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Abstract Let R be a commutative ring with identity. By a Bres̃ar generalized derivation of R
we mean an additive map g : R→ R such that g (xy) = g (x) y + xd (y) for all x, y ∈ R, where
d is a derivation of R. And an additive mapping f : R → R is called a generalized derivation in
the sense of Nakajima if it satisfies f(xy) = f(x)y + xf(y) − xf(1)y for all x, y ∈ R. In this
paper we extend some results of Chebotar and Lee [2] and, Liu and Passman [5] to generalized
derivations of Nakajima and Bres̃ar. The main aim of this note is to give some properties of the
Lie ring Rg which is the set of all Bres̃ar generalized derivations of R of the form rg with r ∈ R
and is to apply similar results to generalized derivations of Nakajima.

1 Introduction

In [3], C. R. Jordan and D. A. Jordan investigated how the ideal structure of the Lie ring of
derivations of R is determined by the ideal structure of R. They proved that if R is a prime ring
of characteristic not 2, then the Lie ring D(R) of all derivations of R is a prime Lie ring. For this
theorem, different proofs were given for the case where R is commutative and the case where R
is noncommutative. In commutative case, the authors studied the structure of the Lie ring Rd of
all derivations of R of the form rd : x 7→ rd(x), r ∈ R, which is a Lie subring of D(R). And
they proved that if R is a commutative domain of characteristic not 2 with identity, then Rd is a
prime Lie ring. Later in [7], some conditions on R were weakened by A. Nowicki. Recently M.
A. Chebotar and P. H. Lee, in [2], investigated the structure of the Lie ring Rd and established a
relationship between the d-ideals of R and the ideals of Rd.

In this paper, we first give some definitions such as g-invariant subset, g-ideal and g-prime
ring where g is a generalized derivation which was introduced by M. Bres̃ar [1]. Furthermore
we introduce the Lie ring of all Bres̃ar generalized derivations of R and denote this ring as a
left R-module. Then we extend some results of [2] to Bres̃ar generalized derivations and study
the ideal structure of the Lie ring Rg. Finally, we establish similar relationships for generalized
derivations in the sense of Nakajima.

2 Results

LetR be a ring. An additive mapping d : R→ R is called a derivation if d (xy) = d (x) y+xd (y)
holds for all x, y ∈ R. The study of derivations of prime rings was initiated by Posner [8]. In
[1], Bres̃ar defined the following notation. An additive mapping g : R→ R satisfying

g (xy) = g (x) y + xd (y)

for all x, y ∈ R, where d is a derivation on R is said to be a Bres̃ar generalized derivation
or generalized d-derivation of R and denoted by (g, d). In particular, if 1 ∈ R, then g(y) =
g(1)y + d(y) for all y ∈ R. We denote by BDer(R) the set of Bres̃ar generalized derivations of
R.

A similar notion was introduced in [6] by Nakajima who gave some categorical properties
of that generalized derivations without using derivations. Now we give the following which is
defined on an unital ringR to investigate some of their properties on a Lie ring in the last section.
An additive mapping f : R→ R is called a generalized derivation in the sense of Nakajima if it
satisfies

f(xy) = f(x)y + xf(y)− xf(1)y
for all x, y ∈ R. We denote the set of this type of generalized derivations by gDer(R).
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Let R be a ring with identity element 1. If f : R→ R is a generalized derivation in the sense
of Nakajima, then d = f − f(1)l is a derivation of R, where f(1)l is the left multiplication by
f(1), and we see that f(xy) = f(x)y + xd(y) for all x, y ∈ R. So it means that the notions of
generalized derivations of Nakajima and Bres̃ar coincide when R is an unital ring.

Now we remind some definitions and lemmas from [2], [3] and [7]:

A nonempty subset T of the ring R is called d-invariant if d(T ) ⊆ T . An ideal of R is called
a d-ideal if it is d-invariant.

