Vol. 3(Spec 1) (2014), 489-494

Prime k-Bi-ideals in Γ -Semirings

R.D. Jagatap

Dedicated to Patrick Smith and John Clark on the occasion of their 70th birthdays.

Communicated by Ayman Badawi

MSC 2010 Classifications: 16Y60, 16Y99.

Keywords and phrases: k-bi-ideal, prime k-bi-ideal, semiprime k-bi-ideal, strongly prime k-bi-ideal, irreducible k-bi-ideal, k-bi-idempotent Γ -semiring.

The Author is thankful to the referee for his valuable suggestions.

Abstract. In this paper the notions of a k-bi-ideal , prime k-bi-ideal, strongly prime k-bi-ideal , irreducible k-bi-ideal and strongly irreducible k-bi-ideal of a Γ -semiring are introduced. Also the concept of a k-bi-idempotent Γ -semiring is defined. Several characterizations of a k-bi-idempotent Γ -semiring are furnished by using prime, semiprime, strongly prime , irreducible and strongly irreducible k-bi-ideals in a Γ -semiring.

§1.Introduction:

The notion of a Γ -ring was introduced by Nobusawa in [11]. The class of Γ -rings contains not only rings but also ternary rings. As a generalization of a ring, semiring was introduced by Vandiver [17]. The notion of a Γ -semiring was introduced by Rao in [12] as a generalization of a ring, Γ -ring and a semiring.

Ideals play an important role in any abstract algebraic structure. Characterizations of prime ideals in semirings were discussed by Iseki in [5,6]. Henriksen in [4] defined more restricted class of ideals in a semiring known as k-ideals. Also several characterizations of k-ideals of a semiring were discussed by Sen and Adhikari in [13,14]. k-ideal in a Γ - semiring was defined by Rao in [12] and in [2] Dutta and Sardar gave some of its properties. Author discussed some properties of k-ideals and full k-ideals of a Γ -semiring in [8]. Prime and semiprime ideals in a Γ -semirings were discussed by Dutta and Sardar in [2].

The notion of a bi-ideal was first introduced for semigroups by Good and Hughes [3]. The concept of a bi-ideal for a ring was given by Lajos and Szasz in [9] and they studied bi-ideal for a semigroup in [10]. Shabir, Ali and Batool in [15] gave some properties of bi-ideals in a semiring. Prime bi-ideals in a semigroup was discussed by Shabir and Kanwal in [16].

It is natural to extend the concept of a k-ideal to a k-bi-ideal of a Γ -semiring. Hence in this paper we define a k-bi-ideal as an extension of a k-ideal of a Γ -semiring. Also we define a prime k-bi-ideal, semiprime k-bi-ideal, strongly prime k-bi-ideal, irreducible and strongly irreducible k-bi-ideal of a Γ -semiring. We study some characterizations of irreducible and strongly irreducible k-bi-ideals. Further we introduce the concept of a k-bi-idempotent Γ -semiring. Several characterizations of a k-bi-idempotent Γ -semiring are furnished by using prime, semiprime, strongly prime, irreducible and strongly irreducible k-bi-ideals in a Γ -semiring.

§2. Preliminaries:

First we recall some definitions of the basic concepts of Γ -semirings that we need in sequel. For this we follow Dutta and Sardar [2].

Definition 2.1:- Let S and Γ be two additive commutative semigroups. S is called a Γ -semiring if there exists a mapping $S \times \Gamma \times S \longrightarrow S$ denoted by $a\alpha b$; for all $a, b \in S$ and $\alpha \in \Gamma$ satisfying the following conditions: (i) $a\alpha (b + c) = (a \ \alpha b) + (a \ \alpha c)$ (ii) $(b + c) \ \alpha a = (b \ \alpha a) + (c \ \alpha a)$ (iii) $a(\alpha + \beta)c = (a \ \alpha c) + (a \ \beta c)$ (iv) $a\alpha (b\beta c) = (a\alpha b) \beta c$; for all $a, b, c \in S$ and for all $\alpha, \beta \in \Gamma$.

Definition 2.2 :- An element 0 in a Γ -semiring S is said to be an absorbing zero if $0\alpha a = 0 = a\alpha 0, a + 0 = 0 + a = a$; for all $a \in S$ and $\alpha \in \Gamma$.

