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Abstract. We derive a third-order non-oscillatory central scheme for multidsizeral hy-
perbolic systems. We use computationally efficient limiters in order to makediv scheme
non-oscillatory. The solution is advanced in time using natural continudesson of Runge-
Kutta methods. We pay particular attention to two dimensional problems ingludiiscid
Burgers’ equation and Riemann gas dynamics problems. Numeripafiments show that the
new scheme remains non-oscillatory while giving good resolution of digudities.

1 Introduction

Multidimensional hyperbolic conservation laws of the form
us + V- f(u) =0, xe€R? (1.2)

and with initial datau(x, ¢t = 0) = up(X), have been used as models for a wide variety of physical
phenomena. Examples include the Buckley-Leverett equation for lfimzda one-dimensional
two-phase flow of immiscible fluids through porous medhgnd the Euler equations of gas-
dynamics 5, 14]. Other examples can be found in the book B [

Some major developments in central schemes for multidimensional prebielude non-
oscillatory piecewise polynomial reconstructions By§]. A class of multidimensional central
weighted essentially non-oscillatory (CWENO) methods was developelbjip, 17]. These
schemes enjoy a black-box approach, that is, only the flux is requir@dan be extended to
most hyperbolic problems, e.g1§]. A family of semi-discrete central schemes for solving
multidimensional problems has been propose®,ji, 10, 9], which are advanced in time with
ODE solvers.

In this work, we develop a third order non-oscillatory central schemagproximating mul-
tidimensional hyperbolic conservation lawis1). The new scheme is genuinely non-oscillatory
in the sense 0fJ0, 21] compared to ENO reconstructions. It combines the minmod limiter with
a quadratic polynomial. Though, the scheme can be applied as a bladober, we will be
paying special attention to the numerical solution of multidimensional inviseid&s’ equation
and Euler equations of gas dynamics.

The outline of this paper is as follows: In Se@, the general approach for solving multi-
dimensional problems using staggered central schemes is pres€éhtedeconstruction of our
new scheme is discussed in Segt.In Sect.4 some numerical examples are given and solved
with the proposed method. The paper ends with conclusion in Sect.

2 Multi-Dimensional Central Schemes

For simplicity, we consider the two-dimensional problem, whete2 in (1.1)

u + f(u)e + g(u)y, =0. (2.1)
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We further consider a uniformly discretised cell-centered computatidm@lain wherel,;; =
[mi_%, xH%} X [yj_%, yj+%} and the width in the: andy directions are respectively denoted by
h andk. For simplicity, we describe the case whier= k. The cell-centres are given By;, y;)
wherez; = %(%—% + xH%) andy; = %(yj_f + Y11 1).

In central schemes, the cell-averages at m‘nglven by

1

are assumed to be known. Then a piecewise polynomial interpolatinglteeeages is used

un('xv y) = Zp?,j(x7 y) X%j(xa y)a (2.2)

wherey;;(z, y) is the characteristic function of the cé]}.
Integrating 2.1) overr i+14d X [t", t"*1], gives the fully discrete scheme

_% {/ / Hl (x, yj11, 7)) — g (u(z, yj, 7))]dz d’T} , (2.3)

where the staggered cell averagg Ly are obtained from2.2) as follows:

n+1 +1 772 // "(x, y)dy dx
2:J 2 Il 1

i+3.5+3

1 Tird (Vi Tirg [Yir1
=73 / / vz, y) dydx+/ / pi ez, y) dyde
T Yj T; l/j+;zl

i+l i+l Yi+1

/ 1/ pz+l] T,y dyd:z:—l—/ 1/ p§L1’j+1(Jc, y)dydz| . (2.4)
+5 Yy its YY1
J+2

The integrals of2.3) are evaluated by reconstructing the point value$udfe, y, 7)|t" < 7 <
t"+1} from the known cell-averages. Then, for a sufficiently small time Ateghe integrals are
assumed to be smooth, such that appropriate quadrature rules csedbé-ar example, one can
use the following quadrature rule in space:

—% { [ [0 e ) = 5 o dT}

/Il+1 f(z)dx = 2£4 [—f (wiy2) + 13f (wir1) + 13f (2:) — f(zi1)] + O(R?), (2.5)

and the Simpson'’s rule given by:

tn+1

f (’LL({EZ', Ys» 7—)) dr = AtZ’yl [f (u(x% Yis t" + BlAt))} ) (2-6)

T=t"

to evaluate the time integrals whefg = 0, 1 = 1/2, 3, = 1, v = 1/6, 1 = 2/3 and

72 = 1/6. For this quadrature rule, we need to predict the intermediate valugsy;, t"/?)
andu(z;, y;, t"1). Once more, we use the smoothness of the approximations along the lines
(z:, y;) x [t", t"*1] to consider the Cauchy problem:

v1,;7j<7—) = F(Ta vi,j(T)) = _fa: (v(xi; yja t" + T)) - gy (’U<xi7 ij " + T)) )
vij(to) = (i, yj, t"). (2.7)
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Similar to [2, 21], we use the Natural Continuous Extension (NCE) of Runge-Kutta (Réthm
ods 6] to solve the problem up te = At. We use the second-order RK method given by the
polynomials

b1(0) = (by — 1)6% + 6, (2.8)
ba(6) = bat?, (2.9)

with the following set of coefficients:

(12 (oo
=(72) =(29) @.10)

To compute the predicted values of the quadrature form(ig, y;, t" + 5,At) efficiently, we
rewrite the NCE-RK method as

2
(@, gy, "+ Bib) = uly + XY be(B) KL,
r=1
Ky = = f:(Y5) — 94 (Y3)), (2.11)
ij

r—1
Y7§ =ut + A E arSKfj,
s=1

where the coefficients;; are given in2.10, and the numerical derivative andg, are discussed
in the next section.

3 A Third-Order Non-Oscillatory Central Scheme

3.1 Reconstruction from Cell Averages

We first reconstruct the piecewise-polynomigls (z, y) of (2.2). Following [16], we consider
a polynomial of degree 2 associated with the ¢gjt

n n T — X Yy—uyj
pi,j(xa y) :u1',7j +umi,j ( h ) +uyi,j < h J)

1
+2_hz (“mq; (-T - xi)z + 2“90111-0- (-T - xl)(y - yj) —+ Uyy, ; (y - yj)z) . (3.1)

We require thap}; (=, y) obeys the conservation property:
1 n n
72 pq’,7j(x7 y) dydx:“z‘,ja
I”

I 2—14 (UmJ + Uyy7) ' (3-2)

We choose the numerical derivatives to be fully non-oscillatornsphspmpared to the CWENO
reconstructions ofl[6] and [17]. In addition, they must yield third-order accuracy, that is,

that is,u;’; must satisfy

n

— . n
Uy j = Uy,

1 0

Eum; = %’U,(Jﬁ =Ti, Y = Yy tn) + O(hz)a (3.3)

1 0

Euy” = 8_yu(x =T, Y =Yy, tn) + O(hz)a (34)
1 02 n
2 loz; = @u(x =z, y =y;, t") + O(h), (3.5)
1 9?
72l = a—yzu(x =i, y = yj, t") + O(h), (3.6)
1 02
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Using 3.1) and @.2), the reconstruction of(4) gives

1
—n _T(n “n —n —n
Uity i+1 —Z(“m’ Tty i+ uitha i)
1
+ 1_6(uT77 T Uz + Uz;; — uﬁ?i+1,j+1)
1
+ 1_6<uy” + Uyiia; — Uysyy — uy7‘,+1,_7‘+1>
1
+ @_(U’T’!Ju T Uzy,; ;T Uay, + ul‘llw]_,jﬂ)' (38)

In order to achieve third-order accuracy f8t&), we use the UNO limiter to find the numerical
derivatives 8.3), (3.4) and B.7):

2

Ug,, = MM {Mil i+ %MM (0% 1, B}, BT, 5, — %MM (N7, AZEHM}} 7

(3.9)
- 1 2 2~ - 1 2, 2
Uy, j = MM Aum;% + EMM {A Ug,j—1, A u7;7j} 5 Aui’ﬁ_% — EMM {A Uj,j, A ui7j+1} 5
(3.10)
1 2 2 1 2 2
Ugy, , = MM Auyi_%)j + EMM {A Uy, 15, O uyw'} , Au?li+%,_7~ — EMM {A Uy, , O ul/i+1,_7‘}
(3.11)