For any x, y ∈ R, the symbol [x, y] stands for the commutator xy − yx.

Let L(R) be the Lie ring of R; thus the elements of L(R) are the elements of R and the
product in L(R) is given by [x, y] for all x, y ∈ R.

An ideal I of R is said to be a d-prime ideal of R if I 6= R, d(I) ⊆ I and for all d-ideals A,
B of R, the inclusion AB ⊆ I implies that A ⊆ I or B ⊆ I . The ring R is said to be d-prime if
0 is a d-prime ideal of R.

For Lie rings, we have analogous definition. A Lie ring L (R) is said to be (Lie) prime if the
product of any nonzero ideals of L (R) is always nonzero.

Let S be a nonempty subset of R. The left annihilator l (S) of S is the set of all elements a
in R such that for each s in S, as = 0; that is, l (S) = {a ∈ R | aS = 0}. The right annihilator
r (S) of S in R is similarly defined. If R is a commutative ring, then there is no distinction
between the left annihilator and the right annihilator of a nonempty subset S of R. In this case,
we just call it the annihilator of S in R and denote it by Ann (S).

Lemma 2.1. [2, Lemma 2.2] Let R be a commutative ring, and d a nonzero derivation of R such
that R is d-prime. Then;

(1) if S is a nonzero d-invariant subset of R, then Ann (S) = 0.
(2) if rd = 0 for some r ∈ R, then r = 0.

2.1 Preliminary considerations

Now we give some new definitions and make some preliminary remarks we need later.

Let R be a ring and the pair (g, d) a Bres̃ar generalized derivation of R. A nonempty subset
T of R is called g-invariant if g (T ) ⊆ T and d (T ) ⊆ T. An ideal of R is called a g-ideal if it is
g-invariant.

We say that a ring R is g-prime if the product of any two nonzero g-ideals of R is nonzero.

The set of all Bres̃ar generalized derivations of R, which we denoted by BDer(R), is defined
as a Lie ring whose elements are the Bres̃ar generalized derivations of R where the additive
structure of (g, d), (α, d′) ∈ BDer (R) is given by pointwise addition

(g + α)(x) = g(x) + α(x) (x ∈ R),

and the product is given by the commutator of the composites

[g, α] (x) = g(α(x))− α(g(x)) (x ∈ R).

If R is a commutative ring, then BDer (R) can be viewed as a left R-module in a natural
way: For g ∈ BDer (R) and s ∈ R, the pair (sg, sd) is the Bres̃ar generalized derivation of R
which maps an element x of R to sg (x).

Lemma 2.2. Let R be a ring, S be a nonempty subset of R and (g, d) a nonzero Bres̃ar general-
ized derivation of R. If S is g-invariant, so is the left annihilator l (S) of S in R.

Proof. Let s ∈ S. Since S is g-invariant, it follows that g (s) ∈ S and also d (s) ∈ S.
Now let a ∈ l (S). Using the definition of the left annihilator l (S) of S in R, we get aS = 0.

That is, as = 0 for all s ∈ S. Since 0 = g (as) = g (a) s + ad (s) for all a ∈ l (S) , s ∈ S, we
have g (a) s = 0 and then

g (a) ∈ l (S) for all a ∈ l (S) . (2.1)

Moreover since 0 = d (as) = d (a) s+ ad (s) for all a ∈ l (S) , s ∈ S, we get d (a) s = 0, so

d (a) ∈ l (S) for all a ∈ l (S) . (2.2)

From (2.1) and (2.2), it follows that g (l (S)) ⊆ l (S) and d (l (S)) ⊆ l (S). So this means that
l (S) is g-invariant. 2
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Remark 2.3. If R is a commutative ring, then the right annihilator r (S) of S in R will be g-
invariant by a similar proof of preceding lemma.

Corollary 2.4. If a ring R is g-prime then the left annihilator (or the right annihilator) of any
nonzero g-ideal of R is zero.

