IRREDUCIBLE ELEMENTS IN ADL'S

B. Venkateswarlu, Ch. Santhi Sundar Raj and R. Vasu Babu
Communicated by Ayman Badawi

MSC 2010 Classifications: 06D99.
Keywords and phrases: Distributive Lattice, Almost Distributive Lattice, $\wedge-$ irreducible, $\vee-$ irreducible, Boolean algebra, Boolean ring.

The authors thank Professor U. M. Swamy for his help in preparing this paper.

Abstract

The notion of an Almost Distributive Lattice (ADL) is a common abstraction of several lattice theoretic and ring theoretic generalizations of Boolean algebras and Boolean rings. In this paper, we introduce the concepts of $\wedge-$ irreducible (strongly $\wedge-$ irreducible) and \vee - irreducible (strongly \vee - irreducible) elements in an ADL and prove certain properties of these. Unlike the case of distributive lattices, $\wedge-$ irreducibility and strongly $\wedge-$ irreducibility are not equivalent. However, it is proved here that an element in ADL is \vee - irreducible if and only if it is strongly \vee - irreducible.

1 Introduction

The axiomatization of Boole's propositional two valued logic led to the concept of Boolean algebra, which is a complemented distributive lattice. M. H. Stone [4] has proved that any Boolean algebra can made into a Boolean ring (a ring with unity in which every element is an idempotent) and vice-versa. The concept of an Almost Distributive Lattice (ADL) was introduced by U. M. Swamy and G. C. Rao [5] as a common abstraction of several lattice theoretic and ring the theoretic generalizations of Boolean algebra and Boolean rings. In this paper, we introduce the notions of \wedge and \vee irreducibilities and strongly \wedge and \vee irreducibilities among elements of an Almost Distributive Lattice (ADL) and prove certain properties of these. Unlike the case of distributive lattices, $\wedge-$ irreducibility and strongly $\wedge-$ irreducibility are not equivalent for the elements of an ADL. However, an element in an ADL is \vee - irreducible if and only if it is strongly \vee - irreducible.

2 Preliminaries

In this section, we recall from [5] and [3] certain preliminary concepts and results concerning ADL's. We refer to [1] and [2] for the elementary notions and results regarding partially ordered sets, lattices and distributive lattices. Let us begin with the following fundamental definition [5].

Definition 2.1. An algebra $A=(A, \wedge, \vee, 0)$ of type $(2,2,0)$ is called an Almost Distributive Lattice (abbreviated as ADL) if it satisfies the following independent identities.
(1). $0 \wedge a \approx 0$
(2). $a \vee 0 \approx a$
(3). $a \wedge(b \vee c) \approx(a \wedge b) \vee(a \wedge c)$
(4). $(a \vee b) \wedge c \approx(a \wedge c) \vee(b \wedge c)$
(5). $a \vee(b \wedge c) \approx(a \vee b) \wedge(a \vee c)$
(6). $(a \vee b) \wedge b \approx b$.

The identities given above are independent, in the sense that no one of them is a consequence of others. The element 0 is called the zero element of the ADL.

Example 2.2. Any distributive lattice bounded below is an ADL where the zero element is the smallest element.

Example 2.3. Let $(R,+, ., 0,1)$ be a commutative regular ring with unity 1 . For any a and $b \in R$, define

$$
a \wedge b=a_{0} b \text { and } a \vee b=a+b-a_{0} b
$$

where a_{0} is the unique idempotent in R such that $a R=a_{0} R$. Then $(R, \wedge, \vee, 0)$ is an ADL, where 0 is the additive identity in R.
Example 2.4. Let X be any non empty set and 0 be an arbitrarily fixed element in X. For any a and $b \in X$, defining

$$
a \wedge b=\left\{\begin{array}{ll}
0, & \text { if } a=0 \\
b, & \text { if } a \neq 0
\end{array} \quad \text { and } \quad a \vee b= \begin{cases}b, & \text { if } a=0 \\
a, & \text { if } a \neq 0\end{cases}\right.
$$

Then $(X, \wedge, \vee, 0)$ is an ADL and is called a discrete ADL.
Definition 2.5. Let $A=(A, \wedge, \vee, 0)$ be an ADL. For any a and $b \in A$, define

$$
a \leq b \text { if and only if } a=a \wedge b(\Leftrightarrow a \vee b=b) .
$$

Then \leq is a partial order on A
An ADL $A=(A, \wedge, \vee, 0)$ is called an associative ADL if the operation \vee is associative; that is $(a \vee b) \vee c=a \vee(b \vee c)$ for all a, b and $c \in A$. Throughout this paper, by an ADL we mean an associative ADL only. We recall the following properties of ADL's.

