PERIODIC SEQUENCES OF NUMBERS IN GENERALIZED ARITHMETIC AND GEOMETRIC ALTERNATE PROGRESSIONS

Julius Fergy T. Rabago
Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 11B25; Secondary 11Y55.
Sequence of numbers with alternate common difference and ratio, general term a_{n}, periodic sequence, sum.

Abstract

The paper provides a generalization of the arithmetic-geometric alternate sequence introduced recently by Rabago [2].

1 Introduction

The natural numbers, usually denoted by \mathbb{N}, is given by the sequence $1,2,3,4,5,6,7, \ldots$ This type of number sequence is an example of what we call arithmetic sequence. An arithmetic sequence is a number sequence in which every term except the first is obtained by adding a fixed number, called the common difference, to the preceeding term. Another example is the sequence $1,3,5,7,9,11, \ldots$ whose common difference is 2 . Denote the $n^{t h}$ term of the arithmetic sequence with first term a and common difference d as a_{n} and the sum of the first n terms of the sequence as S_{n}. Then, a_{n} is define recursively as

$$
a_{1}=a, \quad a_{n}=a_{n-1}+d, \quad(n \geq 2)
$$

An explicit formula for a_{n} is given by

$$
a_{n}=a+(n-1) d, \quad(n \geq 2)
$$

The sum S_{n} is given by

$$
S_{n}=\frac{n}{2}[2 a+(n-1) d], \quad(n \geq 1)
$$

Another type of sequence of numbers is the so-called geometric sequence. A geometric sequence is a number sequence in which every term except the first is obtained by multiplying the previous term by a constant, called the common ratio. For example, $2,4,8,16, \ldots$ is a geometric sequence with common ratio 2 . Let a_{n} denote the $n^{\text {th }}$ term of the geometric sequence with first term a and common ratio r. Then, a_{n} is define recursively as

$$
a_{1}=a, \quad a_{n}=a_{n-1} \cdot r, \quad(n \geq 2)
$$

An explicit formula for a_{n} is given by

$$
a_{n}=a \cdot r^{n-1}, \quad(n \geq 2)
$$

The sum S_{n} is given by

$$
S_{n}=a \frac{r^{n}-1}{r-1}, r \neq 1 \quad(n \geq 1)
$$

In a recent paper, Rabago [2] introduced the concept of arithmetic-geometric alternate sequence of numbers as follows:

Definition 1.1. A sequence of numbers $\left\{a_{n}\right\}$ is called an arithmetic-geometric alternate sequence of numbers if the following conditions are satisfied:
(i) for any $k \in \mathbb{N}, \frac{a_{2 k}}{a_{2 k-1}}=r$,
(ii) for any $k \in \mathbb{N}, a_{2 k+1}-a_{2 k}=d$,
where r and d are called the common ratio and common difference of the sequence $\left\{a_{n}\right\}$, respectively.

In this study, we present two types of generalization of the arithmetic-geometric alternate sequence [2]. We also present in this work an explicit formula for the $n^{t h}$ term of the sequence as well as the sum for the first n terms.

2 Periodic Arithmetic-Geometric Alternate Sequence

We start off with the definition of what we call periodic sequence of numbers with alternate common difference and ratio.

Definition 2.1. A sequence of numbers $\left\{a_{n}\right\}$ is called a periodic sequence of numbers with alternate common difference and ratio if for a fixed natural number m the following conditions are satisfied:
(i) for any $k=1,2, \ldots$ and for all natural number $j \leq m-1$,

$$
a_{m(k-1)+j+1}-a_{m(k-1)+j}=d
$$

(ii) for any $k=1,2, \ldots$,

$$
\frac{a_{m k+1}}{a_{m k}}=r
$$

Clearly, the above definition takes the following form:

$$
\begin{gather*}
a_{1}, a_{1}+d, a_{1}+2 d, \ldots, a_{1}+(m-1) d,\left(a_{1}+(m-1) d\right) r,\left(a_{1}+(m-1) d\right) r+d, \ldots, \\
\left(a_{1}+(m-1) d\right) r+(m-1) d,\left(\left(a_{1}+(m-1) d\right) r+(m-1) d\right) r, \ldots \tag{2.1}
\end{gather*}
$$

From the previous definition we may define m as the period of the sequence and the terms $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ can be defined as the elements of the $1^{\text {st }}$ interval (or period) of length m, $\left\{a_{m+1}, a_{m+2}, \ldots, a_{2 m}\right\}$ as the elements of the $2^{\text {nd }}$ interval of length m, and so on, and in general, the terms $\left\{a_{(k-1) m+1}, a_{(k-1) m+2}, \ldots, a_{k m}\right\}$ can be considered as the elements of the k-th interval of length m. It can be observed easily that for each interval, the terms are in arithmetic progression with d as the common difference.