Definition 2.3:- A non empty subset T of a Γ -semiring S is said to be a sub- Γ -semiring of S if (T,+) is a subsemigroup of (S,+) and $a\alpha b \in T$; for all $a, b \in T$ and $\alpha \in \Gamma$.

Definition 2.4:- A nonempty subset T of a Γ -semiring S is called a left (respectively right) ideal of S if T is a subsemigroup of (S, +) and $x \alpha a \in T$ (respectively $a \alpha x \in T$), for all $a \in T$, $x \in S$ and $\alpha \in \Gamma$.

Definition 2.5 :- *If T is both left and right ideal of a* Γ *-semiring S, then T is known as an ideal of S.*

Definition 2.6:- A right ideal I of a Γ -semiring S is said to be a right k-ideal if $a \in I$ and $x \in S$ such that $a + x \in I$, then $x \in I$.

Similarly we define a left k-ideal of Γ -semiring S. If an ideal I is both right and left k-ideal, then I is known as a k-ideal of S.

Example 1:- Let N_0 denotes the set of all positive integers with zero. $S = N_0$ is a semiring and with $\Gamma = S$, S forms a Γ -semiring. A subset $I = 3N_0 \setminus \{3\}$ of S is an ideal of S but not a k-ideal. Since 6, $9 = 3 + 6 \in I$ but $3 \notin I$.

Example 2:- If S = N is the set of all positive integers then (S, \max, \min) is a semiring and with $\Gamma = S$, S forms a Γ -semiring. $I_n = \{1, 2, 3, \dots, n\}$ is a k-ideal for any $n \in I$.

Definition 2.7 :- For a non empty subset I of a Γ -semiring S define $\overline{I} = \{a \in S | a + x \in I, for some \ x \in I\}$. \overline{I} is called a k-closure of I. Some basic properties of k-closure are given in the following lemma .

Lemma 2.8:- For non empty subsets A and B of a Γ -semiring S we have,

(1) If $A \subseteq B$ then $\overline{A} \subseteq \overline{B}$.

(2) \overline{A} is the smallest (left k-ideal, right k-ideal) k-ideal containing (left k-ideal, right k-ideal) k-ideal A of S.

(3) $\overline{A} = A$ if and only if A is a (left k-ideal, right k-ideal) k-ideal of S.

(4) $\overline{A} = \overline{A}$, where A is a (left k-ideal, right k-ideal) k-ideal of S.

 $(5)\overline{A}\overline{\Gamma}\overline{B} = \overline{A}\overline{\Gamma}\overline{B}$, where A and B are (left k-ideals, right k-ideals) k-ideals of S.

Now we give a definition of a bi-ideal.

Definition 2.9 [7]:- A nonempty subset B of S is said to be a bi-ideal of S if B is a sub- Γ -semiring of S and $B\Gamma S\Gamma B \subseteq B$.

Example 3:- Let N be the set of natural numbers and let $\Gamma = 2N$. Then N and Γ both are additive commutative semigroup. An image of a mapping $N \times \Gamma \times N \longrightarrow N$ is denoted by $a\alpha b$ and defined as $a\alpha b =$ product of a, α , b; for all $a, b \in N$ and $\alpha \in \Gamma$. Then N forms a Γ -semiring. B = 4N is a bi-ideal of N.

Example 4:-Consider a Γ -semiring $S = M_{2X2}(N_0)$, where N_0 denotes the set of natural numbers with zero and $\Gamma = S$. Define $A\alpha B$ = usual matrix product of A, α and B; for all $A, \alpha, B \in S$. Then

 $P = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \mid a, b \in N_0 \right\} \text{ is a bi-ideal of a } \Gamma \text{-semiring } S.$

Lemma 2.8 also holds for a k-bi-ideal similar to left k-ideal, right k-ideal and and k- ideal. Some results from [5] are stated which are useful for further discussion. **Result 2.10:-** For each nonempty subset X of a Γ -semiring S following statements hold.

(i) SΓX is a left ideal of S.
(ii) XΓS is a right ideal of S.
(iii) SΓXΓS is an ideal of S. **Result 2.11:-** In a Γ-semiring S, for a ∈ S following statements hold.
(i) SΓa is a left ideal of S.
(ii) aΓS is a right ideal of S.
(iii) SΓaΓS is an ideal of S.

