke module (of
M ) if there exists an exact sequence

0 → A → Fm−1 → · · · → F1 → F0 → M → 0

in R-Mod with all Fi C-n-flat.

Definition 3.17. Let m be a positive integer, a module A is called an m-GC-yoke module (of M )
if there exists an exact sequence

0 → A → Gm−1 → · · · → G1 → G0 → M → 0

in R-Mod with all Gi GC-n-flat.

The following result establishes the relation between the m-GC-yoke with the m-C-yoke of
a module as well as the relation between the GC-n-flat resolution and the n-flat resolution of a
module.

Lemma 3.18. Let R be a GFn-closed ring and let m ≥ 1 and

0 → A → Gm−1 → · · · → G1 → G0 → M → 0

be an exact sequence in R-Mod with all Gi GC-n-flat. Then, we have the following:

(i) There exists exact sequences:

0 → A → Cm−1 → · · · → C1 → C0 → N → 0

and

0 → M → N → G → 0

in R-Mod with all Ci ∈ AddRC and G GC-n-flat.

(ii) There exist exact sequences

0 → B → Fm−1 → · · · → F1 → F0 → M → 0

and

0 → H → B → A → 0

in R-Mod with all Fi n-flat and H GC-n-flat.
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Proof. We proceed by induction on m.
(i) When m = 1, we have an exact sequence 0 → A → G0 → M → 0 in R-Mod. Since,

we have a AbnC(R) ⊗R − exact exact sequence 0 → G0 → C0 → G → 0 in R-Mod with
C0 ∈ AddRC and G GC-n-flat by Lemma 3.14, we have the following pushout diagram:

0

��

0

��
0 // A // G0 //

��

M

��

// 0

0 // A // C0

��

// N

��

// 0

G

��

G

��
0 0.

The middle row and the last column in the above diagram are the desired two exact sequences.
Now, assume that m ≥ 2 and we have an exact sequence 0 → A → Gm−1 → · · · → G1 →

G0 → M → 0 in R-Mod with all Gi GC-n-flat. Put K = Coker(Gm−1 → Gm−2). By Lemma
3.15, we get an exact sequence

0 → A → Cm−1 → G′
m−2 → K → 0

in R-Mod with Cm−1 ∈ AddRC and G′
m−2 GC-n-flat. Put A′ = Im(Cm−1 → G′

m−2). Then,
we get an exact sequence 0 → A′ → G′

m−2 → Gm−3 → · · · → G1 → G0 → M → 0 in R-Mod.
So, by the induction hypothesis, we get the assertion.

(ii) When m = 1, we have an exact sequence 0 → A → G0 → M → 0 in R-Mod. Since, we
have a AbnC(R) ⊗R − exact exact sequence 0 → H → F0 → G0 → 0 in R-Mod with F0 n-flat
and H GC-n-flat by Lemma 3.14, we have the following pushout diagram:

0

��

0

��
H

��

H

��
0 // B //

��

F0

��

// M // 0

0 // A //

��

G0 //

��

M // 0

0 0.

The middle row and the first column in the above diagram are the desired two exact sequences.
Now, assume that m ≥ 2 and we have an exact sequence 0 → A → Gm−1 → · · · → G1 →

G0 → M → 0 in R-Mod with all Gi GC-n-flat. Put K = Ker(G1 → G0). By Lemma 3.15, we
get an exact sequence

0 → K → G′
1 → F0 → M → 0

in R-Mod with F0 n-flat and G′
1 GC-n-flat. Put M ′ = Im(G′

1 → P0). Then, we get an exact
sequence 0 → A → Gm−1 → · · · → G2 → G′

1 → G0 → M → 0 in R-Mod. So, by the
induction hypothesis, we get the assertion.

Here is a version of Schannuel’s lemma for FFn
C-resolutions.
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Proposition 3.19. Let M be a left R-module, and consider the two exact sequences of left R-
modules,

0 → Gm → Gm−1 → · · · → G0 → M → 0,

and

0 → Hm → Hm−1 → · · · → H0 → M → 0,

where G0, · · · , Gm−1 and H0, · · · ,Hm−1 are GC-n-flat. If R is GFn-closed, then Gm is GC-n-
flat if and only if Hm is GC-n-flat.

