
Palestine Journal of Mathematics

Vol. 5(Special Issue: 1) (2016) , 228–237 © Palestine Polytechnic University-PPU 2016

THIRD ORDER NON-OSCILLATORY CENTRAL SCHEME
FOR MULTIDIMENSIONAL HYPERBOLIC

CONSERVATION LAWS

A. A. I. Peer, A. A. E. F. Saib, M. S. Sunhaloo and M. Bhuruth

Communicated by Suheil Khoury

MSC 2010 Classifications: Primary 65M08; Secondary 35L65.

Keywords and phrases: Multidimensional hyperbolic conservation laws, non-oscillatory central scheme,
non-linear limiters.

Abstract. We derive a third-order non-oscillatory central scheme for multidimensional hy-
perbolic systems. We use computationally efficient limiters in order to make the new scheme
non-oscillatory. The solution is advanced in time using natural continuous extension of Runge-
Kutta methods. We pay particular attention to two dimensional problems including inviscid
Burgers’ equation and Riemann gas dynamics problems. Numerical experiments show that the
new scheme remains non-oscillatory while giving good resolution of discontinuities.

1 Introduction

Multidimensional hyperbolic conservation laws of the form

ut +∇x · f(u) = 0, x ∈ R
d, (1.1)

and with initial datau(x, t = 0) = u0(x), have been used as models for a wide variety of physical
phenomena. Examples include the Buckley-Leverett equation for modelling a one-dimensional
two-phase flow of immiscible fluids through porous media [3] and the Euler equations of gas-
dynamics [25, 14]. Other examples can be found in the book by [7].

Some major developments in central schemes for multidimensional problems include non-
oscillatory piecewise polynomial reconstructions by [5, 6]. A class of multidimensional central
weighted essentially non-oscillatory (CWENO) methods was developed in [16, 15, 17]. These
schemes enjoy a black-box approach, that is, only the flux is required and can be extended to
most hyperbolic problems, e.g. [18]. A family of semi-discrete central schemes for solving
multidimensional problems has been proposed in [8, 11, 10, 9], which are advanced in time with
ODE solvers.

In this work, we develop a third order non-oscillatory central scheme for approximating mul-
tidimensional hyperbolic conservation laws (1.1). The new scheme is genuinely non-oscillatory
in the sense of [20, 21] compared to ENO reconstructions. It combines the minmod limiter with
a quadratic polynomial. Though, the scheme can be applied as a black-box solver, we will be
paying special attention to the numerical solution of multidimensional inviscid Burgers’ equation
and Euler equations of gas dynamics.

The outline of this paper is as follows: In Sect.2, the general approach for solving multi-
dimensional problems using staggered central schemes is presented.The reconstruction of our
new scheme is discussed in Sect.3. In Sect.4 some numerical examples are given and solved
with the proposed method. The paper ends with conclusion in Sect.5.

2 Multi-Dimensional Central Schemes

For simplicity, we consider the two-dimensional problem, whered = 2 in (1.1)

ut + f(u)x + g(u)y = 0. (2.1)
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We further consider a uniformly discretised cell-centered computationaldomain whereIij =
[xi− 1

2
, xi+ 1

2
] × [yj− 1

2
, yj+ 1

2
] and the width in thex andy directions are respectively denoted by

h andk. For simplicity, we describe the case whenh = k. The cell-centres are given by(xi, yj)
wherexi =

1
2(xi− 1

2
+ xi+ 1

2
) andyj = 1

2(yj− 1
2
+ yj+ 1

2
).