Now onwards S denotes a Γ -semiring with absorbing zero unless otherwise stated.

§3. k- Bi-ideal:

We begin with definition of a k-bi-ideal in a Γ -semiring S.

Definition 3.1:- A nonempty subset B of S is said to be a k-bi-ideal of S if B is a sub- Γ -semiring of S, $\overline{B\Gamma S\Gamma B} \subseteq B$ and if $a \in B$ and $x \in S$ such that $a + x \in B$, then $x \in B$.

First we give some concepts in a Γ -semiring that we need in a sequel. **Definition 3.2:-** A k-bi-ideal B of S is called a prime k-bi-ideal if $\overline{B_1 \Gamma B_2} \subseteq B$ implies $B_1 \subseteq B$ or $B_2 \subseteq B$, for any k-bi-ideals B_1, B_2 of S.

Definition 3.3: A *k*-bi-ideal *B* of *S* is called a strongly prime *k*-bi-ideal if $(B_1 \Gamma B_2) \cap (B_2 \Gamma B_1) \subseteq B$ implies $B_1 \subseteq B$ or $B_2 \subseteq B$, for any *k*-bi-ideals B_1, B_2 of *S*.

Definition 3.4 :- A k-bi-ideal B of S is called a semiprime k-bi-ideal if for any k-bi-ideal B_1 of S, $\overline{B_1}^2 = \overline{B_1 \Gamma B_1} \subseteq B$ implies $B_1 \subseteq B$.

Obviously every strongly prime k-bi-ideal in S is a prime k-bi-ideal and every prime k-bi-ideal in S is a semiprime k-bi-ideal.

Definition 3.5:- A k-bi-ideal B of S is called an irreducible k-bi-ideal if $B_1 \cap B_2 = B$ implies $B_1 = B$ or $B_2 = B$, for any k-bi-ideals B_1 and B_2 of S.

Definition 3.6 :- A k-bi-ideal B of S is called a strongly irreducible k-bi-ideal if for any k-biideals B_1 and B_2 of S, $B_1 \cap B_2 \subseteq B$ implies $B_1 \subseteq B$ or $B_2 \subseteq B$. Obviously every strongly irreducible k-bi-ideal is an irreducible k-bi-ideal.

Theorem 3.7:- *The intersection of any family of prime k-bi-ideals(or semiprime k-bi-ideals) of S is a semiprime k-bi-ideal.*

Proof:- Let $\{P_i | i \in \Lambda\}$ be the family of prime k-bi-ideals of S. For any k-bi-ideal B of $S, \overline{B^2} \subseteq \bigcap_i P_i$ implies $\overline{B^2} \subseteq P_i$ for all $i \in \Lambda$. As P_i are semiprime k-bi-ideals, $B \subseteq P_i$ for all $i \in \Lambda$. Hence $B \subseteq \bigcap_i P_i$.

Theorem 3.8 :- Every strongly irreducible, semiprime k-bi-ideal of S is a strongly prime k-bi-ideal.

Proof:- Let *B* be a strongly irreducible and semiprime k-bi-ideal of *S*. For any k-bi-ideals *B*₁ and *B*₂ of *S*, let $\overline{(B_1 \Gamma B_2)} \cap \overline{(B_2 \Gamma B_1)} \subseteq B$. $B_1 \cap B_2$ is a k-bi-ideal of *S*. Since $\overline{(B_1 \cap B_2)^2} = \overline{(B_1 \cap B_2)} \Gamma \overline{(B_1 \cap B_2)} \subseteq \overline{B_1 \Gamma B_2}$. Similarly we get $\overline{(B_1 \cap B_2)^2} \subseteq \overline{B_2 \Gamma B_1}$. Therefore $(B_1 \cap B_2)^2 \subseteq \overline{(B_1 \Gamma B_2)} \cap \overline{(B_2 \Gamma B_1)} \subseteq B$. As *B* is a semiprime k-bi-ideal, $B_1 \cap B_2 \subseteq B$. But *B* is a strongly irreducible k-bi-ideal. Therefore $B_1 \subseteq B$ or $B_2 \subseteq B$. Thus *B* is a strongly prime k-bi-ideal of *S*. ■

Theorem 3.9 :- If B is a k-bi-ideal of S and $a \in S$ such that $a \notin B$, then there exists an irreducible k-bi-ideal I of S such that $B \subseteq I$ and $a \notin I$.