Theorem 2.6. The following hold for any elements a, b and c in an $A D L A=(A, \wedge, \vee, 0)$.
(1). $a \wedge 0=0=0 \wedge a$ and $a \vee 0=a=0 \vee a$
(2). $a \wedge a=a=a \vee a$
(3). $a \wedge b \leq b \leq b \vee a$
(4). $a \wedge b=a \Leftrightarrow a \vee b=b$ and $a \wedge b=b \Leftrightarrow a \vee b=a$
(5). $(a \wedge b) \wedge c=a \wedge(b \wedge c)$
(6). $a \vee(b \vee a)=a \vee b$
(7). $a \wedge b=b \wedge a \Leftrightarrow a \vee b=b \vee a$
(8). $a \wedge b=b \wedge a \Leftrightarrow g l b\{a, b\}=a \wedge b \Leftrightarrow l u b\{a, b\}=a \vee b$
(9). If $a \leq b$, then $a \wedge b=a=b \wedge a$ and $a \vee b=b=b \vee a$
(10). $(a \wedge b) \wedge c=(b \wedge a) \wedge c$ and $(a \vee b) \wedge c=(b \vee a) \wedge c$

Definition 2.7. Let I be a non empty subset of an ADL A. Then I is called
(1) an ideal of A if $a \vee b \in I$ for all a and $b \in I$ and $x \wedge a \in I$ for all $x \in I$ and $a \in A$.
(2) a filter of A if $a \wedge b \in I$ for all a and $b \in I$ and $a \vee x \in I$ for all $x \in I$ and $a \in A$.

As consequence, for any ideal I of $A, a \wedge x \in I$ for all $x \in I$ and $a \in A$ and for any filter F of $A, x \vee a \in F$ for all $x \in F$ and $a \in A$. For any $X \subseteq A$, the smallest ideal (filter) of A containing X is called the ideal (filter) generated by X in A and is denoted by $<X$] and $[X>$ respectively. It is known that

$$
\begin{aligned}
<X] & =\left\{\left(\bigvee_{i=1}^{n} x_{i}\right) \wedge a \mid n \geq 0, x_{i} \in X \text { and } a \in A\right\} \\
\text { and } \quad[X> & =\left\{a \vee\left(\bigwedge_{i=1}^{n} x_{i}\right) \mid n \geq 0, x_{i} \in X \text { and } a \in A\right\} .
\end{aligned}
$$

When $X=\{x\}$, we write $<x]$ for $<\{x\}]$ and $[x>$ for $[\{x\}>$. Note that $<x]=\{x \wedge a \mid a \in A\}$ and $[x>=\{a \vee x \mid a \in A\}$.

Definition 2.8. Two elements a and b of an ADL A are said to be associates to each other if $a \wedge b=b$ and $b \wedge a=a$ (this is equivalent or saying that $<a]=<b]$ or $[a>=[b>$ or, $a \vee b=a$ and $b \vee a=b$). This situation is denoted by $a \sim b$.
\sim becomes a congruence relation on the algebra $(A, \wedge, \vee, 0)$. It is known that \sim is the smallest congruence on an $\operatorname{ADL} A$ such that the quotient A / \sim is a lattice (and hence a distributive lattice).

$3 \wedge$ - Irreducible elements

For any elements a and b in an ADL A, we have from 2.6 (7 and 8) that $a \wedge b=b \wedge a \Leftrightarrow a \vee b=$ $b \vee a \Leftrightarrow g l b\{a, b\}$ exists and equals to $a \wedge b \Leftrightarrow \operatorname{lub}\{a, b\}$ exists and equals to $a \vee b$. Now, we introduce the following.

Definition 3.1. Let $A=(A, \wedge, \vee, 0)$ be an ADL and $p \in A$. Then p is said to be $\wedge-$ irreducible if, for any a and $b \in A$,

$$
p=a \wedge b=b \wedge a \Rightarrow \text { either } p=a \text { or } p=b
$$

Example 3.2.

(1). In a discrete ADL X (as given in 2.4), every element is $\wedge-$ irreducible; for, $a \wedge b=b \wedge a$ implies that either $a=b$ or $a=0$ or $b=0$.
(2). Let A_{1} and A_{2} be two non trivial ADL's and $A=A_{1} \times A_{2}$. Then A is an ADL under the coordinate wise operations. Choose $0 \neq a_{1} \in A_{1}$ and $0 \neq b_{2} \in A_{2}$. Then $(0,0)=$ $\left(a_{1}, 0\right) \wedge\left(0, b_{2}\right)=\left(0, b_{2}\right) \wedge\left(a_{1}, 0\right)$. Therefore $(0,0)$ is not $\wedge-$ irreducible in A.

