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Abstract. The present manuscript is simply a survey on using computer algebraic system
in computing the CANDECOMP /PARAFAC model of a 3rd-order tensor A . More precisely,
we have computed CP (CANDECOMP/ PARAFAC) decomposition of a 3rd-order tensor A
manually using ALS method as well as by employing MATLAB. Final fit of approximation has
been calculated to have a good agreement between best rank one approximations of the tensor A
with itself. It is observed that the computed final fit (0.99991) is quite closed to 1 and hence the
best one rank approximation has been declared in quite good agreement with A.

1 Introduction

It is well known that a matrix can be decomposed in various ways depending on the type of
problem that one wishes to solve. If one wants to solve a system of equations then one probably
chooses LU decomposition for the matrix representing the equations. Other matrix decompo-
sitions take orthogonality as a main issue and compute decompositions with orthogonal com-
ponents. But if one wants to compute operations on a matrix or discover the inner geometrical
structure of the transformation given by a matrix then one will probably prefer to work with
a diagonalized version of the original matrix and will use the SVD decomposition. Thus, it
can be observed that tensor decomposition will be an important issue when analyzing tensors.
There are various decompositions techniques to analysis problems regarding tensor decomposi-
tion [27]. Basically there are three fundamental approaches to decompose a tensor, first one is
Tuker model (multi-linear SVD or HOSVD), second one is CANDECOMP/PARAFAC and the
third approach is non- negative tensor factorization. In the present paper, it is emphasized that
the HOSVD is not necessarily an exact rank revealing approach [27] because of the involvement
of unitary (orthogonal) tensor decomposition. Instead of the HOSVD approach, we shall seek
for the decomposition of a tensor as a linear combination of a minimum number of possibly
non-orthogonal rank-1 terms. This type decomposition is often called Canonical Decomposition
(CANDECOMP) or Parallel Factors model (PARAFAC). This tensor decomposition was first
introduced by Hitchcock [1], [2] and Eckart and Young [3]. However it was not fully developed
till 1970. The enthusiastic work of Harshman [4] and Carroll and Chang [5] gave the pace to the
evolution of PARAFAC/CANDECOMP models for multiway arrays. Both papers appeared in
Psychometrika anr revealing the same decomposition model. However, various researcher have
evoked the PARAFAC/CANDECOMP in various names. The name Polyadic form of a ten-
sor used by Hitchcock [1], PARAFAC (parallel factors) used by Harshman [4], CANDECOMP
or CAND (canonical decomposition) used by Carroll and Chang [6], Topographic components
model name used by Mocks [7] and recently the most commonly used word CP (CANDE-
COMP/PARAFAC) has been suggested by Kiers [8]. The CANDECOMP/PARAFAC is based
on the fact that tensors can be rewritten as the sum of several other tensors. CP decomposition
has many fields of applications. For instance, Carroll and Chang [6] introduced CANDECOMP
in context of analyzing the multiple similarity or dissimilarity matrices from a variety of sub-
jects. Harshman [4] introduced PARAFAC because it eliminates the ambiguity associated with
twodimensional PCA and thus has a better uniqueness property. He was motivated by Cattell’s
principle of parallel proportional profiles [9]. He applied it to vowel-sound data where different
individuals (mode-1) spoke different vowels (mode-2) and the formant (i.e., the pitch) was mea-
sured (mode-3). Further, Appellof and Davidson [10] pioneered the use of CP in chemometrics
in 1981. Also, Andersson and Bro [11] surveyed its use in chemometrics. In particular, CP has
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proved its usefulness in the modeling of fluorescence excitationemission data. Sidiropoulos, Bro,
and Giannakis [12] considered the application of CP to sensor array processing. Other applica-
tions in telecommunications include [13], [14]. Many authors have used CP decompositions in
neuroscience. As mentioned previously, Mocks [7] independently discovered CP in the context
of event-related potentials in brain imaging. This work also includes results on uniqueness and
remarks about how to choose the number of factors of brain imaging data. Andersen and Rayens
[15] applied CP-decomposition to fMRI data arranged as voxels by time by run and also as vox-
els by time by trial by run. Moreover, Martinez-Montes et al. [16], [17] have applied CP to a
time-varying EEG spectrum arranged as a three-dimensional array with modes corresponding to
time, frequency, and channel.Morup et al. [24] looked at a similar problem and then, Morup,
Hansen, and Arnfred [25] have released a MATLAB toolbox called ERPWAVELAB for mul-
tichannel analysis of time-frequency transformed event-related activity of EEG and MEG data.
Acar et al. [18] and De Vos et al. [19],[20] used CP for analyzing epileptic seizures. Stegeman
[21] explained the differences between a three way extension of ICA and CP for multi-subject
fMRI data in terms of the higher-order statistical properties. In text analysis, Bader, Berry, and
Browne [22] used CP for automatic conversation detection in email over time using a term-by
author-by-time array. Shashua and Levin [23] applied CP to image compression and classifi-
cation. In this paper, now we are going to calculate rank-1 approximation of a third orders
(3× 3× 3)-tensor. We start with few preliminaries of multilinear algebra like vector, matrix and
higher order tensor products, which are useful to meet our objectives.

2 Vector, Matrix and Tensor products

First we define different types products of vector, matrices and third order tensors with ap-
propriate examples. We have discussed the generalizing process of one dimensional and two-
dimensional array upto multidimensional arrays. This section deals with the necessary tools
to describe tensors and to work with them. This section also intended to make clear that al-
though tensors are closely related to matrices, there are many important differences between
them which make matrix analysis and tensor analysis quite different subjects, each with their
own open questions and specific applications. We will also give examples on how to compute
tensors with MATLAB. Allover study of this section is useful for CP decomposition. Now we
are going to define step by step Methodology for array and tensor multiplication.

2.1 Arrays

Whenever we encounter data we must think about the best way of arranging them so that we
obtain relevant information that will help us solving the given problem. We arrange words in
alphabetically ordered lists so that we can find them more easily, we arrange events to organize
a schedule and we arrange data in arrays so that relevant information becomes highlighted and
we can describe relationships more easily as well as operate with the given data more efficiently.

2.2 Vectors

A vector is a one-dimensional array or we can say that an array consisting of a single column
or row is called a vector. In another words, a matrix with only one column is called vector, or
simply a vector. The entries of a vector are called its components. The set of all columns vectors
with n components is denoted by Rn,and a matrix with only one row is called a row vector. We

can write vector with two components a ∈ R2 as a =

(
a1

a2

)
and vector with three components

a ∈ R3 as a =

 a1

a2

a3

.

Vector Addition

We can add two or more vectors by adding their corresponding entries or components. Let vector
a ∈ R3 and vector b ∈ R3,then we can write their sum as a1

a2

a3

+

 b1

b2

b3

 =

 a1 + b1

a2 + b2

a3 + b3

 . (2.1)
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Vector Products

While we can define vector addition only in one way but we find different ways of multiplying
the entries of the vectors.

