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Abstract. In this paper we are concerned with the stability of the class of Gorenstein n-flat
modules. We give an answer for the following natural question in the setting of a left G F},-closed
ring R: Given an exact sequence of Gorenstein n-flat R-modules G = --- — G| — Gy — G° —
G' — --- such that the complex H ®@g G is exact for each Gorenstein n-absolutely pure right
R-module H, is the module M := Im(Go — G°) a Gorenstein n-flat module?

1 Introduction

Sather-Wagstaff et al. proved in [10] that iterating the process used to define Gorenstein
projective modules exactly leads to the Gorenstein projective modules. Also, they established
in [11] a stability of the subcategory of Gorenstein flat modules under a procedure to build R-
modules from complete resolutions. Further Samir Bouchiba et al. in [3] proved over a left
G F-closed ring R, the stability of the Gorenstein flat modules under the very process used to
define these entities. Recently Z. Wang and Z. Liu in [13] proved that the two-degree strongly
Gorenstein flat modules are nothing more than the strongly Gorenstein flat modules. Motivated
by these works, we are concerned with the stability of the class of Gorenstein n-flat modules
introduced in [12].

On the other hand, in [1], Bennis defined and studied the notion of left G F-closed rings.
These are rings for which GF(R) (class of Gorenstein flat R-modules) is closed under exten-
sions, that is for any exact sequence 0 - A — B — C' — 0 of R-modules if A,C € GF(R),
then B € GF(R). In this paper we introduced the concept of a left GF),-closed ring (see Defini-
tion 3.2) where n is a non-negative integer and give a characterization of this ring and show that
the two-degree Gorenstein n-flat modules and Gorenstein n-flat modules are coincide when R is
a left GF,,-closed ring.

Throughout this paper, R denotes an associative ring with identity element. All modules, if
not otherwise specified, are assumed to be left R-modules. Let M(R) denote the category of left
R-modules. For an R-module M, we use M to denote the character module Homy (M, Q/Z) of
M. Let M and N be R-modules. Hom (M, N) (resp. Ext!(M, N)) means Hompg(M, N) (resp.
Exti,(M, N)), and similarly M @ N (resp. Tor;(M, N)) denotes M ®r N (resp. TorF(M, N))
for an integer i > 1. A left R-module M is called n-flat [8] if Tor;(N, M) = 0 holds for
all finitely presented right R-modules /N with projective dimension < n and a right R-module
M is called n-absolutely pure [8] if Ext!'(N, M) = 0 holds for all finitely presented right R-
modules N with projective dimension < n. This paper is organized as follows. In Section 2,
we recall some known definitions and introduce two-degree Gorenstein n-flat modules as well
as we initiate the main theorem of this paper. In Section 3, we introduce the definition of a left
GF, -closed ring and give a characterization of this ring. In the last section over a left GF,,-
closed ring, we show that the two-degree Gorenstein n-flat modules are nothing more than that
the Gorenstein n-flat modules.
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2 Gorenstein n-flat modules

In this section we recall some known definitions and introduce two-degree Gorenstein n-flat
modules as well as we initiate the main theorem of this paper.

Definition 2.1. [12] A left R-module M is said to be Gorenstein n-flat, if there exists an exact
sequence of n-flat left R-modules,

i 5 Py F' s Pl — ...

such that M = Im(Fy — F9) and such that E ®p — leaves the sequence exact whenever E is
an n-absolutely pure right R-module.

Definition 2.2. [12] A right R-module M is said to be Gorenstein n-absolutely pure, if there
exists an exact sequence of n-absolutely pure right R-modules

i Ay 5 Ag 5 A° 5 A

such that M = I'm(Ay — A°) and such that Homp(E, —) leaves the sequence exact whenever
E is an n-absolutely pure right R-module.

Next, we introduce the following definition

Definition 2.3. A left R-module M is called two-degree Gorenstein n-flat if there exists an exact
sequence of Gorenstein n-flat left R-modules

=5 G =Gy =G =G =

such that M =2 Im(Gp — G°) and it remains exact after applying H ®p — for any Gorenstein
n-absolutely pure right R-module H.

Let GF,(R), GA,(R) and g(2>.7-'n(R) are denotes the class of all Gorenstein n-flat left,
Gorenstein n-absolutely pure right and two-degree Gorenstein n-flat left modules over R re-

spectively. Also denote gi(z)]-'n(R) the subcategory of M(R) for which there exists an exact
sequence of Gorenstein n-flat R-modules

=5 G —= Gy =G =G =

such that M =2 Im(Gy — G°) and it remains exact after applying E ®x — for any n-absolutely
pure right R-module E. It is routine to check that

GFn(R) C GOF.(R) C GV Fu(R).

