ON SEQUENCES OF NUMBERS IN GENERALIZED ARITHMETIC AND GEOMETRIC PROGRESSIONS

Julius Fergy T. Rabago
Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 11B25, 11B83; Secondary 11Y55.
Keywords and phrases: Sequence of numbers with m alternate common differences, sequence of numbers with m alternate common ratios, the general term and the sum of a sequence of numbers.

Abstract

The paper provides a further generalization of the sequences of numbers in generalized arithmetic and geometric progressions [1].

1 Introduction

The usual arithmetic sequence of numbers takes the form:

$$
a, a+d, a+2 d, a+3 d, \ldots, a+(n-1) d, a+n d, \ldots
$$

while the geometric sequence of numbers has the form

$$
a, a r, a r^{2}, a r^{3}, \ldots, a r^{n-1}, a r^{n}, \ldots
$$

Formally speaking, an arithmetic sequence is a number sequence in which every term except the first is obtained by adding a fixed number, called the common difference, to the preceeding term and a geometric sequence is a number sequence in which every term except the first is obtained by multiplying the previous term by a constant, called the common ratio. The sequence $1,3,5,7,9,11, \ldots$ is an example of arithmetic sequence with common difference 2 and the sequence $2,4,8,16, \ldots$ is a geometric sequence with common ratio 2 . Certain generalizations of arithmetic and geometric sequence were presented in [1], [3], [4]. Particularly, in [3], Zhang and Zhang introduced the concept of sequences of numbers in arithmetic progression with alternate common differences and in [4], Zhang, et.al. provided a generalization of the sequence. It was then extended by Majumdar [1] to sequences of numbers in geometric progression with alternate common ratios and the periodic sequence with two common ratios. The author [1] also provided a simpler and shorter forms and proofs of some cases of the results presented by Zhang and Zhang in [3]. Recently, Rabago [2] further generalized these concepts by introducing additional common differences and common ratios. Here we will provide another generalization of the sequences of numbers defined in [1] and [3] by providing a definition to what we call sequences of numbers with m alternate common differences (Section 2) and sequence of numbers with m alternate common ratios (Section 3).

Throughout in the paper we denote the greatest integer contained in x as $\lfloor x\rfloor$.

2 Sequence of numbers with m alternate common differences

We start-off this section with the definition of what we call sequence of numbers with m alternate common differences.

Definition 2.1. A sequence of numbers $\left\{a_{n}\right\}$ is called a sequence of numbers with m alternate common differences if for a fixed natural number m and for all $j=1,2, \ldots, m$,

$$
a_{m(k-1)+j+1}-a_{m(k-1)+j}=d_{j}
$$

for all $k \in \mathbb{N}$. Here d_{j} is the j-th common difference of $\left\{a_{n}\right\}$.
With the above definition, a sequence of numbers with m alternate common differences takes the following form:

$$
\begin{gather*}
a, a+d_{1}, a+d_{1}+d_{2}, \ldots, a+d_{1}+d_{2}+\cdots+d_{m}, a+2 d_{1}+d_{2}+\cdots+d_{m}, \\
a+2 d_{1}+2 d_{2}+\cdots+d_{m}, a+2 d_{1}+2 d_{2}+\cdots+2 d_{m}, \ldots \tag{2.1}
\end{gather*}
$$

The sequence

$$
2,3,5,8,9,11,14,15,17,20, \ldots
$$

is an example of a sequence of numbers with 3 alternate common differences. The common differences are $d_{1}=1, d_{2}=2$, and $d_{3}=3$.
Theorem 2.2. Let $\left\{a_{n}\right\}$ be a sequence of number that takes the form (2.1). Then, the formula for the $n^{\text {th }}$ term of the sequence $\left\{a_{n}\right\}$ is given by

$$
\begin{equation*}
a_{n}=a_{1}+\sum_{i=1}^{m}\left\lfloor\frac{n+(m-1)-i}{m}\right\rfloor d_{i} . \tag{2.2}
\end{equation*}
$$

Proof. Obviously, (2.2) holds for $n \leq m$. We only need to show that (2.2) is true for $n>m$ to prove the validity of the fomula. Suppose (2.2) holds for some natural number k. Hence,

$$
a_{k}=a_{1}+\sum_{i=1}^{m}\left\lfloor\frac{k+(m-1)-i}{m}\right\rfloor d_{i} .
$$