Vector inner Product

Let we have two vectors are a ∈ R3 =

 a1

a2

a3

 and b ∈ R3 =

 b1

b2

b3

, then we can write the

inner product of two vectors as

〈a,b〉 = 〈

 a1

a2

a3

 ,

 b1

b2

b3

〉 = {a1b1 + a2b2 + a3b3}, (2.2)

we can see that product gives a scalar as a results.

Vector outer product

Let we have two vectors are a ∈ R3 =

 a1

a2

a3

 and b ∈ R3 =

 b1

b2

b3

,then we can write the

outer product of two vectors

a ◦ b =

 a1

a2

a3

 ◦
 b1

b2

b3

 =

 a1 b1 a1 b2 a1 b3

a2 b1 a2 b2 a2 b3

a3 b1 a3 b2 a3 b3

, (2.3)

we can see that product gives a scalar as a results.

Norm and Normalization of vector

When considering a vector as a geometrical object, one of its most important features is length.
If we take different vectors with the same direction, we can see that they are scalar multiples of
each other. Hence we can choose one single vector to define a direction. We will take this vector
to have length 1 unit, and we will define a vector in a given direction to be normalized if it has
unit length. We define the length of a vector to be its norm.
Euclidean Vector Norm. Although different norms can be defined on vectors, we will consider
here the Euclidean norm, which is closely related to the geometric length of the vector.Let a
vector a ∈ Rn, Euclidean norm of a is defined as

‖ a ‖=
n∑

(i=1)

a2
1 =

√
〈a,a〉. (2.4)

2.3 Matrix

We define a matrix as a two-dimensional array of I rows and J columns. A system of (I × J)
numbers arranged a rectangular formation along I rows and J columns and bounded by the
brackets [ ] and ( ) is called I by J matrix.

A =


a11 a12 ..... a1J

a21 a22 ..... a2J

.. .. ..... ..

.. .. ..... ..

aI1 aI2 ..... aIJ


(I×J)

. (2.5)

Adding Matrices

Proceeding in the same way we saw for vectors, we can add matrices by adding the correspond-
ing entries of each matrix.
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Matrix Products

As we saw vector multiplication in above subsection, we can define different ways of multiplying
matrices. In this paper we use following four matrix products.

Usual Matrix Multiplication

Usual matrix multiplication is a well known matrix multiplication, let we have two matrix A =
(aij)(I×J) and B = (bjk)(J×K),then their multiplication A × B = C = (cik)I×K . In this
multiplication number of column in matrix A is equal to number of row in matrix B.

Hadamard Product of two matrices

This matrix product, first defined by the French mathematician Hadamard, is the element wise
matrix product. This matrix multiplication performed for same size two matrix. Let A =

(aij)(I×J) =


a11 a12 ..... a1J

a21 a22 ..... a2J

.. .. ..... ..

.. .. ..... ..

aI1 aI2 ..... aIJ


(I×J)

andB = (bij)(I×J) =


b11 b12 ..... b1J

b21 b22 ..... b2J

.. .. ..... ..

.. .. ..... ..

bI1 bI2 ..... bIJ


(I×J)

then their Hadamard product is defined as

A ∗B =


a11 b11 a12 b12 ..... a1J b1J

a21 b21 a22 b22 ..... a2J b2J

.. .. ..... ..

.. .. ..... ..

aI1 bI1 aI2 bI2 ..... aIJ bIJ


(I×J)

, (2.6)

we find resultant output matrix is also same size.

Kronecker Product of two matrices

The Kronecker product multiplies any two matrices of any size. Let A = (aij)(I×J) and B =
(bkl)(K×L) be two matrix, then their Kronecker product is defined as

A⊗B =


a11 a12 ... a1J

a21 a22 ... a2J

.. .. ... ..

.. .. ... ..

aI1 aI2 ... aIJ


(I×J)

⊗


b11 b12 ... b1L

b21 b22 ... b2L

.. .. ... ..

.. .. ... ..

bK1 bK2 ... bKL


(K×L)

=



a11


b11 b12 ... b1L
b21 b22 ... b2L
.. .. ... ..

.. .. ... ..

bK1 bK2 ... bKL

 a12


b11 b12 ... b1L
b21 b22 ... b2L
.. .. ... ..

.. .. ... ..

bK1 bK2 ... bKL

 ... a1J


b11 b12 ... b1L
b21 b22 ... b2L
.. .. ... ..

.. .. ... ..

bK1 bK2 ... bKL



a21


b11 b12 ... b1L
b21 b22 ... b2L
.. .. ... ..

.. .. ... ..

bK1 bK2 ... bKL

 a22


b11 b12 ... b1L
b21 b22 ... b2L
.. .. ... ..

.. .. ... ..

bK1 bK2 ... bKL

 ... a2J


b11 b12 ... b1L
b21 b22 ... b2L
.. .. ... ..

.. .. ... ..

bK1 bK2 ... bKL


.. .. ... ..

.. .. ... ..

aI1


b11 b12 ... b1L
b21 b22 ... b2L
.. .. ... ..

.. .. ... ..

bK1 bK2 ... bKL

 aI2


b11 b12 ... b1L
b21 b22 ... b2L
.. .. ... ..

.. .. ... ..

bK1 bK2 ... bKL

 ... aIJ


b11 b12 ... b1L
b21 b22 ... b2L
.. .. ... ..

.. .. ... ..

bK1 bK2 ... bKL




.

(2.7)

The output product is a matrix of size (IK)× (JL).

Khatri-Rao Product

The Khatri-Rao product multiplies matrices with the same number of columns. Hence, we de-
duce that this product computes the Kronecker product of the corresponding columns of each
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matrix of the two matrices. Let we have two matrix A = (aij)(I×J) and B = (bkj)(K×J), then
their Khatri-Rao product is performed as,

A�B =


a11 a12 ..... a1J

a21 a22 ..... a2J

.. .. ..... ..

.. .. ..... ..

aI1 aI2 ..... aIJ


(I×J)

�


b11 b12 ..... b1J

b21 b22 ..... b2J

.. .. ..... ..

.. .. ..... ..

bK1 bK2 ..... bKJ


(K×J)

=

 {


a11

a21

..

..

aI1

⊗


b11

b21

..

..

bK1

} ...... {


a1J

a2J

..

..

aIJ

⊗


b1J

b2J

..

..

bKJ

}


=



a11


b11

b21

..

..

bK1

 a12


b12

b22

..

..

bK2

 ..... a1J


b1J

b2J

..

..

bKJ



a21


b11

b21

..

..

bK1

 a22


b12

b22

..

..

bK2

 ..... a2J


b1J

b2J

..

..

bKJ



a31


b11

b21

..

..

bK1

 a32


b12

b22

..

..

bK2

 ..... a3J


b1J

b2J

..

..

bKJ


... ... ..... ...

... ... ..... ...

aI1


b11

b21

..