Throughout in the paper we denote the greatest integer contained in x as $\lfloor x\rfloor$.
Theorem 2.2. Let d and r be any two real numbers such that $r \neq 1$ and $\left\{a_{n}\right\}$ be a periodic sequence of numbers with alternate common difference d and ratio r. Then, the formula for the $n^{\text {th }}$ term of $\left\{a_{n}\right\}$ is given by,

$$
\begin{equation*}
a_{n}=a_{1} r^{e_{1}}+(m-1)\left(\frac{1-r^{e_{1}}}{1-r}\right) d r+\left(n-1-m e_{1}\right) d \tag{2.2}
\end{equation*}
$$

where $e_{1}=\left\lfloor\frac{n-1}{m}\right\rfloor$.
Proof. The formula is clearly true for $n \leq m$. We only have to show that the formula is valid for $n>m$. To do this, first, we will show that formula (2.2) holds for any fixed natural number $k>1$. We let k be a fixed natural number and $p=m(k-1)+j$, where j is a natural number less than m. Note that $a_{p+1}=a_{p}+d$ for all $j \leq m-1$. This implies that,

$$
a_{p}=a_{1} r^{e_{1}}+(m-1)\left(\frac{1-r^{e_{1}}}{1-r}\right) d r+\left(p-1-m e_{1}\right) d+d
$$

Here, $e_{1}=\left\lfloor\frac{p-1}{m}\right\rfloor$. Replacing p by $m(k-1)+j$, we'll obtain,

$$
a_{p}=a_{1} r^{k-1}+(m-1)\left(\frac{1-r^{k-1}}{1-r}\right) d r+j d
$$

Because

$$
\left\lfloor\frac{m(k-1)+j-1}{m}\right\rfloor=\left\lfloor\frac{m(k-1)+j}{m}\right\rfloor,
$$

for all natural number $j \leq m-1$, then

$$
a_{p+1}=a_{1} r^{e_{0}}+(m-1)\left(\frac{1-r^{e_{0}}}{1-r}\right) d r+\left((p+1)-1-m e_{0}\right) d,
$$

where $e_{0}=\left\lfloor\frac{(p+1)-1}{m}\right\rfloor$.

Now we need to show that $a_{m k+1}=a_{m} k \cdot r$ for each interval k. Clearly, $a_{m k+1}=a_{m k} \cdot r$ is true for $k=1$. So, we assume that $a_{m p+1}=a_{m p} \cdot r$ for some natural number $p>1$. Hence,

$$
\begin{aligned}
a_{m(p+1)} \cdot r & =\left(a_{1} r^{p}+(m-1)\left(\frac{1-r^{p}}{1-r}\right) d r+(m(p+1)-1-m p) d\right) \cdot r \\
& =a_{1} r^{p+1}+(m-1)\left(\frac{1-r^{p}}{1-r}\right) d r^{2}+(m-1) d r \\
& =a_{1} r^{p+1}+(m-1)\left(\frac{1-r^{p+1}}{1-r}\right) d r \\
& =a_{m(p+1)+1},
\end{aligned}
$$

proving the theorem.
Lemma 2.3. For any integer $m>0$ and natural number n,

$$
\sum_{i=1}^{n}\left\lfloor\frac{i}{m}\right\rfloor=\left\lfloor\frac{n}{m}\right\rfloor\left(n+1-\frac{m}{2}\left\lfloor\frac{n+m}{m}\right\rfloor\right) .
$$

Lemma 2.4. For any integer $m>0$ and natural number n,

$$
\sum_{i=1}^{n} r^{e_{i}}=m-1+r m\left(\frac{1-r^{e_{n}-1}}{1-r}\right)+\left(n+1-m e_{n}\right) r^{e_{n}}, \quad(r \neq 1)
$$

where $e_{i}=\left\lfloor\frac{i}{m}\right\rfloor$.
For the proof of Lemma (2.3) and Lemma (2.4), see [2] and [3], respectively.
Theorem 2.5. The sum of the first n terms of (2.1) is given by

$$
\begin{equation*}
S_{n}=n M+\left(a_{1}-M\right) R_{n}+\frac{n(n-1) d}{2}-m d E_{n} \tag{2.3}
\end{equation*}
$$

where

$$
\begin{aligned}
M & =\frac{(m-1) d r}{1-r} \\
R_{n} & =m-1+r m\left(\frac{1-r^{e_{n}-1}}{1-r}\right)+\left(n-m e_{n}\right) r^{e_{n}}, \\
e_{n} & =\left\lfloor\frac{n-1}{m}\right\rfloor \\
E_{n} & =\left\lfloor\frac{n-1}{m}\right\rfloor\left(n-\frac{m}{2}\left\lfloor\frac{n+m-1}{m}\right\rfloor\right) .
\end{aligned}
$$