Lemma 2.5. Let R be a commutative ring, and (g, d) a Bres̃ar generalized derivation of R. If R
is g-prime and K is a nonzero g-invariant subset of R, then Ann (K) = 0.

Proof. Let I be the ideal of R generated by the subset K of R, that is, I = K +KR. Clearly, I
is nonzero and Ann (K) = Ann (I). Since K is g-invariant, then I is g-invariant and therefore I
is a g-ideal of R. By the g-primeness of the ring R, Corollary 2.4 implies that the annihilator of
any nonzero g-ideal of R is zero. That is Ann (I) = 0 and so we have Ann (K) = 0. 2

Lemma 2.6. Let R be a commutative ring, and (g, d) a nonzero Bres̃ar generalized derivation
of R where d is a nonzero derivation of R. If R is g-prime and m is an element in R such that
mg = 0, then m = 0.

Proof. If mg = 0, that is, mg (x) = 0 for all x ∈ R, then we obtain

0 = mg(rx) = mg(r)x+mrd(x) for all x, r ∈ R.

Since mg = 0, we get mrd(x) = 0 for all x, r ∈ R. From Lemma 2.1(ii), we have mr = 0 for
all r ∈ R. Since d(R) ⊆ R, we obtain that md(R) = 0. By using Lemma 2.1(ii) again, we have
m = 0. 2

2.2 The structure of the Lie ring Rg

Let R be a commutative ring. The set, Rg, of all Bres̃ar generalized derivations of R of the
form rg : x 7→ rg(x) with r ∈ R, is a subring of the Lie ring BDer (R) of Bres̃ar generalized
derivations of R. In this paper we shall not view Rg as a Lie subring of BDer (R) but rather as
a Lie ring whose elements are the elements of R and whose product is as follows:

[ag, bg] = (ag (b)− bg (a)) g for all a, b ∈ R.

Let (g, d) be a Bres̃ar generalized derivation of R and A be an ideal of the Lie ring Rg. Then
we set

γ (A) = {a ∈ R | ag ∈ A and ad (x) g ∈ A for all x ∈ R} .

It’s easy to see that γ (A) is an additive subgroup of R. And if R contains an identity and
g(1)γ(A) ⊆ γ(A), then γ (A) is g-invariant; for if a ∈ γ(A) then d(a)g = [g, ag] ∈ A and
d(a)d(x)g = [g, ad(x)g] − ad2 (x) g ∈ A so we get d(a) ∈ γ(A); and also g(a)g = g(1)ag +
d(a)g ∈ A and g(a)d(x)g = g(1)ad(x)g + d(a)d(x)g ∈ A since g(1)a ∈ γ(A) so we have
g(a) ∈ γ(A). To prove all these identities we use the definition of Bres̃ar generalized derivation
where 1 ∈ R.

From now on we shall assume that if R contains an identity and if there exists an ideal A of
the Lie ring Rg, then g(1)γ(A) ⊆ γ(A).

Theorem 2.7. Let R be a 2-torsion free commutative ring with identity and (g, d) a nonzero
Bres̃ar generalized derivation of R where d is a nonzero derivation of R. If R is g-prime, then
Rg is a prime Lie ring.

Proof. Suppose that A and B are two ideals of the Lie ring Rg such that [A,B] = 0. Let
a ∈ γ (A) and b ∈ γ (B). That is, ag ∈ A, bg ∈ B, ad (x) g ∈ A and bd (x) g ∈ B for all x ∈ R.
Then we have [ag, bg] = 0, or equivalently, (ad (b)− bd (a)) g = 0 by using the definition of
Bres̃ar generalized derivation where R contains an identity. By Lemma 2.6 we get

ad (b) = bd (a) for all a ∈ γ (A) , b ∈ γ (B) . (2.3)