Let $k=m(p-1)+j$ and $p \in \mathbb{N}$. Now, for every $j=1,2, \ldots, m \in \mathbb{N}$, we have $a_{k+1}=a_{k}+d_{j}$. Thus,

$$
\begin{aligned}
a_{k+1}= & a_{1}+\sum_{i=1}^{m}\left\lfloor\frac{k+(m-1)-i}{m}\right\rfloor d_{i}+d_{j} \\
= & a_{1}+\sum_{i=1}^{m}\left\lfloor\frac{m(p-1)+j+(m-1)-i}{m}\right\rfloor d_{i}+d_{j} \\
= & a_{1}+\sum_{i=1}^{j-1}\left\lfloor p+\frac{j-1-i}{m}\right\rfloor d_{i}+\sum_{i=j}^{m}\left\lfloor p+\frac{j-1-i}{m}\right\rfloor d_{i}+d_{j} \\
= & a_{1}+\sum_{i=1}^{j-1} p d_{i}+\sum_{i=j}^{m}(p-1) d_{i}+d_{j} \\
= & a_{1}+\sum_{i=1}^{j} p d_{i}+\sum_{i=j+1}^{m}(p-1) d_{i} \\
= & a_{1}+\sum_{i=1}^{j}\left\lfloor p+\frac{j-i}{m}\right\rfloor d_{i}+\sum_{i=j+1}^{m}\left\lfloor p-1+\frac{m+j-i}{m}\right\rfloor d_{i} \\
= & a_{1}+\sum_{i=1}^{j}\left\lfloor\frac{(m(p-1)+j)+1+(m-1)-i}{m}\right\rfloor d_{i} \\
& +\sum_{i=j+1}^{m}\left\lfloor\frac{(m(p-1)+j)+1+(m-1)-i}{m}\right\rfloor d_{i} \\
= & a_{1}+\sum_{i=1}^{m}\left\lfloor\frac{(k+1)+(m-1)-i}{m}\right\rfloor d_{i} .
\end{aligned}
$$

Below is a table of formulas for the $n^{\text {th }}$ term a_{n} of the given sequence for specific values of m.

m	$n^{\text {th }}$ term a_{n}											
1	$a_{1}+(n-1) d$											
2	$a_{1}+\left\lfloor\frac{n}{2}\right\rfloor d_{1}+\left[\frac{n-1}{2}\right\rfloor d_{2}$											
3	$a_{1}+$	$\frac{n+1}{3}$	$d_{1}+\left\lfloor\frac{n}{3}\right\rfloor d_{2}+\left\lfloor\frac{n-1}{3}\right\rfloor$					d_{3}				
4	$a_{1}+$	$\frac{n+2}{4}$	$d_{1}+$	$\frac{n+1}{4}$		$+\lfloor$	$\left.\frac{n}{4}\right\rfloor$	$d_{3}+$	$\left[\frac{n-1}{4}\right]$	d_{4}		
5	$a_{1}+$	$\left.\frac{n+3}{5}\right]$	$d_{1}+$	$\left.\frac{n+2}{5}\right]$	d_{2}	+	$\frac{n+}{5}$	+1	$d_{3}+\left\lfloor\frac{n}{5}\right\rfloor$	$d_{4}+$	$\frac{n-1}{5}$	d_{5}
\vdots	:											

Corollary 2.3. Let m and n be natural numbers. If $m \mid(n-1)$ then we have

$$
a_{n}=a_{1}+\left(\frac{n-1}{m}\right) \sum_{i=1}^{m} d_{i} .
$$

Proof. Suppose $m \mid(n-1)$ then $n-1=m k$ for some $k \in \mathbb{N}$. Then,

$$
a_{n}=a_{1}+\sum_{i=1}^{m}\left\lfloor k+\frac{m-i}{m}\right\rfloor d_{i}=a_{1}+k \sum_{i=1}^{m} d_{i}=a_{1}+\left(\frac{n-1}{m}\right) \sum_{i=1}^{m} d_{i} .
$$

Corollary 2.4. If $m \mid n$, we have

$$
a_{n}=a_{1}+\left(\frac{n}{m}\right) \sum_{i=1}^{m} d_{i}-d_{m}
$$

Proof. Suppose $m \mid n$ then $n=m k$ for some $k \in \mathbb{N}$. So,

$$
a_{n}=a_{1}+\sum_{i=1}^{m}\left\lfloor k+1-\frac{i+1}{m}\right\rfloor d_{i}=a_{1}+k \sum_{i=1}^{m} d_{i}-d_{m}=a_{1}+\left(\frac{n}{m}\right) \sum_{i=1}^{m} d_{i}-d_{m} .
$$