Proof :- Let \mathcal{B} be the family of all k-bi-ideals of S which contain B but do not contain an element a. Then \mathcal{B} is a nonempty as $B \in \mathcal{B}$. This family of all k-bi-ideals of S forms a partially ordered set under the inclusion of sets. Hence by Zorn's lemma there exists a maximal k-bi-ideal say I in \mathcal{B} . Therefore $B \subseteq I$ and $a \notin I$. Now to show that I is an irreducible k-bi-ideal of S. Let C

and D be any two k-bi-ideals of S such that $C \cap D = I$. Suppose that C and D both contain I properly. But I is a maximal k-bi-ideal in B.Hence we get $a \in C$ and $a \in D$. Therefore $a \in C \cap D = I$ which is absurd. Thus either C = I or D = I. Therefore I is an irreducible k-bi-ideal of S.

Theorem 3.10:- Any proper k-bi-ideal B of S is the intersection of all irreducible k-bi-ideals of S containing B.

Proof :- Let *B* be a k-bi-ideal of *S* and $\{B_i | i \in \Lambda\}$ be the collection of irreducible k-bi-ideals of *S* containing *B*, where Λ denotes any indexing set. Then $B \subseteq \bigcap_{i \in \Lambda} B_i$. Suppose that $a \notin B$. Then by Theorem 3.9, there exists an irreducible k-bi-ideal *A* of *S* containing *B* but not *a*. Therefore $a \notin \bigcap_{i \in \Lambda} B_i$. Thus $\bigcap_{i \in \Lambda} B_i \subseteq B$. Hence $\bigcap_{i \in \Lambda} B_i = B$.

Theorem 3.11 :- Following statements are equivalent in S.

(1) The set of k-bi-ideals of S is totally ordered set under inclusion of sets.

(2) Each k-bi-ideal of S is strongly irreducible.

(3) Each k-bi-ideal of S is irreducible.

Proof :- (1) \Rightarrow (2)

Suppose that the set of k-bi-ideals of S is a totally ordered set under inclusion of sets. Let B be any k-bi-ideal of S. To show that B is a strongly irreducible k-bi-ideal of S. Let B_1 and B_2 be any two k-bi-ideals of S such that $B_1 \cap B_2 \subseteq B$. But by the hypothesis, we have either $B_1 \subseteq B_2$ or $B_2 \subseteq B_1$. Therefore $B_1 \cap B_2 = B_1$ or $B_1 \cap B_2 = B_2$. Hence $B_1 \subseteq B$ or $B_2 \subseteq B$. Thus B is a strongly irreducible k-bi-ideal of S.

(2) \Rightarrow (3) Suppose that each k-bi-ideal of S is strongly irreducible. Let B be any k-bi-ideal of S such that $B = B_1 \cap B_2$ for any k-bi-ideals B_1 and B_2 of S. But by hypothesis $B_1 \subseteq B$ or $B_2 \subseteq B$. As $B \subseteq B_1$ and $B \subseteq B_2$, we get $B_1 = B$ or $B_2 = B$. Hence B is an irreducible k-bi-ideal of S.

(3) \Rightarrow (1) Suppose that each k-bi-ideal of *S* is an irreducible k-bi-ideal. Let B_1 and B_2 be any two k-bi-ideals of *S*. Then $B_1 \cap B_2$ is also k-bi-ideal of *S*. Hence $B_1 \cap B_2 = B_1 \cap B_2$ will imply $B_1 \cap B_2 = B_1$ or $B_1 \cap B_2 = B_2$ by assumption. Therefore either $B_1 \subseteq B_2$ or $B_2 \subseteq B_1$. This shows that the set of k-bi-ideals of *S* is totally ordered set under inclusion of sets.

Theorem 3.12 :- A prime k-bi-ideal B of S is a prime one sided k-ideal of S.