Definition 3.3. An element p in and ADL A is said to be strongly $\wedge-$ irreducible if, for any a and $b \in A$,

$$
a \wedge b=b \wedge a \leq p \Rightarrow \text { either } a \leq p \text { or } b \leq p
$$

In a distributive lattice, $a \wedge b \leq p$ is equivalent to saying that $p=(a \vee p) \wedge(b \vee p)$ and therefore an element in a distributive lattice is $\wedge-$ irreducible if and only if it is strongly $\wedge-$ irreducible. However, it is different in the case of ADL's.

The following is an easy verification, for we always have $a \wedge b \leq b$ and $b \wedge a \leq a$ for all a and b in an ADL A.

Theorem 3.4. In any $A D L$, every strongly \wedge - irreducible element is $\wedge-$ irreducible. The converse is not true.

Example 3.5. Let A_{1} and A_{2} be two discrete ADL's, each with at least three elements and $A=$ $A_{1} \times A_{2}$, the product ADL. Choose $0 \neq p_{1} \in A_{1}$ and $0 \neq p_{2} \in A_{2}$ and let $p=\left(p_{1}, p_{2}\right)$. Then it can be easily verified that p is $\wedge-$ irreducible in A. However, p is not strongly $\wedge-$ irreducible; for, choose $a_{i} \in A_{i}-\left\{0, p_{i}\right\}$. Then

$$
\begin{aligned}
& \quad\left(0, a_{2}\right) \\
& \text { and } \left.\left(0, a_{2}\right) \not a_{1}, 0\right)=\left(a_{1}, 0\right) \text { and }\left(a_{1}, 0\right) \nless p .
\end{aligned}
$$

Theorem 3.6. Let p and q be associates to each other in an $A D L A$. Then p is \wedge-irreducible if and only if q is $\wedge-$ irreducible.

Proof. Since $p \sim q$, we have $p \wedge q=q, q \wedge p=p, p \vee q=p$ and $q \vee p=q$. Suppose that p is $\wedge-$ irreducible. Let a and $b \in A$ such that $q=a \wedge b=b \wedge a$. Then

$$
\begin{aligned}
& p=p \vee q=p \vee(a \wedge b)=p \vee(b \wedge a) \text { and therefore } \\
& p=(p \vee a) \wedge(p \vee b)=(p \vee b) \wedge(p \vee a) .
\end{aligned}
$$

Since p is $\wedge-$ irreducible, we get that either $p=p \vee a$ or $p=p \vee b$. If $p=p \vee a$, then $a=p \wedge a=(q \wedge p) \wedge a=(p \wedge q) \wedge a=q \wedge a=(b \wedge a) \wedge a=b \wedge a=q$. Similarly, if $p=p \vee b$, then $b=q$. Therefore q is \wedge - irreducible. The converse follows form the symmetricity of \sim.

The validity of the above theorem is not known for the strongly $\wedge-$ irreducible elements.

$4 \vee$ - Irreducible elements

Unlike the case of lattices, we do not get an ADL again by interchanging the operations \wedge and \checkmark in a given ADL, for the simple reason that \wedge distributes over \vee both from left and right, while \checkmark distributes over \wedge from left alone. In fact, it is known that an ADL becomes a (distributive) lattice if and only if \vee distributes over \wedge from right also. This necessitates the study of $\vee-$ irreducible elements respectively.

Definition 4.1. Let $A=(A, \wedge, \vee, 0)$ be an ADL and $p \in A$. Then p is said to be \vee - irreducible if, for any a and $b \in A$,

$$
p=a \vee b=b \vee a \Longrightarrow \text { either } p=a \text { or } p=b
$$

Example 4.2.

(1). The zero element 0 in any ADL is always \vee - irreducible, since $a \leq a \vee b$ for all a and b.
(2). Every element in a discrete ADL is \vee - irreducible.
(3). Let A_{1} and A_{2} be two discrete ADL's and $A=A_{1} \times A_{2}$. Let $0 \neq a_{1} \in A_{1}$ and $0 \neq a_{2} \in A_{2}$ and $a=\left(a_{1}, a_{2}\right)$. Then

$$
a=\left(0, a_{2}\right) \vee\left(a_{1}, 0\right)=\left(a_{1}, 0\right) \vee\left(0, a_{2}\right)
$$

and therefore a is not \vee - irreducible in A.
The following is a straight forward verification.
Theorem 4.3. Let A_{1} and A_{2} be two ADL's and $A=A_{1} \times A_{2}$. An element $\left(p_{1}, p_{2}\right)$ is $\vee-$ irreducible in A if and only if $p_{1}=0$ and p_{2} is \vee - irreducible in A_{2}, or $p_{2}=0$ and p_{1} is $\vee-$ irreducible in A_{1}.