In central schemes, the cell-averages at timetn given by

ūn
ij =

1
h2

∫ ∫

Iij

u(x, y, tn) dy dx,

are assumed to be known. Then a piecewise polynomial interpolating the cell averages is used

un(x, y) =
∑

i,j

pni,j(x, y)χi,j(x, y), (2.2)

whereχij(x, y) is the characteristic function of the cellIij .
Integrating (2.1) overIi+ 1

2 ,j+
1
2
× [tn, tn+1], gives the fully discrete scheme

ūn+1
i+ 1

2 ,j+
1
2
=ūn

i+ 1
2 ,j+

1
2

−
1
h2

{

∫ tn+1

τ=tn

∫ yj+1

y=yj

[f (u(xi+1, y, τ))− f (u(xi, y, τ))]dy dτ

}

−
1
h2

{

∫ tn+1

τ=tn

∫ xi+1

x=xi

[g (u(x, yj+1, τ)) − g (u(x, yj, τ))]dx dτ

}

, (2.3)

where the staggered cell average ¯un
i+ 1

2 ,j+
1
2

are obtained from (2.2) as follows:

ūn
i+ 1

2 ,j+
1
2
=

1
h2

∫ ∫

I
i+ 1

2 ,j+ 1
2

un(x, y)dy dx

=
1
h2





∫ x
i+ 1

2

xi

∫ y
j+ 1

2

yj

pni,j(x, y) dy dx+

∫ x
i+ 1

2

xi

∫ yj+1

y
j+ 1

2

pni,j+1(x, y) dy dx

+

∫ xi+1

xi+ 1
2

∫ y
j+ 1

2

yj

pni+1,j(x, y) dy dx+

∫ xi+1

xi+ 1
2

∫ yj+1

y
j+ 1

2

pni+1,j+1(x, y) dy dx



 . (2.4)

The integrals of (2.3) are evaluated by reconstructing the point values of{u(x, y, τ)|tn ≤ τ ≤
tn+1} from the known cell-averages. Then, for a sufficiently small time step∆t, the integrals are
assumed to be smooth, such that appropriate quadrature rules can be used. For example, one can
use the following quadrature rule in space:

∫ xi+1

xi

f(x)dx =
h

24
[−f(xi+2) + 13f(xi+1) + 13f(xi)− f(xi−1)] +O(h4), (2.5)

and the Simpson’s rule given by:

∫ tn+1

τ=tn
f (u(xi, yj, τ)) dτ = ∆t

m
∑

l=0

γl [f (u(xi, yj , t
n + βl∆t))] , (2.6)

to evaluate the time integrals whereβ0 = 0, β1 = 1/2, β2 = 1, γ0 = 1/6, γ1 = 2/3 and
γ2 = 1/6. For this quadrature rule, we need to predict the intermediate valuesu(xi, yj , t

n+1/2)
andu(xi, yj , t

n+1). Once more, we use the smoothness of the approximations along the lines
(xi, yj)× [tn, tn+1] to consider the Cauchy problem:

v′i,j(τ) = F (τ, vi,j(τ)) = −fx (v(xi, yj , t
n + τ))− gy (v(xi, yj, t

n + τ)) ,

vi,j(t0) = u(xi, yj , t
n). (2.7)
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Similar to [2, 21], we use the Natural Continuous Extension (NCE) of Runge-Kutta (RK) meth-
ods [26] to solve the problem up toτ = ∆t. We use the second-order RK method given by the
polynomials

b1(θ) = (b1 − 1)θ2 + θ, (2.8)

b2(θ) = b2θ
2, (2.9)

with the following set of coefficients:

b =

(

1/2
1/2

)

, a =

(

0 0
1 0

)

. (2.10)

To compute the predicted values of the quadrature formulau(xi, yj , t
n + βl∆t) efficiently, we

rewrite the NCE-RK method as

u(xi, yj, t
n + βl∆t) = un

ij + λ

2
∑

r=1

br(βl)K
r
ij,

Kr
ij = −fx(Y

r
ij)− gy(Y

r
ij), (2.11)

Y r
ij = un

ij + λ

r−1
∑

s=1

arsK
s
ij ,

where the coefficientsaij are given in (2.10), and the numerical derivativefx andgy are discussed
in the next section.