Proof :- Let *B* be a prime k-bi-ideal of *S*. Suppose *B* is not a one sided k-ideal of *S*. Therefore $\overline{B\Gamma S} \nsubseteq B$ and $\overline{S\Gamma B} \nsubseteq B$. As *B* is a prime k-bi-ideal, $(B\Gamma S)\Gamma(S\Gamma B) \nsubseteq B$. $(B\Gamma S)\Gamma(S\Gamma B) =$ $\overline{B\Gamma(S\Gamma S)\Gamma B} \subseteq \overline{B\Gamma S\Gamma B} \subseteq B$, which is a contradiction. Therefore $\overline{B\Gamma S} \subseteq B$ or $\overline{S\Gamma B} \subseteq$ *B*. Thus *B* is a prime one sided k-ideal of *S*. ■

Theorem 3.13 :- *A k*-*bi*-*ideal B* of *S* is prime if and only if for a right k-ideal *R* and a left *k*-*ideal L* of *S*, $\overline{R\Gamma L} \subseteq B$ implies $R \subseteq B$ or $L \subseteq B$.

Proof :- Suppose that a k-bi-ideal of S is a prime k-bi-ideal of S. Let R be a right k-ideal and L be a left k-ideal of S such that $\overline{R\Gamma L} \subseteq B$. R and L are itself k-bi-ideals of S. Hence $R \subseteq B$ or $L \subseteq B$. Conversely, we have to show that a k-bi-ideal B of S is a prime k-bi-ideal of S. Let A and C be any two k-bi-ideals of S such that $\overline{A\Gamma C} \subseteq B$. For any $a \in A$ and $c \in C$, $\overline{(a)}_r \subseteq A$ and $\overline{(c)}_l \subseteq C$, where $\overline{(a)}_r$ and $\overline{(c)}_l$ denotes the right k-ideal and left k-ideal generated by a and c respectively. Therefore $\overline{(a)}_r \overline{\Gamma(c)}_l \subseteq \overline{A\Gamma C} \subseteq B$. Hence by the assumption $\overline{(a)}_r \subseteq B$ or $\overline{(c)}_l \subseteq B$. Therefore $a \in B$ or $c \in B$. Thus $A \subseteq B$ or $C \subseteq B$. Hence B is a prime k-bi-ideal of S.

§4 Fully k-Bi-Idempotent Γ-Semiring :

Now we generalize the concept of a fully idempotent semiring introduced by Ahsan in [1] to a fully k-bi-idempotent Γ -semiring. Then we give some characterizations of it.

Definition 4.1:- A Γ - semiring S is said to be k-bi-idempotent if every k-bi-ideal of S is k-idempotent. That is S is said to be k-bi-idempotent if B is a k-bi-ideal of S, then $\overline{B^2} = \overline{B\Gamma B} = B$.

Theorem 4.2:- In S following statements are equivalent.

(1) *S* is *k*-bi-idempotent (2) $B_1 \cap B_2 = \overline{(B_1 \Gamma B_2)} \cap \overline{(B_2 \Gamma B_1)}$, for any *k*-bi-ideals B_1 and B_2 of *S*. (3) Each *k*-bi-ideal of *S* is semiprime. (4) Each proper k-bi-ideal of S is the intersection of irreducible semiprime k-bi-ideals of S which contain it.