Definition 4.4. An element p in an ADL A is said to be strongly \vee - irreducible if, for any a and $b \in A$,

$$
p \leq a \vee b=b \vee a \Longrightarrow \text { either } p \leq a \text { or } p \leq b
$$

We have proved in the previous section that a $\wedge-$ irreducible element in an ADL need not be strongly \wedge - irreducible. This is not the case with \vee - irreducibility.

Theorem 4.5. Let A be an $A D L$ and $p \in A$. Then p is \vee - irreducible if and only if p is strongly \vee - irreducible.

Proof. Suppose that p is \vee - irreducible. Let a and $b \in A$ such that $p \leq a \vee b=b \vee a$. Then $p=p \wedge(a \vee b)=p \wedge(b \vee a)$ and therefore

$$
p=(p \wedge a) \vee(p \wedge b)=(p \wedge b) \vee(p \wedge a)
$$

Since p is \vee - irreducible, either $p=p \wedge a$ or $p=p \wedge b$ and therefore $p \leq a$ or $p \leq b$. Thus p is strongly \vee - irreducible. Let a and $b \in A$ such that $p=a \vee b=b \vee a$. Then either $p \leq a$ or $p \leq b$.

$$
\begin{aligned}
& p \leq a \Longrightarrow p=a \quad(\text { since } a \leq a \vee b=p) \\
& p \leq b \Longrightarrow p=p \wedge b=(a \vee b) \wedge b=b
\end{aligned}
$$

Thus p is \vee - irreducible.
Theorem 4.6. Let p and q be associates to each other in an ADL A. Then p is (strongly) $\vee-$ irreducible if and only if so is q.

Proof. Since $p \sim q$, we have $p \wedge q=q, q \wedge p=p, p \vee q=p$ and $q \vee p=q$. Suppose that p is $\vee-$ irreducible. Let a and $b \in A$ such that $q=a \vee b=b \vee a$. Then

$$
\begin{aligned}
p & =q \wedge p=(a \vee b) \wedge p=(a \wedge p) \vee(b \wedge p) \\
\text { and } p & =q \wedge p=(b \vee a) \wedge p=(b \wedge p) \vee(a \wedge p)
\end{aligned}
$$

Since p is \vee - irreducible, we get that either $p=a \wedge p$ or $p=b \wedge p$. Now

$$
\begin{aligned}
p & =a \wedge p \Longrightarrow q=p \wedge q=a \wedge p \wedge q=a \wedge q=a \wedge(a \vee b)=a \\
\text { and } p & =b \wedge p \Longrightarrow q=p \wedge q=b \wedge p \wedge q=b \wedge q=b \wedge(b \vee a)=b
\end{aligned}
$$

Thus q is \vee - irreducible. The converse follows from the symmetricity of \sim. Now, Theorem 4.6 completes the proof.

References

[1] S. Burris and H. P. Sankappanavar, A course in Universal algebra, Springer - Verlag, Newyork, 1980.
[2] G. Gratzer, General Lattice Theory, Academic Press, New York, 1978.
[3] G. C. Rao and M. S. Rao, α - ideals and prime ideals of Almost Distributive Lattices, Inter. J. of Algebra, 3, 221 - 229 (2009).
[4] M. H. Stone, The thoery of representations for Boolean Algebras, Trans. Amer. Math. Soc., 40, 37 - 111 (1936).
[5] U. M. Swamy and G. C. Rao, Almost Distributive Lattices, J. Australian Math. Soc., (series A), 31, 77 91 (1981).
[6] U. M. Swamy and B. Venkateswarlu, Irreducible elements in Algebraic lattices, Int. J. of Algebra and Computation, 20(8), 969-975 (2010) .
[7] B. Venkateswarlu, B. Vasu Babu and E. Tigist, Irreducible ideals in rings, Italian J. of pure and applied Math., 32, 461 - 466 (2014).
[8] B. Venkateswarlu and U. M. Swamy, A characterization of irreducible elements in lattices, Afr. Mat. 26, 619-626 (2015).

Author information

B. Venkateswarlu, Department of Mathematics, GIT, GITAM University, Visakhapatnam- 530 045, A.P., India. E-mail: bvlmaths@gmail.com (Corresponding author)
Ch. Santhi Sundar Raj, Department of Engineering Mathematics, Andhra University, Visakhapatnam-530 003, A.P., India.

E-mail: santhisundarraj@yahoo.com
R. Vasu Babu, Department of Mathematics, Shri Vishnu Engineering college for Women, Bhimavaram -534 201, W. G. Dist., A.P., India.
E-mail: vasukgr@gmail.
Received: July 22, 2014.
Accepted: February 21, 2015