..

bK1

 aI2


b12

b22

..

..

bK2

 ..... aIJ


b1J

b2J

..

..

bKJ





. (2.8)

Note that the Khatri-Rao product and the Kronecker product are identical when considering
vectors, i.e., a� b = a⊗ b. Kharti-Rao product produces an output matrix of size ((IK)× J).

Matrix scalar Product

Let we have two matrix A = (aij)(I×J) and B = (bij)(I×J) of same size, Then we can define
the scalar product

〈A,B〉 = 〈


a11 a12 ..... a1J

a21 a22 ..... a2J

.. .. ..... ..

.. .. ..... ..

aI1 aI2 ..... aIJ

 ,


b11 b12 ..... b1J

b21 b22 ..... b2J

.. .. ..... ..

.. .. ..... ..

bI1 bI2 ..... bIJ

〉

=
I∑

(i=1)

J∑
(j=1)

(aijbij) = Tr(AtB). (2.9)
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It is interesting to remark how multiplication can create new mathematical objects from already
existing ones. We can create a two-dimensional array by multiplying two one-dimensional ar-
rays. We can create larger matrices by computing the Kronecker product or the Hadamard prod-
uct of two matrices and we can also have a scalar as a result when multiplying vectors or matrices.
This idea will also apply to tensors and we will see how a tensor can be created by defining the
multiplication of vectors in a multidimensional space.

Matrix norm

For a matrix A ∈ RI×J , we define its Frobenius norm as

‖ A ‖= (
I∑

(i=1)

J∑
(j=1)

|aij |2)1/2 =
√
〈A,A〉. (2.10)

We will see that the matrix norm, of the difference between two matrices A = (aij)(I×J), B =
(bij)(I×J) by ‖A−B‖F will define the distance between the two matrices.

2.4 Tensor Multiplication

Above we have defined vectors and matrix multiplication but in case of higher order tensor mul-
tiplication it is something quite different. First we define different types of tensor multiplication
same as vector and matrix multiplication.

Tensor Inner product

Let we have two third order tenorA andD such thatA =

a5 a6

a7 a8

a1 a2

a3 a4

andD =

b5 b6

b7 b8

b1 b2

b3 b4

.

Inner product of both tensor is defined by

〈A,D〉 = {a1b1 + a2b2 + a3b3 + a4b4 + a5b5 + a6b6 + a7b7 + a8b8}. (2.11)

Tensor-matrix product

we denote the n-mode product of a tensorA with a matrix A as P = A×nA where each mode-n
fiber of A to compute each mode-n fiber of the resulting tensor P (see figure-1).

P = A×n A⇐⇒ Pn = AAn. (2.12)

Let we have a third order tensor A ∈ R3×3×3, such that

A =

20 21 22
23 24 25
27 28 29

10 13 17
11 14 18
12 16 19

1 2 3
4 5 6
7 8 9

(2.13)
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and its Ist-mode unfolding isA1 =

 1 2 3 10 13 17 20 21 22
4 5 6 11 14 18 23 24 25
7 8 9 12 16 19 27 28 29

multiplied with

matrix A =

 a b c

d e f

g h i

,first mode product is denoted by ×1

P = A×1 A⇐⇒ P1 = AA1

=

 a b c

d e f

g h i


3×3

 1 2 3 10 13 17 20 21 22
4 5 6 11 14 18 23 24 25
7 8 9 12 16 19 27 28 29


3×9

=

20a + 23b + 27c 21a + 24b + 28c 22a + 25b + 29c
20d + 23e + 27f 21d + 24e + 28f 22d + 25e + 29f
20g + 23h + 27i 21g + 24h + 28i 22g + 25h + 29i

20a + 23b + 27c 20a + 23b + 27c 20a + 23b + 27c
20d + 23e + 27f 20d + 23e + 27f 20d + 23e + 27f
22g + 25h + 29i 22g + 25h + 29i 22g + 25h + 29i

20a + 23b + 27c 20a + 23b + 27c 20a + 23b + 27c
20d + 23e + 27f 20d + 23e + 27f 20d + 23e + 27f
22g + 25h + 29i 22g + 25h + 29i 22g + 25h + 29i

. (2.14)

It is usual matrix multiplication, we find a matrix of 3 by 9, and then we can convert it into
a tensor. Similarly we can find 2-mode multiplication and 3-mode multiplication as equation
(2.15) and (2.16), given below

P = A×2 A⇐⇒ P2 = AA2 (2.15)

P = A×3 A⇐⇒ P3 = AA3. (2.16)

The tensor times matrix MATLAB script developed by Bader and Kolda [26] performs the prod-
uct of a tensor times a matrix along the different modes of the tensor. By running tensor times
matrix MATLAB code (see Appendix-1(a)), we obtain three different tensors as below (also see
fig:1).

M =

 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18
19 20 21 22 23 24 25 26 27

 and T is a tensr of size (3× 3× 3),

which is obtained from matrix M .

T (:, :, 1) =
1 2 3

10 11 12
19 20 21

,T (:, :, 2) =
4 5 6

13 14 15
22 23 24

, T (:, :, 3) =
7 8 9
16 17 18
25 26 27

,

A =

 1 2 3
4 5 6
7 8 9

.

P1 is a tensor of size (3× 3× 3), which is 1-mode tensor time matrix multiplication.

P1(:, :, 1) =
78 84 90
168 183 198
258 282 306

,P1(:, :, 2) =
96 102 108
213 228 243
330 354 378

, P1(:, :, 3) =
114 120 126
258 273 288
402 426 450

,

P2 is a tensor of size (3× 3× 3), which is 2-mode tensor time matrix multiplication.

P2(:, :, 1) =
14 32 50
68 167 266
122 302 482

,P2(:, :, 2) =
32 77 122
86 212 338
140 347 554

, P2(:, :, 3) =
50 122 194

104 257 410
158 392 626

,

P3 is a tensor of size (3× 3× 3), which is 3-mode tensor time matrix multiplication.

P3(:, :, 1) =
30 36 42
84 90 96
138 144 150

,P3(:, :, 2) =
66 81 96
201 216 231
336 351 366

, P1(:, :, 3) =
102 126 150
318 342 366
534 558 582

.

Tensor times vector

We can denote the n-mode product of a tensor A with a vector a as, P = A ×n a where each
mode-n fiber of A is multiplied by the vector a to compute the result. Following the algorithm
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Figure 1. Visualization of Tensor times Matrix along the Different Modes

developed for multiplying tensors with matrices, we can take the product of a given tensor times
a vector in so many modes as dimensions of the tensor. Let us consider a tensor as in above
example, and 1st mode multiplication with vector is defined as

P = A×n a, (2.17)

similarly 2nd and 3rd-mode multiplication performed. By running MATLAB code (see Appendix-
1(b)) for tensor time vector, we obtain,

M =

 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18
19 20 21 22 23 24 25 26 27

 and T is a tensr of size (3× 3× 3),

which is obtained from matrix M .