Lemma 2.5. For any natural numbers m and n, we have

$$
\sum_{i=1}^{m}\left\lfloor\frac{n+(m-1)-i}{m}\right\rfloor=n-1=\sum_{i=1}^{m}\left\lfloor\frac{i+n-2}{m}\right\rfloor
$$

Proof. Note that

$$
\left\lfloor\frac{n}{m}\right\rfloor=k \quad \Rightarrow \quad k \leq \frac{n}{m}<k+1
$$

Hence,

$$
\begin{aligned}
\sum_{i=1}^{m}\left\lfloor\frac{n+(m-1)-i}{m}\right\rfloor & =\left\lfloor\frac{n+(m-2)}{m}\right\rfloor+\ldots+\left\lfloor\frac{n}{m}\right\rfloor+\left\lfloor\frac{n-1}{m}\right\rfloor \\
& =k+k+\ldots+k+(k-1)=m k-1=n-1
\end{aligned}
$$

Theorem 2.6. If $d_{i}=d_{1}$ for $i \leq m-1$, we have

$$
\begin{equation*}
a_{n}=a_{1}+\left(n-1-\left\lfloor\frac{n-1}{m}\right\rfloor\right) d_{1}+\left\lfloor\frac{n-1}{m}\right\rfloor d_{m} \tag{2.3}
\end{equation*}
$$

Proof. Let $d_{i}=d_{1}$, for $i \leq m-1$, in (2.2). Hence,

$$
\begin{aligned}
a_{n} & =a_{1}+\sum_{i=1}^{m}\left\lfloor\frac{n+(m-1)-i}{m}\right\rfloor d_{i} \\
& =a_{1}+d_{1} \sum_{i=1}^{m-1}\left\lfloor\frac{n+(m-1)-i}{m}\right\rfloor+\left\lfloor\frac{n-1}{m}\right\rfloor d_{m} \\
& =a_{1}+d_{1}\left(\left\lfloor\frac{n+(m-2)}{m}\right\rfloor+\left\lfloor\frac{n+(m-3)}{m}\right\rfloor+\ldots+\left\lfloor\frac{n}{m}\right\rfloor\right)+\left\lfloor\frac{n-1}{m}\right\rfloor d_{m} \\
& =a_{1}+d_{1}\left\{\left(\sum_{i=1}^{m}\left\lfloor\frac{n+(m-1)-i}{m}\right\rfloor\right)-\left\lfloor\frac{n-1}{m}\right\rfloor\right\}+\left\lfloor\frac{n-1}{m}\right\rfloor d_{m} \\
& =a_{1}+\left(n-1-\left\lfloor\frac{n-1}{m}\right\rfloor\right) d_{1}+\left\lfloor\frac{n-1}{m}\right\rfloor d_{m} .
\end{aligned}
$$

Theorem 2.7. Let $\left\{a_{n}\right\}$ be a sequence of number that takes the form (2.1). Then, the formula for the sum of the first n terms of the sequence $\left\{a_{n}\right\}$ is given by

$$
\begin{equation*}
S_{n}=n a_{1}+\sum_{i=1}^{m}\left\lfloor\frac{N-i}{m}\right\rfloor\left(N-i-\frac{m}{2}\left\lfloor\frac{N-i}{m}+1\right\rfloor\right) d_{i} \tag{2.4}
\end{equation*}
$$

where $N=n+m-1$.
Proof. Consider a sequence $\left\{a_{n}\right\}$ that takes the form (2.1). Then,

$$
\begin{aligned}
\sum_{j=1}^{n} a_{j} & =\sum_{j=1}^{n}\left(a_{1}+\sum_{i=1}^{m}\left\lfloor\frac{j+(m-1)-i}{m}\right\rfloor d_{i}\right)=n a_{1}+\sum_{i=1}^{m} \sum_{j=1}^{n}\left\lfloor\frac{j+(m-1)-i}{m}\right\rfloor d_{i} \\
& =n a_{1}+\sum_{i=1}^{m}\left\lfloor\frac{n+(m-1)-i}{m}\right\rfloor\left(n+m-i-\frac{m}{2}\left\lfloor\frac{n+2 m-(1+i)}{m}\right\rfloor\right) d_{i}
\end{aligned}
$$