Moreover, we obtain [ag, bd (x) g] = 0, or equivalently, abd2 (x) g = 0 by using (2.3). Also
applying Lemma 2.6 to the last equation, we have

abd2(x) = 0 for all a ∈ γ (A) , b ∈ γ (B) , x ∈ R. (2.4)
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Now suppose that A 6= 0, B 6= 0; then γ (A) 6= 0 and γ (B) 6= 0. Recall that both γ (A) and
γ (B) are g-invariant. Applying Lemma 2.5 twice to (2.4), we have d2(x) = 0 for all x ∈ R.
When we replace x by x2 in the last equation, we conclude from that

2d(x)2 = 0 for all x ∈ R.

Since R is a 2-torsion free ring, then we get d(x)2 = 0 for all x ∈ R. By linearizing the last
identity, we have 2d(x)d(y) = 0 for all x, y ∈ R. So we use the 2-torsion freeness of R again,
and we find that

d(x) = 0 for all x ∈ R (2.5)

from Lemma 2.1(ii), giving a contradiction. This proves the theorem. 2

Theorem 2.8. LetR be a commutative ring with identity, and (g, d) a nonzero Bres̃ar generalized
derivation of R where d is a nonzero derivation of R such that R is g-prime. If J is a g-ideal of
R, then Jg and Jd(x)g are ideals of the Lie ringRg for all x ∈ R. Conversely, any nonzero ideal
of the Lie ring Rg contains ideals of the form Jg and Jd(x)g for all x ∈ R for some nonzero
ideal J of the ring R which satisfies g(J) ⊆ J .

Proof. If J is a g-ideal of R, then [ag, sg] = (ad (s)− sd (a)) g ∈ Jg and [ad(x)g, sg] =
(ad(s) − sd(a))d(x)g − asd2(x)g ∈ Jd(x)g for any a ∈ J and s, x ∈ R. Therefore, Jg and
Jd(x)g are ideals of the Lie ring Rg.

Conversely, let A be a nonzero ideal of Rg. It follows by Theorem 2.7 that Rg is prime.
Hence [A,A] 6= 0. Then, since Rg is prime, there exists a, b ∈ γ (A) such that [ag, bg] =
(ad (b)− bd (a)) g 6= 0.

Let s ∈ R. Then [ag, bsg] + [asg, bg] ∈ A, that is,

(ad (bs)− bsd (a) + asd (b)− bd (as)) g ∈ A.

Moreover, [ad (x) g, bsg] + [asg, bd (x) g] ∈ A, that is,

(ad (bs)− bsd (a) + asd (b)− bd (as)) d (x) g ∈ A.

So we obtain
ad (bs)− bsd (a) + asd (b)− bd (as) ∈ γ (A) .

By extending the last relation, we get

2 (ad (b)− bd (a)) s ∈ γ (A) for all s ∈ R.

Thus there exists a nonzero ideal I = 2 (ad (b)− bd (a))R of R contained in γ (A). Since γ (A)

is g-invariant, this yields gn (I) ⊆ γ (A) for all n = 0, 1, 2, . . .. Let J =
∞∑
n=0

gn (I). It is clear

that J is an additive subgroup of R such that g (J) ⊆ J . We now prove by induction on n that

gn (I)R ⊆
n∑
k=0

gk (I) for all n ≥ 0 to show that J is a right ideal ofR. For n = 0, this has already

been established since IR ⊆ I . Let n > 0. Then, g (gn (I)R) = gn+1 (I)R+ gn (I) d (R). And
it follows that

gn+1 (I)R ⊆ g (gn (I)R) + gn (I) d (R)

⊆ g

(
n∑
k=0

gk (I)

)
+ gn (I)R

⊆
n+1∑
k=1

gk (I) +
n∑
k=0

gk (I)

=
n+1∑
k=0

gk (I) .

Hence, by induction, JR ⊆ J , that is, J is a right ideal of R. Similarly, one can show that J
is also a left ideal of R and so J is an ideal of R.