3 A Third-Order Non-Oscillatory Central Scheme

3.1 Reconstruction from Cell Averages

We first reconstruct the piecewise-polynomialspni,j(x, y) of (2.2). Following [16], we consider
a polynomial of degree 2 associated with the cellIi,j :

pni,j(x, y) =un
i,j + uxi,j

(

x− xi

h

)

+ uyi,j

(

y − yj
h

)

+
1

2h2

(

uxxi,j
(x− xi)

2 + 2uxyi,j
(x− xi)(y − yj) + uyyi,j

(y − yj)
2
)

. (3.1)

We require thatpni,j(x, y) obeys the conservation property:

1
h2

∫ ∫

Iij

pni,j(x, y) dy dx = ūn
i,j ,

that is,un
i,j must satisfy

un
i,j = ūn

i,j −
1
24

(

uxxi,j
+ uyyi,j

)

. (3.2)

We choose the numerical derivatives to be fully non-oscillatory as [5], compared to the CWENO
reconstructions of [16] and [17]. In addition, they must yield third-order accuracy, that is,

1
h
uxi,j

=
∂

∂x
u(x = xi, y = yj, t

n) +O(h2), (3.3)

1
h
uyi,j

=
∂

∂y
u(x = xi, y = yj , t

n) +O(h2), (3.4)

1
h2uxxi,j

=
∂2

∂x2u(x = xi, y = yj , t
n) +O(h), (3.5)

1
h2uyyi,j

=
∂2

∂y2u(x = xi, y = yj , t
n) +O(h), (3.6)

1
h2uxyi,j

=
∂2

∂x∂y
u(x = xi, y = yj , t

n) +O(h). (3.7)
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Using (3.1) and (3.2), the reconstruction of (2.4) gives

ūn
i+ 1

2 ,j+
1
2
=

1
4
(ūn

i,j + ūn
i+1,j + ūn

i,j+1 + ūn
i+1,j+1)

+
1
16

(uxi,j
− uxi+1,j + uxi,j

− uxi+1,j+1)

+
1
16

(uyi,j
+ uyi+1,j − uyi,j

− uyi+1,j+1)

+
1
64

(uxyi,j
− uxyi+1,j

− uxyi,j
+ uxyi+1,j+1

). (3.8)

In order to achieve third-order accuracy for (3.8), we use the UNO limiter to find the numerical
derivatives (3.3), (3.4) and (3.7):

uxi,j
= MM

{

∆ūi− 1
2 ,j

+
1
2

MM
{

∆2ūi−1,j, ∆2ūi,j

}

, ∆ūi+ 1
2 ,j

−
1
2

MM
{

∆2ūi,j, ∆2ūi+1,j
}

}

,

(3.9)

uyi,j
= MM

{

∆ūi,j− 1
2
+

1
2

MM
{

∆2ūi,j−1, ∆2ūi,j

}

, ∆ūi,j+ 1
2
−

1
2

MM
{

∆2ūi,j, ∆2ūi,j+1
}

}

,

(3.10)

uxyi,j
= MM

{

∆uy
i− 1

2 ,j
+

1
2

MM
{

∆2uyi−1,j , ∆2uyi,j

}

, ∆uy
i+ 1

2 ,j
−

1
2

MM
{

∆2uyi,j
, ∆2uyi+1,j

}

}

.

(3.11)

One may alternatively finduxyi,j
of (3.11), by using the derivatives on they−axis of uxi,j

.
Numerical experiments indicate that similar results are obtained.

The NT scheme [20] uses a second-order accurate limiter

v′j = MM
(

∆vj− 1
2
,∆vj+ 1

2

)

, (3.12)

which is non-oscillatory in the sense that

0 ≤ v′j · sign(∆vj± 1
2
) ≤ Const.·

∣

∣

∣MM
(

∆vj− 1
2
,∆vj+ 1

2

)∣

∣

∣ .

Here,∆vj+ 1
2
= vj+1 − vj , and the MinMod limiter (MM) is defined by

MM(x1, x2, . . .) =











minp {xp} if xp > 0 ∀p,
maxp {xp} if xp < 0 ∀p,
0 otherwise.