T (:, :, 1) =
1 2 3
10 11 12
19 20 21

,T (:, :, 2) =
4 5 6
13 14 15
22 23 24

, T (:, :, 3) =
7 8 9
16 17 18
25 26 27

, and a vector

a =

 4
5
6

.

P1 is a tensor of size (3× 3), which is 1-mode tensor time vector multiplication P1(:, :) =

168 213 258
183 228 273
198 243 288
P2 is a tensor of size (3× 3), which is 2-mode tensor time vector multiplication P2(:, :) =

32 77 122
167 212 257
302 347 392
P3 is a tensor of size (3× 3), which is 3-mode tensor time vector multiplication P3(:, :) =

66 81 96
201 216 231
336 351 366

.

Tensor Norm

Whereas the norm of a vector is mainly a geometrical concept that defines its length, we can also
define the norm of a tensor in a similar way as it is defined for matrices. In equations (2.4) and
(2.10), we defined the Euclidean norm of the vector and the Frobenius matrix norm respectively.
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Figure 2. Visualization of outer product of three vectors

Similarly, we can define the Frobenius norm of a tensor A of size (I × J ×K) by the equation

‖A‖F = (
I∑
i=1

J∑
j=1

K∑
k=1

|aijk|2)1/2 =
√
〈A,A〉, (2.18)

where 〈A,A〉 is the inner product of the tensor by itself. Let us consider the tensor A, from
equation (2.13), then its norm is

‖A|F =
√
〈A,A〉 = (12 + 22 + 32 + 42 + 52 + 62 + 72 + 82 + 92 + 102 + 112 + 122

+132+142+162+172+182+192+202+212+222+232+242+252+272+282+292)1/2 =
√

6930 = 83.2466

3 CANDECOM/PARAFAC (CP Decomposition)

For CP decomposition, first we are going to define outer product of three vectors, which produces
a tensor.
Outer Product of three vectors: In above section, when studying vector products, we saw that
the outer product of two vectors produces a matrix. (See equation (2.3)). Taking this idea,
we can deduce that the outer product of three vectors produces a 3-dimensional tensor. Taking
each vector to be in a different mode, we can visualize the outer product of three vectors as
follows,(see figure-2). Mathematical we can write the outer product of three vectors with two
components a,b, c ∈ R2 as

(
a1

a2

)
◦

(
b1

b2

)
◦

(
c1

c2

)
=

a1b1c2 a1b2c2

a2b1c2 a2b2c2

a1b1c1 a1b2c1

a2b1c1 a2b2c1

(3.1)
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and outer product of three vectors with three components a,b, c ∈ R3 as

 a1

a2

a3

 ◦
 b1

b2

b3

 ◦
 c1

c2

c3

 =

a1b1c3 a1b2c3 a1b3c3

a2b1c3 a2b2c3 a2b3c3

a3b1c3 a3b2c3 a3b3c3

a1b1c2 a1b2c2 a1b3c2

a2b1c2 a2b2c2 a2b3c2

a3b1c2 a3b2c2 a3b3c2

a1b1c1 a1b2c1 a1b3c1

a2b1c2 a2b2c1 a2b3c1

a3b1c1 a3b2c1 a3b3c1

. (3.2)

We can see resultant produced a tensor of order three by outer product of three vectors. This
concept is most important for CP- Decomposition. We can rewrite the outer product of three
vectors as a matricization of the resulting tensor along the different modes in the following way,

A =

 a1

a2

a3



 c1

c2

c3

�
 b1

b2

b3



t

, (3.3)

A =

 b1

b2

b3



 c1

c2

c3

�
 a1

a2

a3



t

, (3.4)

A =

 c1

c2

c3



 b1

b2

b3

�
 a1

a2

a3



t

. (3.5)

The MATLAB code in Appendix-1(c) performs the outer product of three given vectors and
computes the matricization along the three modes of the resulting tensor. Running through
MATLAB code (see Appendix-1(c)), we obtain the following result, Note that we use the kron
command of MATLAB to compute the Khatri-Rao products given in equations (3.3), (3.4) and
(3.5). As we can saw in above section the Kronecker and KhatriRao products are identical when
considering vectors. Output of above MATLAB code.

a =

 1
2
3

 ,b =

 4
5
6

 , c =

 7
8
9


T1 =

 28 35 42 32 40 48 36 45 54
56 70 84 64 80 96 72 90 108
84 105 126 96 120 144 108 135 162


T is a tensor of size 3× 3× 3, which is obtained from T1.

T (:, :, 1) =
28 35 42
56 70 84
84 105 126

, T (:, :, 2) =
32 40 48
64 80 96
96 120 144

, T (:, :, 3) =
36 45 54
72 90 108
108 135 162

T2 =

 28 56 84 32 64 96 36 72 180
35 70 105 40 80 120 45 90 135
42 84 126 48 96 144 54 108 162


T is a tensor of size 3× 3× 3, which is obtained from T2.

T (:, :, 1) =
28 56 84
35 70 105
42 84 126

, T (:, :, 2) =
32 64 96
40 80 120
48 96 144

, T (:, :, 3) =
36 72 180
45 90 135
54 108 162

T3 =

 28 56 84 35 70 105 42 84 126
32 64 96 40 80 120 48 96 144
36 72 108 45 90 135 54 108 162


T is a tensor of size 3× 3× 3, which is obtained from T3.
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T (:, :, 1) =

28 56 84
32 64 96
36 72 108

, T (:, :, 2) =

35 70 105
40 80 120
45 90 135

, T (:, :, 3) =

42 84 126
48 96 144
54 108 162

. In CP

decomposition, we can write a tensor as the sum of several other tensors. We show above that
the outer product of three vectors gives a tensor as a result. We shall denote this tensor to be of
rank-1 and we will use the term (rank-1 tensor) to denote tensors that can be written as the outer
product of a vector triple. CP-decomposition is a technique of decomposition in which we can
rewrite a given tensor as a sum of several rank-1 tensors. We can also determine the rank of a
tensor by CP-decomposition, if any tensor expressed a sum of two rank-1 tensor, then its rank
is 2 and if tensor expressed as sum of three rank-1 tensor, then tensor rank is 3. We can write
CP-decomposition mathematically as

A =
R∑
r=1

ar ◦ br ◦ cr = [[ABC]]. (3.6)

Where R is the number of vector triples that compose tensor A, when added up. Where the
matrices are given by A = (a1,a2, ....,aR), B = (b1,b2, ....,bR) and C = (c1, c2, ...., cR),
with vectors ai,bi and ci, as column vector, where i = 1, 2, ..., R. Hence we can write the
CP-decomposition of a rank R tensor as

A = a1 ◦ b1 ◦ c1 + a2 ◦ b2 ◦ c2 + .....+ ar ◦ br ◦ cr =
R∑
r=1

ar ◦ br ◦ cr = [[ABC]]. (3.7)

In this section we are going to analyze third order (3×3×3)-tensors concentrating on problems
about rank, decomposition and lower rank approximation to a given tensor.