So J =
∞∑
n=0

gn (I) is a nonzero ideal of R which is contained in γ (A). Hence, A contains the

ideals Jg and Jd(x)g for all x ∈ R. This completes the proof. 2
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2.3 The structure of the Lie ring G

Let R be a ring with identity element 1. We recall that gDer(R) is the set of all generalized
derivations on R in the sense of Nakajima.

Since R is an unital ring, we know that the sets gDer(R) and BDer(R) coincide. So we can
assume that the set gDer(R) is a Lie ring under the product

[f, f ′] = ff ′ − f ′f

for f, f ′ ∈ gDer(R) and when R is commutative gDer(R) also has an R-module structure given
by (rf)(x) = rf(x) for any r, x ∈ R and f ∈ gDer(R). And, because of the same reason the
other definitions we used for Bres̃ar generalized derivations (g, d) such as g-invariant subset,
g-ideal and g-prime ring can be used for all (f, d′) ∈ gDer(R) where d′ = f − f(1)l.

So we can recall some definitions to use in this section. For any subset G of gDer(R),
an ideal of R will be called a G-ideal if f(G) ⊆ G and d(G) ⊆ G for all (f, d) ∈ G where
d = f − f(1)l. Note that R is G -prime if the product of any two nonzero G-ideals of R is
nonzero.

Firstly, we wanted to extend Theorem 2.7 to the case where G is a Lie subring and an R-
submodule of gDer(R). And, we asked this question: Is G a prime Lie ring if R is G-prime?
The answer is not known in general, but to obtain an analogous result for generalized derivations
in the sense of Nakajima, we certainly need to suppose some additional conditions.

From now on, we fix the notations that R is a commutative ring with identity element 1, G is
a nonzero Lie subring and also an R-submodule of gDer (R).

Let f1, f2 ∈ G and r, s ∈ R. The composition f1 (rf2) is given by

f1 (rf2) = f1 (r) f2 + rd1f2

where d1 = f1 − f1 (1)l, and [rf1, f2] = r [f1, f2]− f2 (r) f1 + rf2 (1) f1, [f1, sf2] = s [f1, f2] +
f1 (s) f2 − sf1 (1) f2. And also we have

[rf1, sf2] = rs [f1, f2] + rf1 (s) f2 − sf2 (r) f1 − rs (f1 (1) f2 − f2 (1) f1) (2.6)

We will investigate the following: if R is G-prime and charR = 2 is it true that G is prime?

Definition 2.9. LetL be an ideal ofG. Set L̃ = {g ∈ G | Rg ⊆ L} and g(L) =
∑
α∈L

(α(R)−Rα(1))R.

Also define the set AnnR(L) = {r ∈ R | rL = 0}.

Lemma 2.10. Let L be an ideal of G. Then g(L) =
∑
α∈L

(α(R)−Rα(1))R and also AnnR(L)

are G-ideals of R.

Proof. If f ∈ G,α ∈ L and x ∈ R, then

f(α(x)− xα(1)) = [f, α](x) + αf(x)− f(x)α(1)− x[f, α](1)
−xαf(1) + xf(1)α(1)

= ([f, α](x)− x[f, α](1)) + (αf(x)− f(x)α(1))
−x(αf(1)− f(1)α(1))

∈ ([f, α](R)−R[f, α](1)) + (α(R)−Rα(1))R.