Our main theorem proves that these inequalities turn out to be equalities when R is a left GF,,-
closed ring as is stated next.

Main Theorem: Let R be a left GF,-closed ring. Then GF,,(R) = G F,(R) = sz) Fu(R).

3 GF,-closed ring

In this section we introduce the definition of a left G F;,-closed ring and give a characterization
of this ring. First recall the following definitions:

Definition 3.1. Let R be a ring and let X be a class of left R-modules.

(1) X is closed under extensions: If for every short exact sequence of left R-modules 0 — A —
B — C — 0, the conditions A and C are in X implies B is in X.

(2) X is closed under kernels of epimorphisms: If for every short exact sequence of left R-
modules 0 -+ A — B — C — 0, the conditions B and C' are in X implies A is in X.

(3) X is projectively resolving: If it contains all projective modules and it is closed under both
extensions and kernels of epimorphisms. i.e., for every short exact sequence of R-modules
0—A— B— C — 0with C € X, the conditions A € X and B € X are equivalent.

Definition 3.2. A ring R is said to be left GF,,-closed if GF,,(R) is closed under extensions.
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Since Gorenstein n-flat modules need not be Gorenstein flat (see [12, Example 3.3]), we get
left GF,-closed ring need not be left GF-closed ring. Also recall that a ring R is called right
n-coherent [8] (for integers n > 0 or n = oo) if every finitely generated submodule of a free
right R-module whose projective dimension is < n — 1 is finitely presented.

Example 3.3. Every right n-coherent ring is left G F},-closed.

Proof. 1t follows from [12, Proposition 3.4], [12, Lemma 3.5] and [7, Proposition 1.4]. m|

We begin with the following result.

Lemma 3.4. The following are equivalent for a left R-module M :
(1) M is Gorenstein n-flat;
(2) M satisfies the two following conditions:

(i) Tor;(E,M) = 0 for all i > 0 and all n-absolutely pure right R-modules E; and

(ii) There exists an exact sequence of left R-modules 0 — M — F° — F! — ...
where each F' is n-flat, such that E @ p — leaves the sequence exact whenever E is an
n-absolutely pure right R-module;

(3) There exists a short exact sequence of left R-modules 0 - M — F — G — 0, where F is
n-flat and G is Gorenstein n-flat.

Proof. Using the definition of Gorenstein n-flat modules, the equivalence (1) < (2) is obtained
by standard argument. Also, by definition, we get immediately the implication (1) = (3).

We prove the implication (3) = (2). Suppose that there exists a short exact sequence of left
R-modules:

(0):0>M—-F—-G—0
where F' is n-flat and G is Gorenstein n-flat. Let E be an n-absolutely pure right R-module.
Since G is Gorenstein n-flat and by the equivalence (1) < (2), Tor;41(E,G) = 0 forall i > 0.
Then, use the long exact sequence,

Tori1(E,G) = Tor;(E,M) — Tor;(E, F),

to get Tor;(E, M) = 0 for all i > 0.
On the other hand, since G is Gorenstein n-flat, there is an exact sequence of left R-modules:

(B):0=-G—=F s F' — ...
where each F* is n-flat, such that E ®p — leaves the sequence exact whenever FE is an n-

absolutely pure right R-module. Assembling the sequences («) and (), we get the following
commutative diagram:

0—M —>F — s ' s pl » |

G
0 0
such that £ @ — leaves the upper exact sequence exact whenever E is an n-absolutely pure

right R-module, as desired. O

Lemma 3.5. Let 0 - A — B — C — 0 be a short exact sequence of left R-modules. If A is
Gorenstein n-flat and C' is n-flat, then B is Gorenstein n-flat

Proof. Since A is Gorenstein n-flat, there exists a short exact sequence of left R-modules 0 —
A — F — G — 0, where F'is n-flat and G is Gorenstein n-flat. Consider the following pushout
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diagram:
0 0
0 A B C 0
|
-
v
00— F-->F —C —=0

Q
S<~—Q~—o

0

In the sequence 0 —+ F' — F’ — C — 0, both F' and C are n-flat, hence so is F”. Then, by the
middle vertical sequence and from Lemma 3.4, B is Gorenstein n-flat, as desired. O

Now we give the main theorem of this Section which is analog to Theorem 2.3 in [1]

Theorem 3.6. The following conditions are equivalent for a ring R:
(1) Ris left GF,-closed;
(2) The class GF,(R) is projectively resolving;

(3) For every short exact sequence of left R-modules 0 — G| — Gy — M — 0, where Gy and
G are Gorenstein n-flat. If Tor1(E, M) = 0 for all n-absolutely pure right R-modules E,
then M is Gorenstein n-flat.