Letting $N=n+m-1$, conclusion follows.
Theorem 2.8. The sum of the first n terms of the sequence $\left\{a_{n}\right\}$ that takes the form (2.1) with $d_{i}=d_{1}$, for $i \leq m-1$, is given by

$$
\begin{equation*}
S_{n}=n a_{1}+\frac{n(n-1)}{2} d_{1}+\left(d_{m}-d_{1}\right)\left\lfloor\frac{n-1}{m}\right\rfloor\left(n-\frac{m}{2}\left\lfloor\frac{n+m-1}{m}\right\rfloor\right) \tag{2.5}
\end{equation*}
$$

Proof. Consider a sequence $\left\{a_{n}\right\}$ that takes the form (2.1). Then,

$$
\begin{aligned}
\sum_{j=1}^{n} a_{j} & =\sum_{j=1}^{n}\left(a_{1}+\left(j-1-\left\lfloor\frac{j-1}{m}\right\rfloor\right) d_{1}+\left\lfloor\frac{j-1}{m}\right\rfloor d_{m}\right) \\
& =n a_{1}+\frac{n(n-1)}{2} d_{1}-\sum_{j=1}^{n}\left\lfloor\frac{j-1}{m}\right\rfloor d_{1}+\sum_{j=1}^{n}\left\lfloor\frac{j-1}{m}\right\rfloor d_{m} \\
& =n a_{1}+\frac{n(n-1)}{2} d_{1}+\left(d_{m}-d_{1}\right) \sum_{j=1}^{n}\left\lfloor\frac{j-1}{m}\right\rfloor \\
& =n a_{1}+\frac{n(n-1)}{2} d_{1}+\left(d_{m}-d_{1}\right)\left\lfloor\frac{n-1}{m}\right\rfloor\left(n-\frac{m}{2}\left\lfloor\frac{n+m-1}{m}\right\rfloor\right)
\end{aligned}
$$

3 Sequence of numbers with \boldsymbol{m} alternate common ratios

We define the sequence of numbers with m alternate common ratios $\left\{a_{n}\right\}$ as follows:
Definition 3.1. A sequence of numbers $\left\{a_{n}\right\}$ is called a sequence of numbers with m alternate common ratios if for a fixed natural number m and for all $j=1,2, \ldots, m$,

$$
\frac{a_{m(k-1)+j+1}}{a_{m(k-1)+j}}=r_{j}
$$

for all $k \in \mathbb{N}$. Here r_{j} is the j-th common ratio of $\left\{a_{n}\right\}$.
With the above definition, we can see immediately that a sequence of numbers $\left\{a_{n}\right\}$ with m alternate common ratios has the following form:

$$
\begin{equation*}
a, a r_{1}, a r_{1} r_{2}, \ldots, a r_{1} r_{2} \cdots r_{m}, a r_{1}^{2} r_{2} \cdots r_{m}, a r_{1}^{2} r_{2}^{2} \cdots r_{m}, a r_{1}^{2} r_{2}^{2} \cdots r_{m}^{2}, \ldots \tag{3.1}
\end{equation*}
$$

The sequence

$$
1,2,6,24,48,144,576,1152, \ldots
$$

is an example of a sequence of numbers $\left\{a_{n}\right\}$ with 3 alternate common ratios. The common ratios are $r_{1}=2, r_{2}=3$, and $r_{3}=4$.

Theorem 3.2. Let $\left\{a_{n}\right\}$ be a sequence of number that takes the form (3.1). Then, the formula for the $n^{\text {th }}$ term of the sequence $\left\{a_{n}\right\}$ is given by

$$
\begin{equation*}
a_{n}=a_{1} \prod_{i=1}^{m} r_{i}^{e_{i}} \tag{3.2}
\end{equation*}
$$

where $e_{i}=\left\lfloor\frac{n+(m-1)-i}{m}\right\rfloor$.
In particular, if $m \mid(n-1)$, we have

$$
\begin{equation*}
a_{n}=a_{1}\left(\prod_{i=1}^{m} r_{i}\right)^{\left(\frac{n-1}{m}\right)} \tag{3.3}
\end{equation*}
$$

and if $m \mid(n-1)$,

$$
\begin{equation*}
a_{n}=\frac{a_{1}}{r_{m}}\left(\prod_{i=1}^{m} r_{i}\right)^{\left(\frac{n}{m}\right)} \tag{3.4}
\end{equation*}
$$