 $\begin{array}{l} Proof: (\mathbf{1}) \Rightarrow (\mathbf{2}) \text{ Suppose that } \overline{B^2} = B \text{ ,for any k-bi-ideal } B \text{ of } S. \text{ Let } B_1 \text{ and } B_2 \text{ be any two k-bi-ideal of } S. B_1 \cap B_2 \text{ is also a k-bi-ideal of } S. \text{ Hence by the assumption } \overline{(B_1 \cap B_2)^2} = B_1 \cap B_2. \\ \text{Now we have } B_1 \cap B_2 = \overline{(B_1 \cap B_2)^2} = \overline{(B_1 \cap B_2)} \Gamma \overline{(B_1 \cap B_2)} \subseteq \overline{B_1} \Gamma B_2. \\ \text{Similarly we get } B_1 \cap B_2 \subseteq \overline{B_2} \Gamma B_1. \text{ Therefore } B_1 \cap B_2 \subseteq \overline{(B_1} \Gamma B_2) \cap \overline{(B_2} \Gamma B_1). \\ \text{As } \overline{B_1} \Gamma B_2 \text{ and } \overline{B_2} \Gamma B_1 \text{ are k-bi-ideal of } S. \text{ we have } \overline{(B_1} \Gamma B_2) \cap \overline{(B_2} \Gamma B_1) \text{ is a k-bi-ideal of } S. \\ \text{Hence } \overline{(B_1} \Gamma B_2) \cap \overline{(B_2} \Gamma B_1) \text{ is a k-bi-ideal of } S. \\ \text{Hence } \overline{(B_1} \Gamma B_2) \cap \overline{(B_2} \Gamma B_1) \text{ or } \overline{(B_2} \Gamma B_1). \\ \text{ and } \overline{(B_1} \Gamma B_2) \cap \overline{(B_2} \Gamma B_1) \text{ or } \overline{(B_2} \Gamma B_1). \\ \text{ and } \overline{(B_1} \Gamma B_2) \cap \overline{(B_2} \Gamma B_1) \text{ or } \overline{(B_2} \Gamma B_1). \\ \text{ and } \overline{(B_1} \Gamma B_2) \cap \overline{(B_2} \Gamma B_1) \text{ or } \overline{(B_1} \Gamma B_2) \cap \overline{(B_2} \Gamma B_1) \text{ or } \overline{(B_2} \Gamma B_1) \text{ or } \overline{(B_1} \Gamma B_2) \cap \overline{(B_2} \Gamma B_1) \text{ or } \overline{(B_2} \Gamma B_1) \text{ or } \overline{(B_2} \Gamma B_1). \\ \text{ and } \overline{(B_1} \Gamma B_2) \cap \overline{(B_2} \Gamma B_1) \text{ or } \overline{(B_1} \Gamma B_2) \cap \overline{(B_2} \Gamma B_1). \\ \text{ and } \overline{(B_1} \Gamma B_2) \cap \overline{(B_2} \Gamma B_1) \text{ or } \overline{(B_1} \Gamma B_2) \cap \overline{(B_2} \Gamma B_1) \text{ or } \overline{(B_2} \Gamma B_1) \text{$

(2) \Rightarrow (3) Let *B* be any k-bi-ideal of *S*. Suppose that $\overline{B_1}^2 = \overline{B_1 \Gamma B_1} \subseteq B$, for any k-bi-ideal B_1 of *S*. By the hypothesis we have, $B_1 = B_1 \cap B_1 = \overline{(B_1 \Gamma B_1)} \cap \overline{(B_1 \Gamma B_1)} = \overline{B_1 \Gamma B_1} \subseteq B$. Hence every k-bi-ideal of *S* is semiprime.

 $(3) \Rightarrow (4)$ Let B be a proper k-bi-ideal of S. Hence by Theorem 3.10, B is the intersection of all proper irreducible k-bi-ideals of S which contains B. By assumption every k-bi-ideal of S is semiprime. Hence each proper k-bi-ideal of S is the intersection of irreducible semiprime k-bi-ideals of S which contain it.

 $(4) \Rightarrow (1)$ Let B be a k-bi-ideal of S. If $B^2 = S$, then clearly result holds. Suppose that $B^2 \neq S$. Then $\overline{B^2}$ is a proper k-bi-ideal of S. Hence by assumption $\overline{B^2}$ is the intersection of irreducible semiprime k-bi-ideals of S which contain it.

 $\overline{B^2} = \cap \{B_i | B_i \text{ is irreducible semiprime } k - bi - ideal \}$. As each B_i is a semiprime k-bi-ideal, $B \subseteq B_i$, for all *i*. Therefore $B \subseteq \cap B_i = \overline{B^2}$. $\overline{B^2} \subseteq B$ always. Thus $\overline{B^2} = B$.

Thus we proved $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (1)$. Hence all the statements are equivalent.

Theorem 4.3:-*If S is k*-*bi*-*idempotent* , *then for any k*-*bi*-*ideal B of S*, *B is strongly irreducible if and only if B is strongly prime*.

Proof :- Let S be a k-bi-idempotent Γ -semiring. Suppose that B is a strongly irreducible k-biideal of S. To show that B is a strongly prime k-bi-ideal of S. Let B_1 and B_2 be any two k-biideals of S such that $\overline{(B_1\Gamma B_2)}\cap(\overline{B_2\Gamma B_1})\subseteq B$. By Theorem 4.2, $\overline{(B_1\Gamma B_2)}\cap(\overline{B_2\Gamma B_1})=B_1\cap B_2$. Hence $B_1\cap B_2\subseteq B$. But B is a strongly irreducible k-bi-ideal of S. Therefore $B_1\subseteq B$ or $B_2\subseteq B$. Thus B is a strongly prime k-bi-ideal of S.