3.1 Algebra for computing PARAFAC component

PARAFAC components are roughly calculated by minimization of the quadratic cost function
(QCF).

f(A,B,C) = ‖A −
R∑
r=1

ar ◦ br ◦ cr‖2. (3.8)

When minimizing the function .f(A,B,C), we faced two different problems; (i) If f(A,B,C)
become zero, then we have computed a decomposition of the tensor A. (ii) We will able to com-
puted best rank-R approximation to a given tensor A, if we can compute the minimum of the
function above and it is distinct from zero. Equation (3.8) is most often minimized by means of
the ALS algorithm in which the components are updated mode per mode. Always the compo-
nents of PARAFAC decomposition of (3× 3× 3)-tensors are either vectors and (3× 3)-matrices
depending on the rank-R of the tensor being 1,2 or 3. In each case, the components matrices
will be defined as, A = (a1,a2, ....,aR), B = (b1,b2, ....,bR) and C = (c1, c2, ...., cR), where
ai,bi and ci are vectors and i = 1, 2, ..., R as columns. We can write QCF, given in eq. (3.8) by
using equation (3.7).

f(A,B,C) = ‖A − [[AB,C]]‖2. (3.9)

Using ALS algorithm to solve this equation, we find that ALS fixes B and C to find A, then takes
A and C to update B finally takes A and updated B to update C. The updating process is iterated
until, we find some convergence criterion. Matricization of equation (3.8) with its different mode
of unfolding is

minA‖A1 −A(C �B)T ‖ (3.10)

minA‖A2 −B(C �A)T ‖ (3.11)

minA‖A3 − C(B �A)T ‖. (3.12)

Where A1 A2 and A3 are the first, second and third mode of unfolding of tensor A. Solving
these equations,we find that we can update each components matrix A, B and C as follows,

A← A1[(C �B)t]−1, (3.13)

B ← A2[(C �A)t]−1, (3.14)

C ← A3[(B �A)t]−1. (3.15)
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Which is write as in Kolda [27].

A← A1(C �B)(CtC ∗BtB)
−1
, (3.16)

B ← A2(C �A)(CtC ∗AtA)
−1
, (3.17)

C ← A3(B �A)(BtB ∗AtA)
−1
. (3.18)

3.2 PARAFAC Computation of a tensor by ALS method

We are going to use ALS algorithm to compute PARAFAC decomposition of a third order (3×3×
3)-tensor, and we effort to reach some results for a general case which can disclose something
about the inner structure of rank-1 tensors. For computing the PARAFAC decomposition of

rank-1 tensor, the components matrices A, B and C will be given by vectors a =

 a1

a2

a3

,

b =

 b1

b2

b3

 and a =

 c1

c2

c3

, so that equation (3.13), (3.14) and (3.15) used by the ALS

algorithm become,  a1

a2

a3

← A1



 c1

c2

c3

�
 b1

b2

b3



t

−1

, (3.19)

 b1

b2

b3

← A2



 c1

c2

c3

�
 a1

a2

a3



t

−1

, (3.20)

 c1

c2

c3

← A3



 b1

b2

b3

�
 a1

a2

a3



t

−1

. (3.21)

we can rewrite equation (3.19), (3.20) and (3.21) according the equation (3.16), (3.17) and (3.18),
as in [27].

 a1

a2

a3

← A1


 c1

c2

c3

�
 b1

b2

b3




 c1

c2

c3


t c1

c2

c3

 ∗
 b1

b2

b3


t b1

b2

b3



−1

,

(3.22) b1

b2

b3

← A2


 c1

c2

c3

�
 a1

a2

a3




 c1

c2

c3


t c1

c2

c3

 ∗
 a1

a2

a3


t a1

a2

a3



−1

,

(3.23) c1

c2

c3

← A3


 b1

b2

b3

�
 a1

a2

a3




 b1

b2

b3


t b1

b2

b3

 ∗
 a1

a2

a3


t a1

a2

a3



−1

,

(3.24)
all above vectors a,b, c ∈ R3.

3.3 Relation between the rank one tensor and different tensor components

We are going to consider a general third order tensor and see what relations must hold between
its entries to make it be a rank-1 tensor.
Let A be a tensor of rank-1, then we can write it as the outer product of three vectors. We can
assume,
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 1
a2

a3

 ◦
 1

b2

b3

 ◦
 c1

c2

c3

 =

c3 b2c3 b3c3

a2c3 a2c3 a2b3c3

a3c3 a3b2c3 a3b3c3

c2 b2c2 b3c2

a2c2 a2b2c2 a2b3c2

a3c2 a3b2c2 a3b3c2

c1 b2c1 b3c1

a2c1 a2b2c1 a2b3c1

a3c1 a3b2c1 a3b3c1

=

α113 α123 α133

α213 α223 α233

α313 α323 α333

α112 α122 α132

α212 α222 α232

α312 α322 α332

α111 α121 α131

α211 α221 α231

α311 α321 α331 ,
With a2, a3, b2, b3, c1, c2, c3 6= 0 and non zero entries in the tensor. According outer product
above and by compares both side, we can write the equations.
α111 = c1, α121 = b2c1, α131 = b3c1, α211 = a2c1, α221 = a2b2c1, α231 = a2b3c1, α311 =
a3c1, α321 = a3b2c1, α331 = a3b3c1,,
α112 = c2, α122 = b2c2, α132 = b3c2, α212 = a2c2, α222 = a2b2c2, α232 = a2b3c2, α312 =
a3c2, α322 = a3b2c2, α332 = a3b3c2,
α113 = c3, α123 = b2c3, α133 = b3c3, α213 = a2c3, α223 = a2c3, α233 = a2b3c3, α313 = a3c3, α323 =
a3b2c3, α333 = a3b3c3.
By solving above equation we find all entries of the vector, such that a1 = 1, b1 = 1, c1 =
α111, c2 = α112, c3 = α113,
a2 =

α213
α113

= α211
α111

= α212
α112

= α221
α121

= α231
α131

= α222
α122

= α232
α132

= α223
α123

= α233
α133

,
a3 =

α311
α111

= α312
α112

= α313
α113

= α323
α123

= α333
α133

= α332
α132

= α322
α122

= α321
α121

= α331
α131

,
b2 =

α121
α111

= α122
α112

= α123
α113

= α222
α212

= α322
α312

= α223
α213

= α323
α313

= α321
α311

= α221
α211

,
a3 =

α133
α113

= α132
α112

= α131
α111

= α231
α211

= α233
α213

= α333
α313

= α232
α212

= α322
α312

= α323
α313

.
We can see that a2, a3, b2, b3, c1, c2 and c3 denotes the ratio between the entries in each mode-1,
mode-2 and mode-3 fiber of the tensor respectively. Let we consider that one or more entries of
the vectors are zero. We can find that in these cases, the entire corresponding slice of the tensor
become zero. Let us consider the case a2 = 0 and a3 = 0.