Proof. The proof is by induction on n. Obviously, (3.2) holds for $n \leq m$. We will show that (3.2) is true for $n>m$. Suppose (3.2) holds when for some natural number k. That is,

$$
a_{k}=a_{1} \prod_{i=1}^{m} r_{i}^{e_{i}}
$$

where $e_{i}=\left\lfloor\frac{m(p-1)+j+(m-1)-i}{m}\right\rfloor$.
Let $k=m(p-1)+j$ and $p \in \mathbb{N}$. Now, for every $j=1,2, \ldots, m \in \mathbb{N}$, we have $a_{k+1}=a_{k} \cdot r_{j}$. Thus,

$$
\begin{aligned}
a_{k+1} & =a_{1} \prod_{i=1}^{m} r_{i}^{e_{i}} \cdot r_{j}, \quad \text { where } e_{i}=\left\lfloor\frac{m(p-1)+j+(m-1)-i}{m}\right\rfloor \\
& =a_{1} \prod_{i=1}^{j-1} r_{i}^{e_{i}} \cdot \prod_{i=j}^{m} r_{i}^{e_{i}} \cdot r_{j}, \quad \text { where } e_{i}=\left\lfloor p+\frac{j-1-i}{m}\right\rfloor \\
& =a_{1} \prod_{i=1}^{j-1} r_{i}^{p} \cdot \prod_{i=j}^{m} r_{i}^{p-1} \cdot r_{j} \\
& =a_{1} \prod_{i=1}^{j} r_{i}^{f_{i}} \cdot \prod_{i=j+1}^{m} r_{i}^{g_{i}}, \quad \text { where } f_{i}=\left\lfloor p+\frac{j-i}{m}\right\rfloor, g_{i}=\left\lfloor p-1+\frac{m+j-i}{m}\right\rfloor \\
& =a_{1} \prod_{i=1}^{m} r_{i}^{h_{i}}, \quad \text { where } h_{i}=\left\lfloor\frac{(k+1)+(m-1)-i}{m}\right\rfloor
\end{aligned}
$$

If $m \mid n$ (resp. $m \mid(n-1))$ then (3.3) (resp. (3.4)) follows immediately.
Theorem 3.3. Consider a sequence $\left\{a_{n}\right\}$ that takes the form (3.1) and suppose $r_{i}=r_{1}$, for $i \leq m-1$. Then,

$$
\begin{equation*}
a_{n}=a_{1} r_{1}^{e} \cdot r_{m}^{s}, \tag{3.5}
\end{equation*}
$$

where $e=n-1-\left\lfloor\frac{n-1}{m}\right\rfloor$ and $s=\left\lfloor\frac{n-1}{m}\right\rfloor$.
Proof. Let $r_{1}=r_{i}$, for $i \leq m-1$, in (3.2). Hence,

$$
\begin{aligned}
a_{n} & =a_{1} \prod_{i=1}^{m} r_{i}^{e_{i}}, \quad \text { where } e_{i}=\left\lfloor\frac{n+(m-1)-i}{m}\right\rfloor \\
& =a_{1} r_{1}^{e} \cdot r_{m}^{s}, \quad \text { where } e=\sum_{i=1}^{m-1}\left\lfloor\frac{n+(m-1)-i}{m}\right\rfloor \text { and } s=\left\lfloor\frac{n-1}{m}\right\rfloor
\end{aligned}
$$

But, by Lemma (2.5), $e=n-1-\left\lfloor\frac{n-1}{m}\right\rfloor$. Thus, $a_{n}=a_{1} r_{1}^{e} \cdot r_{m}^{s}$.

Theorem 3.4. Let $\left\{a_{n}\right\}$ be a sequence of number that takes the form (3.1). Then, the formula for the sum of the first n terms of the sequence $\left\{a_{n}\right\}$ is given by

$$
S_{n}=a_{1}\left(1+R\left(\frac{1-r^{e_{n-1}}}{1-r}\right)\right)+a_{1} r^{e_{n-1}} \sum_{i=1}^{m-1}\left(\left\lfloor\frac{N-i}{m}\right\rfloor-\left\lfloor\frac{N-1-i}{m}\right\rfloor\right) \sum_{j=1}^{i} \prod_{k=1}^{j} r_{k}
$$