One may alternatively find.,,, =~ of (3.11), by using the derivatives on the-axis of u, ;.
Numerical experiments indicate that similar results are obtained.
The NT schemedQ] uses a second-order accurate limiter

o) = MM (Avj_%,Avﬁ%) , (3.12)
which is non-oscillatory in the sense that

0< v; . sign(Avji%) < Const. ‘MM (AUF%,A%%) )

Here,Av, 1 = vj11 — vy, and the MinMod limiter (MM) is defined by

min, {z,} if z, > 0Vp,
MM (z1, z2,...) = ¢ max, {z,} if z, <0Vp,
0 otherwise.

However, the accuracy oB(12) drops at the non-sonic critical gridvalues, WhereAv%% .
Av; 3 <0 # /' (vj). NT scheme adapted the uniform non-oscillatory (UNO) limiter of Harten
and Osher4]

1
2

_1
2

v =MM (Avj + %MM (8%0;1, D%05) , Doy — SMM (A%, szm)) . (313)
whereA?v; = v;1—2v;4v;_1. The limiter @.13 adds second-order differences to the MinMod
limiter (3.12 to achieve high accuracy including at critical points.

3.2 Reconstruction from Point Values

We approximate the point-valug'; of (3.2) from the cell averages] ;, while simultaneously
looking for high accuracy and avoiding oscillations. This is achieved tpragimating the
derivatives of 8.2) by

Ung, , = MM (D205, D27, D207, ) (3.19)

i1 B Ui 5

Uyy, = MM (D207, 4, D)5, D07 ) (3.15)

0,j—1 .37
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Following [21], we compute the MM limiter with three arguments as follows

MM (21, w2, 23) =%(sigr(x1) + sign(w2) + sign(z3) + sign(xy x2 23))
x min(|zl, 2, [z3]).
In order to compute the fluxes d.(7), we must evaluate the function
Fluij) = = folui;) — gy(ui ), (3.16)
whereuw; ; is found at the intermediate time intervals given by the NCE-RK method, Iyotab
for u(zi, y;, t"7Y/2) andu(z;, y;, t"*1). The numerical derivatives 08(16) must satisfy third-

order accuracy, that is,

1 0

Ef:r(ui,j) = %f(QL(-T:-Tia y=y;, t") + O(h?), (3.17)
%gy(ui,j) = %g(u(mzxi, y=uy;, t")) + O(h?). (3.18)

We approximatef, (u; ;) andg, (u, ;) in a similar way as in%.9) and @.10 by using the UNO
limiter on differences off andg to obtain the desired order of accuracy and still remain non-
oscillatory. The derivatives of the fluxes are then given by

1 1
for, =MM {Afigﬁj + QMM {Azfzel,j, Azfi,j} ) Afi+%,j - QMM {Azfi,ja Azfi+1,j}} )

(3.19)

1 1
Gy = MM {Agi,j—% + EMM {A29117j—1a Azgi,j} , Agi,j+% — EMM {Azgi,jv A29i7j+1}} .
(3.20)

4 Numerical Experiments

Problem1 We testthe accuracy of the third-order scheme, which we call CNOBiea2D lin-

ear advection problemy +u, +u, = 0 with the initial conditionu(z, y, 0) = sirf(xz) sir(ry)

and periodic boundary conditions on the domi@inl] x [0, 1]. In Tablel we give the error and
numerical order obtained on different grid sizes with- 0.3 at7 = 1. We see that the scheme
is converging to third-order accuracy, but it does not achieve thémoem order of accuracy due

to the non-smooth limiter2f]. For comparison, we include the results obtained by the third-
order central scheme with CWENO weights and constant weights6bfigr A = 0.425. We
see that those schemes give comparable convergence to ourgugobgeme, but smaller mag-
nitude of L, errors. Similar observations are made with the compact scheni®lofHowever,

the fourth-order central scheme df7] performs better as expected.