However, the accuracy of (3.12) drops at the non-sonic critical gridvaluesvj , where∆vj− 1
2
·

∆vj+ 1
2
< 0 6= f ′(vj). NT scheme adapted the uniform non-oscillatory (UNO) limiter of Harten

and Osher [4]

v′j = MM
(

∆vj− 1
2
+

1
2

MM
(

∆2vj−1, ∆2vj
)

, ∆vj+ 1
2
−

1
2

MM
(

∆2vj , ∆2vj+1
)

)

, (3.13)

where∆2vj = vj+1−2vj+vj−1. The limiter (3.13) adds second-order differences to the MinMod
limiter (3.12) to achieve high accuracy including at critical points.

3.2 Reconstruction from Point Values

We approximate the point-valueun
i,j of (3.2) from the cell averages ¯un

i,j, while simultaneously
looking for high accuracy and avoiding oscillations. This is achieved by approximating the
derivatives of (3.2) by

uxxi,j
= MM

(

∆2ūn
i−1,j , ∆2ūn

i,j, ∆2ūn
i+1,j

)

, (3.14)

uyyi,j
= MM

(

∆2ūn
i,j−1, ∆2ūn

i,j, ∆2ūn
i,j+1

)

. (3.15)
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Following [21], we compute the MM limiter with three arguments as follows

MM(x1, x2, x3) =
1
4
(sign(x1) + sign(x2) + sign(x3) + sign(x1 x2 x3))

× min(|x1|, |x2|, |x3|).

In order to compute the fluxes of (2.7), we must evaluate the function

F (ui,j) = −fx(ui,j)− gy(ui,j), (3.16)

whereui,j is found at the intermediate time intervals given by the NCE-RK method, notably
for u(xi, yj , t

n+1/2) andu(xi, yj , t
n+1). The numerical derivatives of (3.16) must satisfy third-

order accuracy, that is,

1
h
fx(ui,j) =

∂

∂x
f(u(x = xi, y = yj , t

n)) +O(h2), (3.17)

1
h
gy(ui,j) =

∂

∂y
g(u(x = xi, y = yj , t

n)) +O(h2). (3.18)

We approximatefx(ui,j) andgy(ui,j) in a similar way as in (3.9) and (3.10) by using the UNO
limiter on differences off andg to obtain the desired order of accuracy and still remain non-
oscillatory. The derivatives of the fluxes are then given by

fxi,j
= MM

{

∆fi− 1
2 ,j

+
1
2

MM
{

∆2fi−1,j , ∆2fi,j
}

, ∆fi+ 1
2 ,j

−
1
2

MM
{

∆2fi,j , ∆2fi+1,j
}

}

,

(3.19)

gyi,j
= MM

{

∆gi,j− 1
2
+

1
2

MM
{

∆2gi,j−1, ∆2gi,j
}

, ∆gi,j+ 1
2
−

1
2

MM
{

∆2gi,j , ∆2gi,j+1
}

}

.

(3.20)

4 Numerical Experiments

Problem 1 We test the accuracy of the third-order scheme, which we call CNO3, onthe 2D lin-
ear advection problemut+ux+uy = 0 with the initial conditionu(x, y, 0) = sin2(πx) sin2(πy)
and periodic boundary conditions on the domain[0, 1]× [0, 1]. In Table1 we give the error and
numerical order obtained on different grid sizes withλ = 0.3 atT = 1. We see that the scheme
is converging to third-order accuracy, but it does not achieve the maximum order of accuracy due
to the non-smooth limiters [24]. For comparison, we include the results obtained by the third-
order central scheme with CWENO weights and constant weights of [16] for λ = 0.425. We
see that those schemes give comparable convergence to our proposed scheme, but smaller mag-
nitude ofL1 errors. Similar observations are made with the compact scheme of [15]. However,
the fourth-order central scheme of [17] performs better as expected.

Problem 2 We consider the linear rotation problem of [17] whereut+f(u, x, y)x+g(u, x, y)y =
0 on the square patch[0, 1]× [0, 1] with N = 40 in each direction andλ = 0.3. The initial con-
dition and fluxes are respectively given by

u0(x, y) =

{

1, |x− 1
2| <

1
2 and|y − 1

2| <
1
2,

0, otherwise,

and

f(u, x, y) = −

(

y −
1
2

)

πu

2
, g(u, x, y) =

(

x−
1
2

)

πu

2
.