Conversely, suppose that B is a strongly prime k-bi-ideal of a k-bi-idempotent Γ -semiring S. Let B_1 and B_2 be any two k-bi-ideals of S such that $B_1 \cap B_2 \subseteq B$. By Theorem 4.2, $(B_1\Gamma B_2) \cap (B_2\Gamma B_1) = B_1 \cap B_2 \subseteq B$. As B is a strongly prime k-bi-ideal, $B_1 \subseteq B$ or $B_2 \subseteq B$. Thus B is a strongly irreducible k-bi-ideal

of S.

Theorem 4.4:- Every k-bi-ideal of S is a strongly prime k-bi-ideal if and only if S is k-bi-idempotent and the set of k-bi-ideals of S is a totally ordered set under the inclusion of sets.

Proof :- Suppose that every k-bi-ideal of S is a strongly prime k-bi-ideal. Then every k-biideal of S is a semiprime k-bi-ideal. Hence S is k-bi-idempotent by Theorem 4.2. Now to show the set of k-bi-ideals of S is a totally ordered set under inclusion of sets. Let B_1 and B_2 be any two k-bi-ideals of S from the set of k-bi-ideals of S. $B_1 \cap B_2$ is also a k-bi-ideal of S. Hence by the assumption, $B_1 \cap B_2$ is a strongly prime k-bi-ideal of S. By Theorem 4.2, $(B_1\Gamma B_2) \cap (B_2\Gamma B_1) = B_1 \cap B_2 \subseteq B_1 \cap B_2$. Then $B_1 \subseteq B_1 \cap B_2$ or $B_2 \subseteq B_1 \cap B_2$. Therefore $B_1 \cap B_2 = B_1$ or $B_1 \cap B_2 = B_2$. Thus either $B_1 \subseteq B_2$ or $B_2 \subseteq B_1$. This shows that the set of k-bi-ideals of S is totally ordered set under inclusion of sets.

Conversely, suppose that S is k-bi-idempotent and the set of k-bi-ideals of S is a totally ordered set under inclusion of sets. Let B be any k-bi-ideal of S. B_1 and B_2 be any two k-bi-ideals of S such that $(B_1\Gamma B_2) \cap (B_2\Gamma B_1) \subseteq B$. By Theorem 4.2, we have $(B_1\Gamma B_2) \cap (B_2\Gamma B_1) = B_1 \cap B_2$. Therefore $B_1 \cap B_2 \subseteq B$. But by assumption either $B_1 \subseteq B_2$ or $B_2 \subseteq B_1$. Hence $B_1 \cap B_2 = B_1$ or $B_1 \cap B_2 = B_2$. Thus $B_1 \subseteq B$ or $B_2 \subseteq B$. Therefore B is a strongly prime k-bi-ideal of S.

Theorem 4.5:- If the set of k-bi-ideals of S is a totally ordered set under inclusion of sets, then every k-bi-ideal of S is strongly prime if and only if it is prime.

Proof :- Let the set of k-bi-ideals of S be a totally ordered set under inclusion of sets. As every

strongly prime k-bi-ideal of S is prime, the proof of only if part is obvious. Conversely, suppose that every k-bi-ideal of S is prime. Then every k-bi-ideal of S is semiprime. Hence by Theorem 4.2, S is k-bi-idempotent. Then by Theorem 4.4, every k-bi-ideal of S is strongly prime. \blacksquare

Theorem 4.6 :- If the set of bi-ideals of S is a totally ordered set under inclusion of sets, then S is k-bi-idempotent if and only if each k-bi-ideal of S is prime.