Problem2 We consider the linear rotation problem a#] whereu;+ f (v, z,y) s +9(u, z,y), =
0 on the square patdB, 1] x [0, 1] with N = 40 in each direction andl = 0.3. The initial con-
dition and fluxes are respectively given by

wolz. y) = 1, Jz—3<dandly-3 <4,
0\ ¥ 0, otherwise

1 1
fur) == (v-3) 3 swrn=(s-3) %

Figurel shows the solutions & = 0.5 andT = 1 by the CNO3 scheme which are free from
spurious oscillations.

and
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Table 1. Accuracy by central schemes witlfz, y, 0) = sirf(rz) Sirf(ry).

N CNO3
L error L, error L error L, error
10 0.4988(-1) - 0.1472 -
20 0.7054(-2) 2.822 0.2535(-1) 2.538
40 0.9287(-3) 2.925 0.3431(-2) 2.886
80 0.1220(-5) 2.928 0.4643(-3) 2.885
N  Constant weights C-WENO weights
L1 error L4 order L1 error L4 order
10 0.1570(-1) - 0.8524(-1) -
20 0.2667(-2) 2.558 0.2652(-1) 1.685
40 0.3434(-3) 2.944 0.4181(-2) 2.665
80 0.4386(-4) 2.982 0.4427(-4) 6.561

/I‘

«

Figure 1. Solution of Problem 2 by CNO3, withv = 40 and\ = 0.3.
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©T=3 7T =4

Figure 2. Solution of Burgers’ equation by CNO3 with= 0.3 andh = 0.02.

Problem 3 We next solve the Burgers’ equation + (3u?), + (3u?), = 0 for the initial
condition from [L6], u(z, y, 0) = sirf(wz) sir(ry), on the domair0, 1] x [0, 1] with periodic
boundary conditions. In Figurg, we display the results up t6 = 4, on 50x 50 grid with
X = 0.3. We observe that the solutions obtained by CNO3 are well resolvedoemdstillatory.

Problem 4 Finally, we test CNO3 on the Riemann problems for two-dimensional gaedics

U+FU),+GU), =0,

where
P pu pu
pu pu2 +p puv
U= ,F(U) = ,G(U) = )
pU puv pUS+p

E uw(E+p) v(E + p)
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andr = ﬁ + %p(uz +v2). Herep is the densityy andv are the velocity components; is
the total energy angdis the pressurey = 1.4 is the ratio of specific heats.

Nineteen configurations were identified for those proble22sZ3, 13, 12], where the initial
condition on[0, 1] x [0, 1] is given by

(p1, p1, ug, v1),  if 2>05 y > 05,
(p2, p2; uz, v2), if 2 <05,y >05,
(p3, p3, u3, v3), if 2 <05 y <05,
(pa, pa, ug, va), if x> 0.5,y <0.5.

(p, p, u, v)(z, y, 0) =

The different quadrants are initially separated by either rarefactiatkstr contact wave. We
tested all the different configurations using componentwise extensionwith.3 and 200« 200
grid but due to space constraints we show only a few results in F&yiiée observe that CNO3
recovers the major features on the density profiles in most test cagas, sSomewhat smeared
near discontinuities.

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
(a) Configuration 17" = 0.2. (b) Configuration 107" = 0.15.

0 - - - - 0 - - - -
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
(c) Configuration 147" = 0.1. (d) Configuration 197" = 0.3.

Figure 3. Approximation of some two-dimensional gas dynamics problems by CNO3
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5 Conclusion

In this work, we have introduced a genuinely multidimensional third-onderoscillatory cen-
tral scheme. A piecewise quadratic polynomial is used for the recatistnuwhich uses high-
order accurate approximation for the spatial derivatives to avoidi®@mioscillations. The
scheme was tested on different problems and we observed that itedypixe right profile of
the solutions. However, the scheme is damped and discontinuities weaeeshaeie to the non-
linear limiter. Alternatively, a sharper non-oscillatory multi-dimensionabrestruction may be
used, but this will necessitate additional numerical derivatives. Tbposed scheme can also
be extended to solve Hamilton-Jacobi equatidr® fnd MHD equations]].
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