where $R=\sum_{i=1}^{m} \prod_{j=1}^{i} r_{j}, r=\prod_{i=1}^{m} r_{i}, e_{n-1}=\left\lfloor\frac{n-1}{m}\right\rfloor$ and $N=n+m-1$.
Proof. Consider a sequence $\left\{a_{n}\right\}$ that takes the form (3.1) and let $R=\sum_{i=1}^{m} \prod_{j=1}^{i} r_{j}, r=$ $\prod_{i=1}^{m} r_{i}, p=e_{n-1}=\left\lfloor\frac{n-1}{m}\right\rfloor$ then

$$
\sum_{j=1}^{n} a_{j}=a_{1} \sum_{j=1}^{n} \prod_{i=1}^{m} r_{i}^{e_{j}} \quad \text { where } e_{j}=\left\lfloor\frac{j+(m-1)-i}{m}\right\rfloor
$$

Expanding the expression, we obtain

$$
\sum_{j=1}^{n} a_{j}=a_{1}+a_{1} R \sum_{j=0}^{p-1} r^{j}+a_{1} r_{1}^{e_{n+(m-3)}} r_{2}^{e_{n+(n-4)}} \cdots r_{m}^{e_{n-2}}+\ldots+a_{1} r_{1}^{e_{n+(m-2)}} r_{2}^{e_{n+(m-1)}} \cdots r_{m}^{e_{n-1}}
$$

Simplifying and rewriting the expression in compact form, we obtain

$$
\sum_{j=1}^{n} a_{j}=a_{1}\left(1+R\left(\frac{1-r^{p}}{1-r}\right)\right)+a_{1} r^{p} \sum_{i=1}^{m-1} M_{i} \sum_{j=1}^{i} \prod_{k=1}^{j} r_{k}
$$

where $M_{i}=\left(\left\lfloor\frac{N-i}{m}\right\rfloor-\left\lfloor\frac{N-1-i}{m}\right\rfloor\right)$ which is the desired result.
Theorem 3.5. Let $\left\{a_{n}\right\}$ be a sequence of number that takes the form (3.1) with $r_{i}=r_{1}$, for all $i \leq m-1$. Then, the formula for the sum of the first n terms of the sequence $\left\{a_{n}\right\}$ is given by

$$
S_{n}=a_{1}\left(\frac{1-r_{1}^{m}}{1-r_{1}}\right)\left(\frac{1-\left(r_{1}^{m-1} r_{m}\right)^{p}}{1-r_{1}^{m-1} r_{m}}\right)+a_{1}\left(r_{1}^{m-1} r_{m}\right)^{p}\left(\frac{1-r_{1}^{n-m p}}{1-r_{1}}\right)
$$

where $p=\left\lfloor\frac{n-1}{m}\right\rfloor$.
Proof. Consider a sequence $\left\{a_{n}\right\}$ that takes the form (3.1) with $r_{i}=r_{1}$, for all $i \leq m-1$ and let $p=\left\lfloor\frac{n-1}{m}\right\rfloor$,