Proof. Let $m>0$ be an integer, r be a real number different from 0 and $1, n$ a natural number, and $e_{i}=\left\lfloor\frac{i-1}{m}\right\rfloor$. Let $\left\{a_{n}\right\}$ be a sequence of the form as in (2.1). Then,

$$
\begin{aligned}
\sum_{i=1}^{n} a_{i} & =\sum_{i=1}^{n}\left(a_{1} r^{e_{i}}+(m-1)\left(\frac{1-r^{e_{i}}}{1-r}\right) d r+\left(i-1-m e_{i}\right) d\right) \\
& =\frac{n(m-1) d r}{1-r}+\left(a_{1}-\frac{(m-1) d r}{1-r}\right) \sum_{i=1}^{n} r^{e_{i}}+\frac{n(n-1) d}{2}-m d \sum_{i=1}^{n} e_{i}
\end{aligned}
$$

and by Lemma (2.3) and Lemma (2.4), conclusion follows.
We end this section with the following remark.
Remark 2.6. We note that by letting $m \rightarrow \infty$ in (2.2), we'll obtain the explicit formula for the usual arithmetic sequence of numbers with common difference d. Also, one may verify that $R_{n} \rightarrow n$ as $m \rightarrow \infty$ and that the formula for the sum of n terms S_{n} given by (2.3) in Theorem (2.5) will approach $a_{1} n+\frac{n(n-1)}{2} d$ as $m \rightarrow \infty$.

3 Periodic Geometric-Arithmetic Alternate Sequence

In this section, we present another generalization of arithmetic-geometric sequence with the following definition of a periodic sequence of numbers with alternate common ratio and difference.
Definition 3.1. A sequence of numbers $\left\{a_{n}\right\}$ is called a periodic sequence of numbers with alternate common ratio r and difference d if for a fixed natural number m the following conditions are satisfied:
(i) for any $k=1,2, \ldots$ and for all natural number $j \leq m-1$,

$$
\frac{a_{m(k-1)+j+1}}{a_{m(k-1)+j}}=r
$$

(ii) for any $k=1,2, \ldots, a_{m k+1}-a_{m k}=d$.

It can be seen easily that the number sequence $\left\{a_{n}\right\}$ has the following form:

$$
\begin{gather*}
a_{1}, a_{1} r, a_{1} r^{2}, \ldots, a_{1} r^{m-1}, a_{1} r^{m-1}+d,\left(a_{1} r^{m-1}+d\right) r,\left(a_{1} r^{m-1}+d\right) r^{2}, \ldots \\
\left(a_{1} r^{m-1}+d\right) r^{m-1}+d,\left(\left(a_{1} r^{m-1}+d\right) r^{m-1}+d\right) r, \ldots \tag{3.1}
\end{gather*}
$$

Here we say that the terms $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ belong to the $1^{\text {st }}$ interval of length $m,\left\{a_{m+1}, a_{m+2}, \ldots, a_{2 m}\right\}$ belong to the $2^{\text {nd }}$ interval of length m, and so on, and in general, the terms $\left\{a_{(k-1) m+1}, a_{(k-1) m+2}, \ldots, a_{k m}\right\}$ belong to the k-th interval of length m. Note that for each interval, the terms are in geometric progression with r as the common ratio.
Theorem 3.2. Let d and r be any two real numbers such that $r \neq 1$ and $\left\{a_{n}\right\}$ be a periodic sequence of numbers with alternate common ratio r and difference d. Then, the formula for the $n^{\text {th }}$ term of $\left\{a_{n}\right\}$ is given by,

$$
\begin{equation*}
a_{n}=a_{1} r^{n-1-e_{1}}+d\left(\frac{1-\left(r^{m-1}\right)^{e_{1}}}{1-r^{m-1}}\right) r^{n-1-m e_{1}} \tag{3.2}
\end{equation*}
$$

where $e_{1}=\left\lfloor\frac{n-1}{m}\right\rfloor$.
Proof. Obviously formula (3.2) is valid for every natural number $n \leq m$. We only need to verify the validity of the formula for $n>m$. To do this, we first show that for every interval $k=1,2, \ldots$, the formula is true and then, we show that for every $k, a_{m k+1}=a_{m k}+d$.