Proof. (1) = (2). To claim that the class GF,,(R) is projectively resolving, it suffices to prove
that it is closed under kernels of epimorphisms (see Definition 3.1). Then, consider a short exact
sequence of left R-modules 0 - A — B — C — 0, where B and C are Gorenstein n-flat.
We prove that A is Gorenstein n-flat. Since B is Gorenstein n-flat, there exists a short exact
sequence of left R-modules 0 - B — F — G — 0, where F' is n-flat and G is Gorenstein
n-flat. Consider the following pushout diagram:

0 0

0 A B C 0
|
| ‘
\

0O — A——F -->D —0
G—G
0 0.

By the right vertical sequence and since R is left GF),-closed, the R-module D is Gorenstein
n-flat. Therefore, by the middle horizontal sequence and Lemma 3.4, A is Gorenstein n-flat, as
desired.

(1) = (3). Since G is Gorenstein n-flat, there exists a short exact sequence of left R-
modules 0 — G; — F; — H — 0, where F is n-flat and H is Gorenstein n-flat. Consider the
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following pushout diagram:

0 0
0 Gy 0 M 0
|
*
Y
O——F-——->D — M —20
H—H
0 0.

In the short exact sequence 0 — Gy — D — H — 0 both G, and H are Gorenstein n-flat, then
so is D since R is left GF;,-closed. Then, there exists a short exact sequence of left R-modules
0— D — F — G — 0, where F' is n-flat and G is Gorenstein n-flat. Consider the following
pushout diagram:

0 0

0 ) D M 0
|
| ‘
\

0O——F —F-->F —0
G —0G
0 0.

We want to show that F” is n-flat. Consider the sequence 0 — M — F' — G — 0. Let E be an
n-absolutely pure right R-module. By the exact sequence,

0=Tor(E,M)— Tor\(E,F") — Tor|(E,G) =0,
we get
(x) Tor (E,F")=0.

On the other hand, consider the sequence 0 — F| — F — F’ — 0. By Rotman (1979, Lemma
3.51), we have the following short exact sequence of character modules:

B)=0— (F)" - F" = (F)" —0.

From [8, Lemma 5], F* and (F})" are n-absolutely pure right R-modules. Then, by (*) and
from Cartan and Eilenberg (1956, Proposition 5.1, p. 120),

Ext'((F)T, (F)T) = (Tor (F)T, F")" =0.

Then, the sequence (3) splits, and so (F’)" is n-absolutely pure being a direct summand of the
n-absolutely pure right R-module F™. Therefore, I is a n-flat left R-module by [8, Lemma 5].
Finally, by Lemma 3.4 and the short exact sequence 0 — M — F' — G — 0, M is Gorenstein
n-flat.

(3) = (1). Consider a short exact sequence of left R-modules 0 -+ A — B — C — 0,
where A and C are Gorenstein n-flat. We prove that B is Gorenstein n-flat. Let £ be an n-
absolutely pure right R-module. Applying the functor £ ®r — to the short exact sequence
0—+A— B — C — 0, we get the long exact sequence,

Tor;(E,A) — Tor;(E,B) — Tor;(E,C).
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Then, Tor;(E, B) = 0 for all ¢ > 0 (since A and C are Gorenstein n-flat and by Lemma 3.4).

On the other hand, since C' is Gorenstein n-flat, there exists a short exact sequence of left
R-modules 0 - G — F — C — 0, where F is n-flat and C' is Gorenstein n-flat. Consider the
following pullback diagram:

0 0
G:G
0O—A—>D-->F —0
|
|
Y
0 A B C 0
0 0.

Also, since A is Gorenstein n-flat, there exists a short exact sequence of left R-modules 0 —
A — F' - G' — 0, where F’ is n-flat and G’ is Gorenstein n-flat. Consider the following
pushout diagram:

0 0
0 A D F 0
!
.
Y
0 —F -->D —F —= 0
G/ G/
0 0.