So f((α(R) − Rα(1))R) = f(α(R) − Rα(1))R + (α(R) − Rα(1))d(R) ⊆ g(L) where d =
f − f(1)l. And since d is a derivation of R, then we have

d((α(R)−Rα(1))R) = d(α(R)−Rα(1))R+ (α(R)−Rα(1))d(R)
= (f − f(1)l)(α(R)−Rα(1))R+ (α(R)−Rα(1))d(R)
= f(α(R)−Rα(1))R− f(1)(α(R)−Rα(1))R

+(α(R)−Rα(1))d(R)
⊆ g(L).
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So it follows that g(L) is a G-ideal of R. If x ∈ AnnR(L) and α ∈ L, we get xα = 0 and
therefore for any f ∈ G we have 0 = f(xα) = f(x)α+ xdα where d = f − f(1)l. Then

f(x)α = −xdα = −x(f − f(1)l)α = −xfα+ xf(1)α

= −x[f, α]− xαf = 0

since R is commutative and L is an ideal of G. Thus f(x)α = 0 for all α ∈ L and f(x) ∈
AnnR(L). And since d is a derivation of R, then we get 0 = d(xα) = d(x)α + xdα, so by the
similar way, d(x)α = −xdα = 0 for all α ∈ L and d(x) ∈ AnnR(L). Therefore AnnR(L) is a
G-ideal of R. 2

Lemma 2.11. Let L be an ideal of G. Then L̃ is both an ideal and R-submodule of G.

Proof. Let g ∈ L̃, f ∈ G and r ∈ R. Since Rrg ⊆ Rg ⊆ L then L̃ ⊆ L is an R-submodule of G.
From (2.1), [rg, 1.f ] = r[g, f ]− f(r)g + rf(1)g and we get

r[g, f ] = [rg, f ]− rf(1)g + f(r)g ∈ [L,G] + L = L.

So L̃ is an ideal of G. 2

Lemma 2.12. Let L be any nonzero ideal of G. If R is G-prime and r is an element in R such
that rL = 0, then r = 0.

Proof. Note that AnnR(L).g(L) = 0. Since L 6= 0 then we have g(L) 6= 0, so r ∈ AnnR(L) = 0
by G-primeness of R. 2

The following result is a modification of a theorem of Jordan [4]:

Theorem 2.13. Let L be an ideal of G. If L is an R-submodule of G, then g(L)G ⊆ L.

Proof. Since L is an ideal of G, then g(L) =
∑
α∈L

(α(R)−Rα(1))R is a G-ideal of R from

Lemma 2.10. For any f ∈ G,α ∈ L and x ∈ R, then we get

(α(x)− xα(1))f = [α, xf ]− x[α, f ] ∈ L+RL ⊆ L

and this shows that g(L)G ⊆ L since (α(R)−Rα(1))RG = (α(R)−Rα(1))G for any α ∈ L. 2

Lemma 2.14. Suppose that R is G-prime and let L,M are ideals of G such that [L,M ] = 0,
then we have L̃ = 0 or M̃ = 0.

Proof. By Theorem 2.13, there exist G-ideals A = g(L̃) and B = g(M̃) of R such that AG ⊆ L̃
and BG ⊆ M̃ . For any f1, f2 ∈ G, a ∈ A, b ∈ B, we have [af1, bf2] ∈ [L,M ] = 0 and hence

ab[f1, f2] + af1(b)f2 − bf2(a)f1 − abf1(1)f2 + abf2(1)f1 = 0.

Since A is an ideal of R, replace a by xa and we get

0 = xab[f1, f2] + xaf1(b)f2 − bf2(xa)f1 − xabf1(1)f2 + xabf2(1)f1

= x(ab[f1, f2] + af1(b)f2 − bf2(a)f1 − abf1(1)f2 + abf2(1)f1)

−bf2(x)af1 + bxf2(1)af1

= −bf2(x)af1 + bf2(1)axf1

= −ba(f2(x)− xf2(1))f1

for all f1, f2 ∈ G and a ∈ A, b ∈ B, x ∈ R. Then BA(g(G))2 = 0. Since B = g(M̃) ⊆ g(G)
and A = g(L̃) ⊆ g(G), we have g(M̃)2g(L̃)2 = 0. This implies that g(M̃) = 0 or g(L̃) = 0
since R is G-prime. Therefore, either M̃ = 0 or L̃ = 0. 2

Now we study the special case when charR = 2.