Now, let $p=m(k-1)+j$ with k fixed then, $a_{p+1}=a_{p} \cdot r$ for all natural number $j \leq m-1$. Hence,

$$
a_{p+1}=\left(a_{1} r^{p-1-e_{1}}+d\left(\frac{1-\left(r^{m-1}\right)^{e_{1}}}{1-r^{m-1}}\right) r^{p-1-m e_{1}}\right) \cdot r,
$$

where $e_{1}=\left\lfloor\frac{p-1}{m}\right\rfloor$. Simplifying and noting that

$$
\left\lfloor\frac{m(k-1)+j-1}{m}\right\rfloor=\left\lfloor\frac{m(k-1)+j}{m}\right\rfloor,
$$

for all natural number $j \leq m-1$, we obtain

$$
a_{p+1}=a_{1} r^{(p+1)-1-e_{0}}+d\left(\frac{1-\left(r^{m-1}\right)^{e_{0}}}{1-r^{m-1}}\right) r^{(p+1)-1-m e_{0}}
$$

where $e_{0}=\left\lfloor\frac{(p+1)-1}{m}\right\rfloor$. On the other hand, it can be shown easily that $a_{m k+1}=a_{m k}+d$ is true for $k=1$. So, we assume that $a_{m p+1}=a_{m p}+d$ for some natural number $p>1$. This implies that,

$$
a_{m(p+1)}+d=a_{1} r^{m(p+1)-1-e_{1}}+d\left(\frac{1-\left(r^{m-1}\right)^{e_{1}}}{1-r^{m-1}}\right) r^{m(p+1)-1-m e_{1}}+d
$$

where $e_{1}=\left\lfloor\frac{m(p+1)-1}{m}\right\rfloor$. But, $\left\lfloor\frac{m(p+1)-1}{m}\right\rfloor=p$, then

$$
\begin{aligned}
a_{m(p+1)}+d & =a_{1} r^{m(p+1)-1-p}+d\left(\frac{1-\left(r^{m-1}\right)^{p}}{1-r^{m-1}}\right) r^{m(p+1)-1-m p}+d \\
& =a_{1} r^{(m-1)(p+1)}+d\left\{\left(\frac{1-\left(r^{m-1}\right)^{p}}{1-r^{m-1}}\right) r^{m-1}+1\right\} \\
& =a_{1} r^{(m-1)(p+1)}+d\left(\frac{1-\left(r^{m-1}\right)^{p+1}}{1-r^{m-1}}\right) \\
& =a_{m(p+1)+1}
\end{aligned}
$$

This proves the theorem.
Similar to what we remarked in the previous section, we can notice easily that formula (3.2) will approach the form $a_{1} r^{n-1}$ as $m \rightarrow \infty$. That is, we'll obtain the explicit formula for the usual geometric sequence of numbers with common ratio r.

Lemma 3.3. Let R be the sum

$$
\sum_{i=1}^{n} r^{i-1-e_{i}}, \quad r \neq 0,1
$$

where $e_{i}=\left\lfloor\frac{i-1}{m}\right\rfloor$. Then, for any natural numbers m and n,

$$
\begin{equation*}
R=\left(\frac{1-r^{m}}{1-r}\right)\left(\frac{1-\left(r^{m-1}\right)^{p}}{1-r^{m-1}}\right)+\frac{1}{r^{p}}\left(\frac{1-r^{n-m p}}{1-r}\right) \tag{3.3}
\end{equation*}
$$

where $p=\left\lfloor\frac{n-1}{m}\right\rfloor$.
Proof. Let $m>0$ be an integer, r be a real number different from 0 and $1, n$ a natural number, and $p=\left\lfloor\frac{n-1}{m}\right\rfloor$. Then,