Figure1 shows the solutions atT = 0.5 andT = 1 by the CNO3 scheme which are free from
spurious oscillations.
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Table 1. Accuracy by central schemes withu(x, y, 0) = sin2(πx) sin2(πy).

N CNO3

L1 error L∞ error L1 error L∞ error

10 0.4988(-1) – 0.1472 –
20 0.7054(-2) 2.822 0.2535(-1) 2.538
40 0.9287(-3) 2.925 0.3431(-2) 2.886
80 0.1220(-5) 2.928 0.4643(-3) 2.885

N Constant weights C-WENO weights

L1 error L1 order L1 error L1 order

10 0.1570(-1) – 0.8524(-1) –
20 0.2667(-2) 2.558 0.2652(-1) 1.685
40 0.3434(-3) 2.944 0.4181(-2) 2.665
80 0.4386(-4) 2.982 0.4427(-4) 6.561
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Figure 1. Solution of Problem 2 by CNO3, withN = 40 andλ = 0.3.
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Figure 2. Solution of Burgers’ equation by CNO3 withλ = 0.3 andh = 0.02.

Problem 3 We next solve the Burgers’ equationut + ( 1
2u

2)x + ( 1
2u

2)y = 0 for the initial
condition from [16], u(x, y, 0) = sin2(πx) sin2(πy), on the domain[0, 1]× [0, 1] with periodic
boundary conditions. In Figure2, we display the results up toT = 4, on 50× 50 grid with
λ = 0.3. We observe that the solutions obtained by CNO3 are well resolved and non-oscillatory.

Problem 4 Finally, we test CNO3 on the Riemann problems for two-dimensional gas dynamics

Ut + F (U)x +G(U)y = 0,

where

U =











ρ

ρu

ρv

E











, F (U) =











ρu

ρu2 + p

ρuv

u(E + p)











, G(U) =











ρu

ρuv

ρv2 + p

v(E + p)











,
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andE = p
(γ−1) +

1
2ρ(u

2 + v2). Hereρ is the density,u andv are the velocity components,E is
the total energy andp is the pressure.γ = 1.4 is the ratio of specific heats.

Nineteen configurations were identified for those problems [22, 23, 13, 12], where the initial
condition on[0,1]× [0,1] is given by

(p, ρ, u, v)(x, y, 0) =



















(p1, ρ1, u1, v1), if x > 0.5, y > 0.5,
(p2, ρ2, u2, v2), if x < 0.5, y > 0.5,
(p3, ρ3, u3, v3), if x < 0.5, y < 0.5,
(p4, ρ4, u4, v4), if x > 0.5, y < 0.5.

The different quadrants are initially separated by either rarefaction, shock or contact wave. We
tested all the different configurations using componentwise extension withλ = 0.3 and 200×200
grid but due to space constraints we show only a few results in Figure3. We observe that CNO3
recovers the major features on the density profiles in most test cases, but is somewhat smeared
near discontinuities.
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(b) Configuration 10:T = 0.15.
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(d) Configuration 19:T = 0.3.

Figure 3. Approximation of some two-dimensional gas dynamics problems by CNO3
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5 Conclusion

In this work, we have introduced a genuinely multidimensional third-ordernon-oscillatory cen-
tral scheme. A piecewise quadratic polynomial is used for the reconstruction, which uses high-
order accurate approximation for the spatial derivatives to avoid spurious oscillations. The
scheme was tested on different problems and we observed that it captured the right profile of
the solutions. However, the scheme is damped and discontinuities were smeared due to the non-
linear limiter. Alternatively, a sharper non-oscillatory multi-dimensional reconstruction may be
used, but this will necessitate additional numerical derivatives. The proposed scheme can also
be extended to solve Hamilton-Jacobi equations [19] and MHD equations [1].
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