Proof :- Let the set of all k-bi-ideals of S is a totally ordered set under inclusion of sets. Suppose S is k-bi-idempotent. Let B be any k-bi-ideal of S. For any k-bi-ideals B_1 and B_2 of S, $\overline{B_1\Gamma B_2} \subseteq B$. By the assumption we have either $B_1 \subseteq B_2$ or $B_2 \subseteq B_1$. Assume $B_1 \subseteq B_2$. Then $\overline{B_1\Gamma B_1} \subseteq \overline{B_1\Gamma B_2} \subseteq B$. By Theorem 4.2, B is a semiprime k-bi-ideal of S. Therefore $B_1 \subseteq B$. Hence B is a prime k-bi-ideal of S.

Conversely, suppose that every k-bi-ideal of S is prime. Hence every k-bi-ideal of S is semiprime. Therefore S is k-bi-idempotent by Theorem 4.2. \blacksquare

Theorem 4.7:- If S is k-bi-idempotent and B is a strongly irreducible k-bi-ideal of S, then B is a prime k-bi-ideal.

Proof :- Let *B* be a strongly irreducible k-bi-ideal of a k-bi-idempotent Γ -semiring *S*. Let B_1 and B_2 be any two k-bi-ideals of *S* such that $\overline{B_1 \Gamma B_2} \subseteq B$. $B_1 \cap B_2$ is also a k-bi-ideal of *S*. Therefore by Theorem 4.2, $(B_1 \cap B_2)^2 = (B_1 \cap B_2)$. $B_1 \cap B_2 = (B_1 \cap B_2)^2 = (B_1 \cap B_2) \Gamma (B_1 \cap B_2) \subseteq \overline{B_1 \Gamma B_2} \subseteq B$. As *B* is strongly irreducible k-bi-ideal of *S*, then $B_1 \subseteq B$ or $B_2 \subseteq B$. Hence *B* is a prime k-bi-ideal of *S*.

References:-

[1] Ahsan J., Fully Idempotent Semirings, Proc. Japan Acad. 32 (series A)(1956),185-188.

[2] Dutta T.K. , Sardar S.K. , Semiprime ideals and irreducible ideals of Γ -semiring , Novi Sad Jour. Math., 30 (3) (2000) ,97-108.

[3] Good R.A., Hughes D.R., Associated groups for a semigroup, Bull. Amer. Math. Soc., 58 (1952) ,624-625.

[4] Henriksen M., Ideals in semirings with commutative addition, Amer. Math. Soc. Notices, 6 (1958), 321.

[5] Iseki K., Ideal Theory of semiring, Proc. Japan Acad., 32 (1956), 554-559.

[6] Iseki K. ,Ideals in semirings, Proc. Japan Acad., 34 (1958) , 29-31.

[7] Jagatap R.D., Pawar Y.S. , Quasi-ideals in Regular Γ -semirings, Bull. Kerala Math. Asso. , 6 (2) (2010), 51-61.

[8] Jagatap R.D., Pawar Y.S. , k-ideals in Γ -semirings, Bull.Pure and Applied Math. , 6 (1) (2012), 122-131.

[9] Lajos S., Szasz F., On the bi-ideals in Associative ring, Proc. Japan Acad., 46 (1970) , 505-507.

[10] Lajos S. , Szasz F., On the bi-ideals in Semigroups, Proc. Japan Acad. , 45(1969) , 710-712.

[11] Nobusawa N., On a generalization of the ring theory, Osaka Jour. Math., 1 (1964), 81-89.

[12] Rao M. M. K., Γ-semirings 1, Southeast Asian Bull. of Math., 19 (1995), 49-54.

[13] Sen M.K., Adhikari M.R., On k-ideals of semirings, Int. Jour. Math. and Math. Sci. ,15 (2) (1992),347-350.

[14] Sen M.K., Adhikari M.R., On maximal k-ideals of semirings, Proc. of American Math. Soc., 118 (3) (1993), 699-702.

[15] Shabir, M., Ali, A., Batool, S., A note on quasi-ideals in semirings, Southeast Asian Bull. of Math. , 27 (2004) ,923-928.

[16] Shabir M., Kanwal N., Prime Bi-ideals in Semigroups, Southeast Asian Bull. of Math. , 31 (2007), 757-764.

[17] Vandiver H.S., On some simple types of semirings, Amer. Math. Monthly, 46 (1939), 22-26.

Author information

R.D. Jagatap, Y.C. College of Science, Karad, India. E-mail: ravindrajagatap@yahoo.co.in

Received: December 13, 2013.

Accepted: March 10, 2014.