$$
\begin{aligned}
\sum_{j=1}^{n} a_{j}= & a_{1} \sum_{j=1}^{n} r_{1}^{j-1}\left(\frac{r_{m}}{r_{1}}\right)^{\left\lfloor\frac{j-1}{m}\right\rfloor} \\
= & a_{1}\left\{\sum_{j=1}^{m} r_{1}^{j-1}+\left(\frac{r_{m}}{r_{1}}\right) \sum_{j=m+1}^{2 m} r_{1}^{j-1}+\left(\frac{r_{m}}{r_{1}}\right)^{2} \sum_{j=2 m+1}^{3 m} r_{1}^{j-1}+\ldots\right. \\
& \left.+\left(\frac{r_{m}}{r_{1}}\right)^{p-1} \sum_{j=(p-1) m+1}^{m p} r_{1}^{j-1}\right\}+a_{1}\left(\frac{r_{m}}{r_{1}}\right)^{p} \sum_{j=m p+1}^{n} r_{1}^{j-1} \\
= & a_{1}\left\{\sum_{j=1}^{m} r_{1}^{j-1}+\left(\frac{r_{1}^{m} r_{m}}{r_{1}}\right) \sum_{j=1}^{m} r_{1}^{j-1}+\left(\frac{r_{1}^{m} r_{m}}{r_{1}}\right)^{2} \sum_{j=1}^{m} r_{1}^{j-1}+\ldots\right. \\
& \left.+\left(\frac{r_{1}^{m} r_{m}}{r_{1}}\right)^{p-1} \sum_{j=1}^{m} r_{1}^{j-1}\right\}+a_{1}\left(\frac{r_{1}^{m} r_{m}}{r_{1}}\right)^{p n-m p} \sum_{j=1}^{n} r_{1}^{j-1} \\
= & a_{1}\left(\frac{1-r_{1}^{m}}{1-r_{1}}\right)\left\{1+\left(\frac{r_{1}^{m} r_{m}}{r_{1}}\right)+\left(\frac{r_{1}^{m} r_{m}}{r_{1}}\right)^{2}+\ldots+\left(\frac{r_{1}^{m} r_{m}}{r_{1}}\right)^{p-1}\right\} \\
& +a_{1}\left(\frac{r_{1}^{m} r_{m}}{r_{1}}\right)^{p n-m p} \sum_{j=1}^{n-1} r_{1}^{j-1} \\
= & a_{1}\left(\frac{1-r_{1}^{m}}{1-r_{1}}\right)\left(\frac{1-\left(r_{1}^{m-1} r_{m}\right)^{p}}{1-r_{1}^{m-1} r_{m}}\right)+a_{1}\left(r_{1}^{m-1} r_{m}\right)^{p}\left(\frac{1-r_{1}^{n-m p}}{1-r_{1}}\right)
\end{aligned}
$$

which is desired.

4 Some Remarks

If we replace m by t in (2.2) and define t as the period of the sequence $\left\{a_{n}\right\}$ and by considering $d_{i}=d_{1}^{*}$ for $i \leq m-1$ as the first common difference of the sequence and $d_{m}=d_{2}^{*}$ as the second difference then we obtain,

$$
\begin{equation*}
a_{n}=a_{1}+\left(n-1-\left\lfloor\frac{n-1}{t}\right\rfloor\right) d_{1}^{*}+\left\lfloor\frac{n-1}{t}\right\rfloor d_{2}^{*} . \tag{4.1}
\end{equation*}
$$

Equation (4.1) is exactly the formula for the $n^{t h}$ term of a periodic number sequence with two common differences obtained by Zhang and Zhang in [4]. Furthermore, it can be observed from (4.1) that $a_{n} \rightarrow a_{1}+(n-1) d_{1}$ as $m \rightarrow \infty$. Similarly, if $d_{i}=d_{1}$ for all $i \leq m, a_{n}=a_{1}+(n-1) d_{1}$.

In (2.5), on the other hand, would have $S_{n}=n a_{1}+\frac{n(n-1)}{2} d_{1}$ if $m \rightarrow \infty$ and a similar result will be obtained if $d_{i}=d_{1}$ for all $i \leq m$.

Also, note that in (3.2), $a_{n} \rightarrow a_{1} r_{1}^{n-1}$ if we apply the same argument letting either $m \rightarrow \infty$ or $r_{i}=r_{1}$ for all $i \leq m$. Furthermore, the limit of the sum given by

$$
\sum_{j=1}^{n} a_{1} r_{1}^{n-1} \cdot\left(\frac{r_{m}}{r_{1}}\right)^{\left\lfloor\frac{n-1}{m}\right\rfloor} \longrightarrow a_{1}\left(\frac{1-r_{1}^{n}}{1-r_{1}}\right) \text { as } m \rightarrow \infty
$$

References

[1] A.A.K. Majumdar, Sequences of numbers in generalized arithmetic and geometric progressions, Scientia Magna, 4 (2008), No. 2, 101-111.
[2] J.F.T. Rabago, Sequence of numbers with three alternate common differences and common ratios, Int. J. of Appl. Math. Res., 1 (2012), No.3, 259-267.
[3] X. Zhang and Y. Zhang, Sequence of numbers with alternate common differences, Scientia Magna, 3 (2007), No. 1, 93-97.
[4] X. Zhang, Y. Zhang, and J. Ding, The generalization of sequence of numbers with alternate common differences, Scientia Magna, 4 (2008), No. 2, 8-11.

Author information

Julius Fergy T. Rabago, Department of Mathematics and Computer Science, College of Science, University of the Philippines, Baguio Governor Pack Road, Baguio City 2600, PHILIPPINES.
E-mail: jfrabago@gmail.com
Received: December 3, 2013.
Accepted: April 7, 2014.