Theorem 2.15. Let R be G-prime and char(R) = 2. If f(1)2(f2(x) − xf2(1)) 6= 0 for all
x ∈ R, f ∈ G, then the Lie ring G is prime.
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Proof. Suppose that G is not prime. Then there exist nonzero ideals L,M of G such that
[L,M ] = 0. For any β ∈M,α ∈ L, f ∈ G and x ∈ R, we have α(x)β − xα(1)β = [α, xβ] ∈ L
since [L,M ] = 0.
It follows that [xf, α(x)β − xα(1)β] ∈ L and [xβ(x)f − x2β(1)f, α] ∈ L. So

x(fα(x)β − α(x)f(1)β − f(x)α(1)β − xfα(1)β)
= [xf, α(x)β − xα(1)β]− [xβ(x)f − x2β(1)f, α] ∈ L

since [α, [β, xf ]] ∈ [L,M ] = 0 for any β ∈ M,α ∈ L, f ∈ G and x ∈ R. Therefore, Lemma
2.14 implies that

fα(x)β − α(x)f(1)β − f(x)α(1)β − xfα(1)β ∈ L̃ = 0

for any β ∈M,α ∈ L, f ∈ G and x ∈ R. Hence

(fα(x)− α(x)f(1)− f(x)α(1)− xfα(1))β = 0. (2.7)

By Lemma 2.12, we see that

(fα(x)− α(x)f(1)− f(x)α(1)− xfα(1)) = 0 (2.8)

for any α ∈ L, f ∈ G and x ∈ R. Let SL = {x ∈ R | xf ∈ L,∀f ∈ G} and SM = {x ∈ R |
xf ∈M, ∀f ∈ G}. Note that if s ∈ SM , then

f(s)f − sf(1)f = [f, sf ] ∈M

for any f ∈ G and hence f(s) − sf(1) ∈ SM . Similarly, if s′ ∈ SL, then f(s′) − s′f(1) ∈ SL.
Moreover, since 0 6= L ⊆ G and 0 6=M ⊆ G, we see that SL, SM 6= 0.
For any s1 ∈ SL, β ∈M , f ∈ G, we have

β(s1)f(1)α+ s1β(f(1))α = [β, s1f(1)α] ∈ [M,L] = 0

since G is a nonzero R-submodule of gDer(R). So it follows from Lemma 2.12 that

β(s1)f(1) + s1β(f(1)) = 0.

Now we replace β by s2f(1)f in the last equation where s2 ∈ SM and we see that

s2f(1)f(s1)f(1) + s1s2f(1)f2(1) = 0

for any s1 ∈ SL, s2 ∈ SM and f ∈ G. Then, SMf(1)(f(s1)f(1) + s1f
2(1)) = 0 and hence

(SMG)f(1)(f(s1)f(1) + s1f
2(1)) = 0.

Since SMG is a nonzero ideal of G, we get

f(1)(f(s1)f(1) + s1f
2(1)) = 0 (2.9)

by Lemma 2.12. If we replace α by s1f(1)f in (2.8), then we have

0 = f(s1f(1)f(x))− s1f(1)f(x)f(1)− f(x)s1f(1)f(1)− xf(s1f(1)f(1))

= (f(s1)f(1) + s1f
2(1))f(x) + s1f(1)(f2(x)− xf2(1))− xf(1)(f(s1)f(1)

+s1f
2(1))

for any s1 ∈ SL, x ∈ R and f ∈ G. So it follows from (2.9), we see that

s1f(1)2(f2(x)− xf2(1)) = 0

if we multiply the last equation by f(1). Therefore we have (SLG)f(1)2(f2(x) − xf2(1)) = 0
for any x ∈ R and f ∈ G. Since SLG is a nonzero ideal of G, we get f(1)2(f2(x)−xf2(1)) = 0
by Lemma 2.12. 2
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