 1
0
0

 ◦
 1

b2

b3

 ◦
 c1

c2

c3

 =

α113 α123 α133

0 0 0
0 0 0

α112 α122 α132

0 0 0
0 0 0

α111 α121 α131

0 0 0
0 0 0

,

and we can see that lower horizontal slice become 0 when a2 = 0 and a3 = 0. Hence we
can write the equation above as c1 = α111, b2c1 = α121, b3c1 = α131, c2 = α112, b2c2 =
α122, b3c2 = α132, c3 = α113, b2c3 = α123, b3c3 = α113. By solving above equation, we find
c1 = α111, c2 = α112, c3 = α113, b2 = α121

α111
= α122

α112
= α123

α113
, b3 = α133

α113
= α132

α112
= α131

α111
. Similarly,

we can find the general form of the decomposition of a rank-1 tensor when other entries of the
component vectors are zero. Thus we can easily check if a given tensor is rank-1 by checking the
ratios between the entries in each mode. Also, we see that we can find the PARAFAC decom-
position of a rank-1 tensor by writing the ratios between the entries in each mode as the entries
of each corresponding vector of the decomposition. If the entries of one or more slices of the
tensor are zero, then the corresponding entry in the component vector is zero.
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Numerical example of PARAFAC decomposition of a rank-1 tensor using ALS
algorithm

We are going to decompose a third order tensor by hand using ALS algorithm, which is decribe
above. Let a third order (3× 3× 3)-tensor

A =

3 6 9
6 12 18
9 18 27

2 4 6
4 8 12
6 12 18

1 2 3
2 4 6
3 6 9 .

By using ALS method, let we set the starting values of vectors b′ =

 1
0
−1

 , c′ =

 1
2
3


and we used A1 is first mode matricization of tensor A. Using equation (3.22),

a = A1


 1

2
3

�
 1

0
−1




 1

2
3


t 1

2
3

 ∗
 1

0
−1


t 1

0
−1



−1

=

 1 2 3 2 4 6 3 6 9
2 4 6 4 8 12 6 12 18
3 6 9 6 12 18 9 18 27





1
0
−1
2
0
−2
3
0
−3


{14 ∗ 2}−1

=

 −28
−56
−84

 ∗ {28}−1 =

 −28/28
−56/28
−84/28

 =

 −1
−2
−3

.

Now putting vectors a =

 −1
−2
−3

 and c′ =

 1
2
3

 in equation (3.23) and we find vector b

and we used A2 is second mode matricization of tensor A. Then vector

b = A2


 1

2
3

�
 −1
−2
−3




 1

2
3


t 1

2
3

 ∗
 −1
−2
−3


t −1
−2
−3



−1

=

 1 2 3 2 4 6 3 6 9
2 4 6 4 8 12 6 12 18
3 6 9 6 12 18 9 18 27





−1
−2
−3
−2
−4
−6
−3
−6
−9


{14 ∗ 14}−1
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=

 −196
−392
−588

 ∗ {196}−1 =

 −196/196
−392/196
−588/196

 =

 −1
−2
−3

.

Now for vector c, we put the vector a and b in equation (3.24) and we will find vector c, here
we used A3 is third mode matricization of tensor A. Then we find

c = A3


 −1
−2
−3

�
 −1
−2
−3




 −1
−2
−3


t −1
−2
−3

 ∗
 −1
−2
−3


t −1
−2
−3



−1

=

 1 2 3 2 4 6 3 6 9
2 4 6 4 8 12 6 12 18
3 6 9 6 12 18 9 18 27





1
2
3
4
5
6
7
8
9


{14 ∗ 14}−1

=

 196
392
588

 ∗ {196}−1 =

 196/196
392/196
588/196

 =

 1
2
3

.

The vector a,b and c, we obtain a =

 −1
−2
−3

, b =

 −1
−2
−3

 and c =

 1
2
3

. Similarly,

going through the above algorithm again to find a1,b1 and c1, by putting the vectors a,b and c,
we obtain

a = a1 =

 −1
−2
−3

, b = b1 =

 −1
−2
−3

 and c = c1 =

 1
2
3


and we stop to iterate since the values for a,b and c converge and correct in four decimal place.
Thus we can write rank-1 approximate tensor, after normalizing the vectors a2,b2 and c2,

D1 = 52.3832

 0.2673
0.5345
0.8018

 ◦
 0.2673

0.5345
0.8018

 ◦
 0.2673

0.5345
0.8018



=

3.0009 6.0007 9.0017
6.0007 11.9992 18.0000
9.0017 18.0000 27.0016

2.0005 4.0002 6.0007
4.0002 7.9990 11.9992
6.0007 11.9992 18.0000

1.0004 2.0005 3.0009
2.0005 4.0002 6.0007
3.0009 6.0007 9.0017

,

3.4 Best Lower Rank Approximation to a Tensor

The question of approximating a matrix by another of lower rank is an important issue in matrix
analysis. We want to find a matrix of lower rank that is closest to a given matrix A of rank r. Let
A be matrix of rank r and B be the matrix of rank k with k < r that is closest to A. Then

‖A−B‖F =
√
σ2
k+1 + ....+ σ2

r, (3.25)

where σk is the k-singular value of the matrix A.
We can see that the distance between the matrix and its lower rank approximation is given by a
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function of the relevant singular values. We can generalize this concept to the tensor analysis.
Nevertheless, we will see that although the underlying ideas are the same, there are important
features when computing the best rank approximation to a tensor that makes this issue quite
different from its matrix counterpart. When considering tensors, we want to find some tensor D
which has a lower rank than the tensor A such that the expression,

‖A −D‖F , (3.26)

is minimized. While the distance between a matrix and its best lower rank approximation is
given by a function of some of the singular values, there is no such straightforward result for
tensors and we have to compute it using an iterative method. This is usually done using an
Alternating Least Squares algorithm as explained in section 3.2. The best rank-1 approximation
is an important tool when analyzing tensors. This approximation provides a rank-1 tensor as a
result; and these tensors can be easily decomposed as the outer product of vectors as we have
seen in section 3. All tensors can be more or less closely approximated by the result of the outer
product of three vectors. The best rank-2 approximation can provide some information about
the actual rank of the given tensor. However, this approximation displays special features that
make it very different from its rank-1 counterpart. Once we have computed the best lower-rank
approximation D to a tensor A, we will be interested in knowing how good an approximation
it is. If the expression given in equation (3.26) is very small, then we can deduce that the
approximation is very close to the tensor A. We can find the best rank-1 approximation to a
given tensor by minimizing the QCF given by equation (3.8), which we can write for R = 1 as,

f(a,b, c) = ‖A − a ◦ b ◦ c‖2. (3.27)

By minimizing this equation, we shall find the rank-1 tensor that is closest to the given tensor
A. We shall use the ALS algorithm, as we did for computing the PARAFAC decomposition
of a rank-1 tensor mentioned above. The MATLAB code performs the computation of the best
rank-1 approximation to a given tensor (See Appendix-1(d)). However, we also find rank-1 ap-
proximation of a tensor manually with an example given in the above section, for comparing
and testing results. We are going to find rank-1 approximation of same tensor by MATLAB.
However, we set the rank-3 tensor A in MATLAB and run the tensor toolbox as shown in the
script (see Appendix-1(d)); we obtain the following solution,

M =

 1 2 3 2 4 6 3 6 9
2 4 6 4 8 12 6 12 18
3 6 9 6 12 18 9 18 27


T is a tensor of size 3× 3× 3, which is obtained from matrix M .