$$
\begin{aligned}
\sum_{i=1}^{n} r^{i-1-e_{i}}= & \sum_{i=1}^{n} r^{i-1}\left(\frac{1}{r}\right)^{\left\lfloor\frac{i-1}{m}\right\rfloor} \\
= & \left\{\sum_{i=1}^{m} r^{i-1}+\left(\frac{1}{r}\right) \sum_{i=m+1}^{2 m} r^{i-1}+\left(\frac{1}{r}\right)^{2} \sum_{i=2 m+1}^{3 m} r^{i-1}+\ldots\right. \\
& \left.+\left(\frac{1}{r}\right)^{p-1} \sum_{i=(p-1) m+1}^{m p} r^{i-1}\right\}+\left(\frac{1}{r}\right)^{p} \sum_{i=m p+1}^{n} r^{i-1} \\
= & \left\{\sum_{i=1}^{m} r^{i-1}+\left(r^{m-1}\right) \sum_{i=1}^{m} r^{i-1}+\left(r^{m-1}\right)^{2} \sum_{i=1}^{m} r^{i-1}+\ldots\right. \\
& \left.+\left(r^{m-1}\right)^{p-1} \sum_{i=1}^{m} r^{i-1}\right\}+\frac{1}{r^{p}} \sum_{i=1}^{n-m p} r^{i-1} \\
= & \left(\frac{1-r^{m}}{1-r}\right) \sum_{j=1}^{p}\left(r^{m-1}\right)^{j-1}+\frac{1}{r^{p}} \sum_{i=1}^{n-m p} r^{i-1} \\
= & \left(\frac{1-r^{m}}{1-r}\right)\left(\frac{1-\left(r^{m-1}\right)^{p}}{1-r^{m-1}}\right)+\frac{1}{r^{p}}\left(\frac{1-r^{n-m p}}{1-r}\right)
\end{aligned}
$$

Lemma 3.4. Let \bar{R} be the sum

$$
\sum_{i=1}^{n} r^{i-1-m e_{i}}, \quad r \neq 0,1
$$

where $e_{i}=\left\lfloor\frac{i-1}{m}\right\rfloor$. Then, for any natural numbers m and n,

$$
\begin{equation*}
\bar{R}=\left\lfloor\frac{n-1}{m}\right\rfloor\left(\frac{1-r^{m}}{1-r}\right)+\left(\frac{1-r^{n-m p}}{1-r}\right) \tag{3.4}
\end{equation*}
$$

where $p=\left\lfloor\frac{n-1}{m}\right\rfloor$.
We omit the proof since it similar on how we prove (3.3).
Theorem 3.5. The sum of the first n terms of (3.1) is given by

$$
\begin{equation*}
S_{n}=\left(a_{1}-\frac{d}{1-r^{m-1}}\right) R+\left(\frac{d}{1-r^{m-1}}\right) \bar{R} \tag{3.5}
\end{equation*}
$$

where R and \bar{R} are given by equations (3.3) and (3.4), respectively.

Proof. Let $e_{i}=\left\lfloor\frac{i-1}{m}\right\rfloor$

$$
\begin{aligned}
\sum_{i=1}^{n} a_{i} & =\sum_{i=1}^{n}\left(a_{1} r^{i-1-e_{i}}+d\left(\frac{1-\left(r^{m-1} e_{i}\right.}{1-r^{m-1}}\right) r^{i-1-m e_{i}}\right) \\
& =\left(a_{1}-\frac{d}{1-r^{m-1}}\right) \sum_{i=1}^{n} r^{i-1-e_{i}}+\left(\frac{d}{1-r^{m-1}}\right) \sum_{i=1}^{n} r^{i-1-m e_{i}}
\end{aligned}
$$

, and by Lemma (3.3) and Lemma (3.4), conclusion follows.
Note that the formula given by (3.5) will approach the expression of the form $a_{1}\left(\frac{1-r^{n}}{1-r}\right)$ as $m \rightarrow \infty$ because $R \rightarrow \frac{1-r^{n}}{1-r}$ as $m \rightarrow \infty$.

References

[1] T. Koshy, "Elementary number theory with applications', 2nd ed., Elsevier, USA, 2007.
[2] J.F.T. Rabago, "Arithmetic-geometric alternate sequence", Scientia Magna, 8 (2012), No. 2, 80-82.
[3] J.F.T. Rabago, 'Sequence of numbers with three alternate common differences and common ratios", Int. J. Appl. Math. Res., 1 (2012), No. 3, 259-267.
[4] K. H. Rosen, 'Elementary number theory and its applications', Addison-Wesley Publishing Co., Massachusetts, 1986.

Author information

Julius Fergy T. Rabago, Department of Mathematics and Computer Science, College of Science, University of the Philippines, Baguio Governor Pack Road, Baguio City 2600, PHILIPPINES.
E-mail: jfrabago@gmail.com
Received: July 22, 2013.
Accepted: December 22, 2013.