Proof. It follows from Proposition 3.5 and Proposition 3.11 .

4 GC-n-flat dimensions of modules

The class of GC-n-flat modules can be used to define the GC-n-flat dimension.

Definition 4.1. For a module M ∈ R-Mod, the GC-n-flat dimension of M , denoted by GC −
fndR(M), is defined as inf{m| there exists an exact sequence 0 → Gm → · · · → G1 →
G0 → M → 0 in R-Mod with all Gi GC-n-flat }. We have GC − fndR(M) ≥ 0, and we set
GC − fndR(M) = ∞ if no such integer exists.

We start with the following standard result.

Lemma 4.2. Let 0 → L → M → N → 0 be an exact sequence in R-Mod.

(i) GC − fndR(N) ≤ max {GC − fndR(M), GC − fndR(L) + 1}, and the equality holds if
GC − fndR(M) ̸= GC − fndR(L).

(ii) GC − fndR(L) ≤ max {GC − fndR(M), GC − fndR(N) − 1}, and the equality holds if
GC − fndR(M) ̸= GC − fndR(N).

(iii) GC − fndR(M) ≤ max {GC − fndR(L), GC − fndR(N)}, and the equality holds if GC −
fndR(N) ̸= GC − fndR(L) + 1.

Proof. It is immediate.

The proof of the following theorem is similar to [7, Theorem 3.15].

Theorem 4.3. Assume that R is GFn-closed and C is a semidualizing module. If any two of
the modules M , M ′ or M ′′ in a short exact sequence 0 → M ′ → M → M ′′ → 0 have finite
GC-n-flat dimension, then so has the third.

Next result is a GC-n-flat version of the corresponding result about n-flat dimension of mod-
ules.

Proposition 4.4. Let 0 → L → M → N → 0 be an exact sequence in R-Mod. If L ̸= 0 and N
is GC-n-flat, then GC − fndR(L) = GC − fndR(M).

Proof. It follows by Lemma 4.2(3).

We give a criterion for computing the GC-n-flat dimension of modules as follows. It gener-
alizes [7, Theorem 3.14]. We denote AddRC = AddRC ∪AddRR.

Proposition 4.5. Let R be a GFn-closed ring and the following statements are equivalent for
any M ∈ R-Mod and m ≥ 0.

(i) GC − fndR(M) ≤ m.

(ii) For every non-negative integer t such that 0 ≤ t ≤ m, there exists an exact sequence
0 → Xm → · · · → X1 → X0 → M → 0 in R-Mod such that Xt is GC-n-flat and
Xi ∈ AddRC for i ̸= t.

Proof. (ii) ⇒ (i). It is trivial.
(i) ⇒ (ii). We proceed by induction on m. Suppose GC − fndR(M) ≤ 1. Then there exists an
exact sequence 0 → G1 → G0 → M → 0 in R-Mod with G0 and G1 GC-n-flat. By Lemma 3.15
with A = 0, we get the exact sequences 0 → C1 → G′

0 → M → 0 and 0 → G′
1 → F0 → M → 0

in R-Mod with C1 ∈ AddRC, F0 n-flat, and G′
0, G

′
1 GC-n-flat.
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Now, suppose GC − fndR(M) = m ≥ 2. Then there exists an exact sequence 0 → Gm →
· · · → G1 → G0 → M → 0 in R-Mod with Gi GC-n-flat for any 0 ≤ i ≤ m. Set A =
Coker(G3 → G2). By applying Lemma 3.15 to the exact sequence 0 → A → G1 → G0 →
M → 0, we get an exact sequence 0 → Gm → · · · → G2 → G′