T (:, :, 1) =
1 2 3
2 4 6
3 6 9

, T (:, :, 2) =
2 4 6
4 8 12
6 12 18

, T (:, :, 2) =
3 6 9
6 12 18
9 18 27

Iter 1: fit = 1.000000e + 000 fitdelta = 1.0e+000
Iter 2: fit = 1.000000e + 000 fitdelta = 1.8e-008
Final fit = 1.000000e+000
B is a ktensor of size 3× 3× 3
B.lambda = [52.3832]

B.U{1}=
0.2673
0.5345
0.8018

B.U{2}=
0.2673
0.5345
0.8018

B.U{3}=
0.2673
0.5345
0.8018

.

We define the term final fit an approximation used in the MATLAB Tensor Toolbox as a per-
centage showing, how close the approximation is to the tensor. If we have a final fit of 1, then
the approximation fits exactly and represents the tensor itself making equation (3.26) equal to
zero. If we have a final fit much smaller than one, then we can deduce that the approximation
is not very close to the tensor. The final fit of an approximation is given by the expression,
1− ‖A−D‖F‖A‖F .
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By above MATLAB rank-1 approximation, we again obtain a tensor, which is same as D1, find
by hand is

D1 = 52.3832

 0.2673
0.5345
0.8018

 ◦
 0.2673

0.5345
0.8018

 ◦
 0.2673

0.5345
0.8018



=

3.0009 6.0007 9.0017
6.0007 11.9992 18.0000
9.0017 18.0000 27.0016

2.0005 4.0002 6.0007
4.0002 7.9990 11.9992
6.0007 11.9992 18.0000

1.0004 2.0005 3.0009
2.0005 4.0002 6.0007
3.0009 6.0007 9.0017 ,

where the displayed vectors are normalized. We can see that D1 and D2 represent two different
rank-1 approximations to the tensor A. Substituting the expressions found for , D1 and D2 in
equation (3.27) and using equation (3.26) to compute the Frobenius norm of the difference be-
tween both tensors we can see that,
‖A −D1‖F = 0.0046
‖A −D2‖F = 0.0046
Since the value for the distance between the tensor A and its approximations D1 and D2 is the
same in both cases, we can deduce that D1 and D2 represent equally good approximations to A.
We can see that the final fit of both approximations is,
1− ‖A−D1‖For‖A−D2‖F

‖A‖F = 1− 0.0046
52.3832 = 1− 0.00009 = 0.99991.

3.5 Representing Rank-1 Approximations to a Tensor by three dimensional graph

We are going to represent the minimizing function f(a,b, c) as given in equation (3.27). We can
find similar representations in Lathauwer, Moor and Vandewalle [28]. We are going to consider
different tensors that we define as

A =

C1 C2 C3

C4 C5 C6

C7 C8 C9

B1 B2 B3

B4 B5 B6

B7 B8 B9

A1 A2 A3

A4 A5 A6

A7 A8 A9

. (3.28)

We want to represent the distance between the tensor A and its rank-1 approximations in a
three dimensional space so that we can visualize the behavior of the minimizing cost function
f(a,b, c). Thus, we must represent f(a,b, c) as a function of only two variables. This means
that we must assume arbitrary values for some entries of the component vectors a,b, c so that
the three dimensional representation is possible. Let us assume that the rank-1 tensor given by the

vector outer product a ◦ b ◦ c is formed by the vectors a =

 1
−1
−1

,b =

 cosα

sinα

sinα

andc =

 cosβ

sinβ

sinβ

.

We have chosen vectors b and c to be normalized and depending only on one variable respec-
tively and we have chosen an arbitrary vector a in order to be able to represent f(a,b, c) as a
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function of two variables, α and β. Then outer product of these vector produce a tensor such that

a ◦ b ◦ c =

 1
−1
−1

 ◦
 cosα

sinα

sinα

 ◦
 cosβ

sinβ

sinβ



=

cosαsinβ sinαsinβ sinαsinβ

−cosαsinβ −sinαsinβ −sinαsinβ
−cosαsinβ −sinαsinβ −sinαsinβ

cosαsinβ sinαsinβ sinαsinβ

−cosαsinβ −sinαsinβ −sinαsinβ
−cosαsinβ −sinαsinβ −sinαsinβ

cosαcosβ sinαsinβ sinαcosβ

−cosαcosβ −sinαcosβ −sinαcosβ
−cosαcosβ −sinαcosβ −sinαcosβ

. (3.29)

We find the value of f(a,b, c) according equation (3.27), by putting the value of equation (3.28)
and (3.29).

f(a,b, c) = (A1 − cosαcosβ)2 + (A2 − sinαsinβ)2 + (A3 − sinαcosβ)2

+ (A4 + cosαcosβ)2 + (A5 + sinαcosβ)2 + (A6 + sinαcosβ)2

+ (A7 + cosαcosβ)2 + (A8 + sinαcosβ)2 + (A9 + sinαcosβ)2

+ (B1 − cosαsinβ)2 + (B2 − sinαsinβ)2 + (B3 − sinαsinβ)2

+ (B4 + cosαsinβ)2 + (B5 + sinαsinβ)2 + (B6 + sinαsinβ)2

+ (B7 + cosαsinβ)2 + (B8 + sinαsinβ)2 + (B9 + sinαsinβ)2

+ (C1 − cosαsinβ)2 + (C2 − sinαsinβ)2 + (C3 − sinαsinβ)2

+ (C4 + cosαsinβ)2 + (C5 + sinαsinβ)2 + (C6 + sinαsinβ)2

+ (C7 + cosαsinβ)2 + (C8 + sinαsinβ)2 + (C9 + sinαsinβ)2. (3.30)

We can sketch a graph of the minimizing function given above by running through MATLAB
code (see Appendix-1(e)). For above numerical tensor, which is convert to rank-1 tensor and the
final fit of the approximation is 0.99991, we have able to sketch a three dimensional graph of the
rank-1 approximation. (see figure-3)

4 Conclusion

Here is the brief outline over the outcomes of the purposed research work: Section I is an in-
troductory one and reveals the development of CP-decomposition and its use in various fields
of sciences. In section II, we have discussed variety of vector, matrix and tensor products along
with appropriate examples. Also, the MATLAB codes, corresponding to these products are
also mentioned in Appendix-I. Third section with its subsequent sub-sections has been dealt
with rank-1 approximation of a third order tensorA using ALS method manually. We have also
calculated best lower rank approximation to a 3rd order tensor A. For this purpose, we have
calculated rank-1 approximation of the 3rd order tensor A manually which is D1and then calcu-
lated the same (which is D2) using of MATLAB codes developed by [26] and [28]. The value
for the distance between the tensor A and its approximations is the same in both cases, i.e.
‖A −D1‖F = ‖A −D2‖F = 0.0046. Finally, we have computed the final fit of approximation
which is 0.99991, and can be considered much closer to 1. This closeness shows that the best
one rank approximation of a 3rd order tensor reveals quite good agreement with the original 3rd
order tensor A. A pictographic view of this approximation is also drawn in fig. (3).