In the short exact sequence 0 — F’ — D’ — F — 0 both F’ and F are n-flat, then so is
D’. Then, by the short exact sequence 0 - D — D’ — G’ — 0 and from Lemma 3.4, D is
Gorenstein n-flat. Finally, consider the short exact sequence 0 - G — D — B — 0. We have
G and D are Gorenstein n-flat, and Tor;(E, B) = 0 for all > 0 and all n-absolutely pure right
R-modules E. Therefore, by (3), B is Gorenstein n-flat. This completes the proof. O

Corollary 3.7. If R is a left GF,,-closed ring, then the class GF,(R) is closed under direct
summands.

Proof. Use [7, Proposition 1.4], [12, Proposition 3.4] and Theorem 3.6. O

4 Stability of Gorenstein n-flat modules

To prove the main theorem of this paper, we need the following definitions and results. First,
let us call Gorenstein G n-flat module, any element of g§2>fn(R), which is defined in Section 2.

Definition 4.1. An R-module M is called a strongly Gorenstein n-flat module if there exists an
exact sequence of R-modules,

O—-M-—-F—-M-—0

such that F' is a n-flat R-module and F ®p — leaves this sequence exact whenever F is an
n-absolutely pure right module over R.

Next, we introduce strongly Gorenstein G n-flat module.
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Definition 4.2. An R-module M is called a strongly Gorenstein G n-flat module if there exists
an exact sequence of R-modules 0 — M — G — M — 0 such that G is Gorenstein n-flat over
R and E ®p — leaves this sequence exact for each n-absolutely pure right R-module E.

Proposition 4.3. (1) Any strongly Gorenstein G n-flat module is Gorenstein G n-flat.
(2) The family of Gorenstein G n-flat modules is stable under arbitrary direct sums.

Proof. (1) It is straightforward.

(2) It is straightforward, since any direct sum of Gorenstein n-flat modules is Gorenstein n-flat by
[12, Proposition 3.4] and since, for each positive integer m, T'or,,, (B, D, A;) = @, Torm (B, A;)
for any family of modules A; and any right module B by [9, Theorem 8.10]. O

Proposition 4.4. Let M be an R-module. Then the following statements hold.
(1) Given an exact sequence of R-modules
O-K—->G —-G,—--—>G,—>M—=0
such that Gy, Gy, - - - , Gy, are Gorenstein n-flat modules, then
Torm+i(E, M) = Tor;(E, K)

for each n-absolutely pure right R-module E and each integer i > 1.

(2) If M is a Gorenstein G n-flat R-module, then Tor;(E, M) = 0 for each n-absolutely pure
right R-module E and each integer i > 1.

Proof. (1) It suffices to handle the case m = 1. So, let0 - K — G — M — 0 be an
exact sequence such that G is Gorenstein n-flat. Let E be a right n-absolutely pure R-module.
Applying the functor E ® p — to this sequence yields the following exact sequence:

Tori+1(E,G) =0 — Toriy1(E,M) = Tor;(E,K) — Tor;(E,G) =0
for each integer ¢ > 1. This ensures that
Toriv1(E,M) = Tor;(E,K)
for each integer ¢ > 1, as desired.

(2) Let M be a Gorenstein G n-flat module. Then there exists a short exact sequence 0 —
K — G — M — 0 such that GG is a Gorenstein n-flat module, K is a Gorenstein G n-flat module
and

0 FERQK—-ERG—-EQM —0

is exact whenever F is an n-absolutely pure right R-module. Hence, T'ori (E, M) = 0 for each
n-absolutely pure right module E. Reiterating this process and using (1), we get Tor;(E, M) =0
for each n-absolutely pure right module E and each integer i > 1. O

The next result establishes an analog version of Proposition 3.6 in [2] for the Gorenstein G
n-flat notion.

Proposition 4.5. Let M be an R-module. Then the following statements are equivalent:
(1) M is a strongly Gorenstein G n-flat module.

(2) There exists an exact sequence 0 — M — G — M — 0 such that G is a Gorenstein n-flat
module, and Tor,(E, M) = 0 for any n-absolutely pure R-module E.

(3) There exists an exact sequence 0 — M — G — M — 0 such that G is a Gorenstein n-flat
module and, for any right n-absolutely pure R-module E, the following sequence is exact

0O FE®M—->ERG—>FEM — 0.

Proof. (1) = (2) holds by Proposition 4.4
(2) = (3) and (3) = (1) are straightforward, this completes the proof. i

The next result is analog to Theorem 3.5 in [2].
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Proposition 4.6. Let M be a Gorenstein G n-flat R-module. Then M is a direct summand of a
strongly Gorenstein G n-flat module.