1 → F0 → M → 0 in R-Mod with
G′

1 GC-n-flat and F0 n-flat. Set N = Coker(G2 → G′
1). Then, we have GC−fndR(N) ≤ m−1.

By the induction hypothesis, there exists an exact sequence

0 → Xm → · · · → Xt → · · · → X1 → F0 → M → 0

in R-Mod such that F0 is n-flat and Xt is GC-n-flat and Xi ∈ AddRC for i ̸= t and 1 ≤ t ≤ m.
Now, we need only to prove (ii) for t = 0. Set B = Coker(G2 → G1). By the induction

hypothesis, we get an exact sequence 0 → Xm → · · · → X3 → X2 → G′
1 → B → 0 in R-Mod

with G′
1 GC-n-flat and Xi ∈ AddRC for any 2 ≤ i ≤ m. Set D = Coker(X3 → X2). Then by

applying Lemma 3.15 to the exact sequence 0 → D → G′
1 → G0 → M → 0, we get the exact

sequence 0 → D → C1 → G′
0 → M → 0 in R-Mod with C1 ∈ AddRC and G′

0 GC-n-flat.
Thus, we obtain the desired exact sequence

0 → Xm → · · · → X2 → X1 → G′
0 → M → 0

in R-Mod with all Xi ∈ AddRC and G′
0 GC-n-flat.

References
[1] M. Auslander and M. Bridger, Stable module theory, Memories Amer. Math. Soc., 94. RI: Amer. Math.

Soc. Providence, (1969).

[2] D. Bennis, Rings over which the class of Gorenstein flat modules is closed under extensions, Comm.
Algebra, 37(3), 855–868 (2009).

[3] L. W. Christensen, Semidualizing complexes and their Auslander categories, Trans. Am. Math. Soc., 353,
1839–1883 (2001).

[4] E. Enochs and O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z., 220, 611–633
(1995).

[5] H. -B. Foxby, Gorenstein modules and related modules, Math. Scand., 31, 267–284 (1972).

[6] E. S. Golod, G-dimension and generalized perfect ideals, Algebraic geometry and its applications, Trudy
Mat. Inst. Steklov., 165, 62–66 (1984).

[7] H. Holm, Gorenstein Homological Dimensions, J. Pure. Appl. Algebra, 189, 167–193 (2004).

[8] H. Holm and P. Jørgensen, Semidualizing modules and related Gorenstein homological dimensions, J.
Pure. Appl. Algebra, 205, 423–445 (2007).

[9] H. Holm and D. White, Foxby equivalence over associative rings, J. Math. Kyoto Univ., 47, 781–808
(2007).

[10] S. B. Lee, n-coherent rings, Comm. Algebra, 30 (3), 1119–1126 (2002).

[11] S. Sather-Wagstaff, T. Sharif and D. White, AB-Contexts and Stability for Gorenstein Flat Modules with
Respect to Semidualizing Modules, Algebr Represent Theor., 14, 403–428 (2011).

[12] C. Selvaraj and R. Udhayakumar, Stability of Gorenstein n-flat modules, Palestine J. Math., 3 (Spec 1),
495–504, (2014).

[13] C. Selvaraj, R. Udhayakumar and A. Umamaheswaran, Gorenstein n-flat modules and their covers, Asian-
Eur. J. Math., 7 (3), 1450051 (13 pages) (2014).

[14] W. V. Vasconcelos, Divisor Theory in Module Categories, North - Holland Publishing Co., Amsterdam,
1974.

[15] D. White, Gorenstein projective dimension with respect to a semidualizing module, J. Comm. Algebra, 2,
111–137 (2010).

[16] X. G. Yan and X. S. Zhu, Characterizations of some rings with C-projective, C-(FP )-injective and C-flat
modules, Czeh. math. J., 61 (3), 641–652 (2011).

Author information
R. Udhayakumar and C. Selvaraj, Department of Mathematics, Periyar University, Salem, Tamilnadu, INDIA
636011, INDIA.
E-mail: udhayaram_v@yahoo.co.in ; selvavlr@yahoo.com

Received: August 21, 2014.

Accepted: February 11, 2015