Appendix-1[26],[28]
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Figure 3. 3D-graph of rank-1 approximation of 3rd-order tensor

(a) Tensor times Matrix (tensor-matrix multiplication):

% Assume a (3 by 9)-matrix, which is used to make a tensor.

M = [1 2 3 4 5 6 7 8 9;10 11 12 13 14 15 16 17 18; 19 20 21 22 23 24 25 26 27];

T = tensor(M, [3,3,3]) %A third order (3 by 3 by 3)-tensor.

A = [1 2 3;4 5 6;7 8 9]%We assume a matrix A.

P1 = ttm(T,A,1) %Tensor Ist mode product with matrix A.

P2 = ttm(T,A,2) % Tensor IInd mode product with matrix A.

P3 = ttm(T,A,3) % Tensor IIIrd mode product with matrix A.

(b) Tensor times Vector (tensor-vector multiplication):

%Assume a (3 by 9)-matrix, which is used to make a tensor.

M = [1 2 3 4 5 6 7 8 9;10 11 12 13 14 15 16 17 18; 19 20 21 22 23 24 25 26 27];

T = tensor(M, [3,3,3]) % A third order (3 by 3 by 3)-tensor.

a = [4;5;6]% we assume a vector a.

P1 = ttv(T,a,1)% Vector multiplication with Ist mode tensor unfolding.

P2 = ttv(T,a,2)% Vector multiplication with IInd mode tensor unfolding.

P3 = ttv(T,a,3)% Vector multiplication with IIIrd mode tensor unfolding.

(c) Outer Product of three vectors:

a=[1;2;3],b=[4;5;6],c=[7;8;9]%Let we have three vector a,b and c.

T1 = a*(kron(c,b))'% T1 is first way outer product of three vectors a,b and c.

T = tensor(T1, [3,3,3])% A third order tensor produced by T1.

T2 = b*(kron(c,a))'%T2 is second way outer product of three vectors a,b and c.

T = tensor(T2, [3,3,3])% A third order tensor produced by T2.

T3 = c*(kron(b,a))'%T3 is third way outer product of three vectors a,b and c.

T = tensor(T3, [3,3,3])% A third order tensor produced by T3.

(d) Best Rank-1 Approximation (Parafac decomposition):

M = [1 2 3 4 5 6 7 8 9;10 11 12 13 14 15 16 17 18; 19 20 21 22 23 24 25 26 27];

%this matrix denotes the 1-mode matricization of the given tensor

T = tensor(M, [3,3,3]) %This code builds up the tensor from matrix M.

B = parafac_als(T,1) % This code computes the approximation.

(e) MATLAB code for the Minimizing Function Graph:

% First take all the element of the same tensor, which solved by hand in section 3.

A1=1; A2=2; A3=3; A4=2; A5=4; A6=6; A7=3; A8=6; A9=9;

B1=2; B2=4; B3=6; B4=4; B5=8; B6=12; B7=6; B8=12; B9=18;

C1=3; C2=6; C3=9; C4=6; C5=12; C6=18; C7=9; C8=18; C9=27;

% Produce a matrix by above elements.

T1 = [A1,A2,A3,A4,A5,A6,A7,A8,A9; B1,B2,B3,B4,B5,B6,B7,B8,B9; C1,C2,C3,C4,C5,C6,C7,C8,C9];
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T = tensor(T1,[3,3,3]) %Produce a third order tensor by T1.

[x,y] = meshgrid([-pi:0.99991:pi]);

%Take meshgrid for final fit of approximation and then construct minimizing function f.

f =(A1 - ((cos(x)).*(cos(y)))).^2 + (A2 - ((sin(x)).*(sin(y)))).^2+

(A3 + ((sin(x)).*(cos(y)))).^2 + (A4 + ((cos(x)).*(cos(y)))).^2 +

(A5 + ((sin(x)).*(cos(y)))).^2 + (A6 - ((sin(x)).*(cos(y)))).^2+

(A7 + ((cos(x)).*(cos(y)))).^2 + (A8 + ((sin(x)).*(cos(y)))).^2+

(A9 + ((sin(x)).*(cos(y)))).^2 +(B1 - ((cos(x)).*(sin(y)))).^2 +

(B2 - ((sin(x)).*(sin(y)))).^2+ (B3 + ((sin(x)).*(sin(y)))).^2 +

(B4 + ((cos(x)).*(sin(y)))).^2 + (B5 - ((sin(x)).*(sin(y)))).^2 +

(B6 - ((sin(x)).*(sin(y)))).^2 + (B7 + ((cos(x)).*(sin(y)))).^2 +

(B8 + ((sin(x)).*(sin(y)))).^2+ (B9 + ((sin(x)).*(sin(y)))).^2 +

(C1 - ((cos(x)).*(sin(y)))).^2 + (C2 - ((sin(x)).*(sin(y)))).^2+

(C3 + ((sin(x)).*(sin(y)))).^2 + (C4 + ((cos(x)).*(sin(y)))).^2 +

(C5 - ((sin(x)).*(sin(y)))).^2 + (C6 - ((sin(x)).*(sin(y)))).^2 +

(C7 + ((cos(x)).*(sin(y)))).^2 + (C8 + ((sin(x)).*(sin(y)))).^2+

(C9 + ((sin(x)).*(sin(y)))).^2;

%we use x for alpha and y for beta.

surfc(x,y,f)

S. No. Notation used Notations meaning
1. ◦ Outer product of two vector/matrix/tensor
2. ⊗ Kronecker product
3. A,D, C,P Tensor
4. A,B,C, ...,M Matrices
5. a, b, .....;α, β, ...; a1, a2.. Scalars (i.e. t is used for transpose of matrix and vector)
6. a,b, c.... Vectors
7. I1, I2....; I, J,K.... Indices
8. ∗, · Product
9. ×n n-mode product (i.e. n-mode product of a tensor A with a matrixA isA×n A)
10. R Real vector space
11. QCF Quadratic cast function
12. ALS Alternative least Square
13. � Khatri-Rao Product
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