Proof. Let M be a Gorenstein G n-flat module and G = --- — G £> Gy i> Go ﬂ>

d_ d_ . .
G, =G, = ... bea complete Gorenstein n-flat resolution such that M = I'm(dp). Let
M; := Im(d;) for each integer i. As GF,(R) is stable under direct sums, it is easily seen that
the following sequence is a complete Gorenstein n-flat resolution:

G/:"'%@Gi%@Gi%®Gi%...

€L €L 1€L

such that Im(D, d;) = @, M;. Then @, M; is a strongly Gorenstein G n-flat module so that
M is a direct summand of a strongly Gorenstein G n-flat module, as contended. O

For easiness, we adopt the following definition.

Definition 4.7. Let M be a strongly Gorenstein G n-flat module. An R-module N is called an
M, -type module if there exists an exact sequence 0 — M — N — H — 0 such that H is a
Gorenstein n-flat module.

Proposition 4.8. Let M be a strongly Gorenstein G n-flat module and N an M, -type module.
Then,

(1) Tor;(E,N) = 0 for each n-absolutely pure right R-module E and for each integer i > 1.

(2) If R is a left GF,,-closed ring, then there exists an exact sequence 0 - N — F — L — 0
such that F is an n-flat module and L is an M, -type module.

Proof. (1)If0 - M — N — H — 0 is an exact sequence such that H is a Gorenstein n-flat
R-module, then, by considering the corresponding long exact sequence and by Proposition 4.4,
we have Tor;(E,N) = Tor;(E, M) = 0 for each n-absolutely pure right module £ and each
integer ¢ > 1.

(2) Assume that R is a left GF),-closed ring. Let0 - M - G - M —- 0and0 - M —
N — H — 0 be exact sequences such that G and H are Gorenstein n-flat R-modules. Consider
the following pushout diagram:

0 0
0 M G M 0
|
]
\
O—— N-——->T — M —0
H—H
0 0.

Since G and H are Gorenstein n-flat modules, we get, as R is left GF},-closed, T" is Gorenstein
n-flat. Then there exists a short exact sequence 0 — 7" — F — K — 0 such that F' is a
n-flat R-module and K is a Gorenstein n-flat R-module. Hence, we get the following pushout
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diagram:
0 0
0 N T M 0
\
| *
Y
0O— N —F—-——->L ——=0
K _—— K
0 0
as desired. O

Corollary 4.9. Let R be a left GF,,-closed ring. Let M be a strongly Gorenstein G n-flat module
and N an M, -type module. Then N is a Gorenstein n-flat R-module.

Proof. First, observe that by Proposition 4.8 there exist a n-flat module Fy and an M,,-type
module L such that the following sequence 0 — N — Fy — L — 0 is exact and stays exact
after applying the functor £ ®r — for each n-absolutely pure right module E. Then, it suffices

to iterate Proposition 4.8(2) to get a resolution 0 — N — Fy — F; — F, — --- of n-flat
modules, which remains exact after applying the functor £ @z — for each n-absolutely pure
right R-module E. Now, Proposition 4.8(1) completes the proof. O

Proof of the main theorem. In view of the inclusions GF,,(R) C G (2>]~'7,,(R) C QEZ)}'"(R),

it suffices to prove that gfz)]-'n(R) C GF.(R). Since R is left GF,,-closed, by Corollary 3.7,
GF,(R) is stable under direct summands. Thus, it suffices, by Proposition 4.6, to prove that any
strongly Gorenstein G n-flat module is Gorenstein n-flat. Then, let M be a strongly Gorenstein
G n-flat module. There exists an exact sequence 0 — M — G — M — 0 such that G is a
Gorenstein n-flat module and Tor;(E, M) = 0 for each n-absolutely pure right module F and
each integer 7 > 1 by Proposition 4.5. As G is Gorenstein n-flat, there exists an exact sequence
of R-modules 0 - G — F — G| — 0 such that F' is a n-flat module and G is a Gorenstein
n-flat module. Then we get the following pushout diagram:

0 0

0 M G M 0
|
‘
\

0O—— M ——F —-——-—> M —0
G G
0 0.

Hence, M, is an M,,-type R-module. It follows from Corollary 4.9 that M| is a Gorenstein n-flat
module. As R is left GF,,-closed and G is Gorenstein n-flat, we get M is a Gorenstein n-flat
R-module, as desired. O
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