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Abstract. We prove that there exists, up to isomorphism, exactly one function field over
the finite field of two elements of class number one and genus four. This result, together with
the ones of MacRae, Madan, Leitzel, Queen and Stirpe, establishes that there exist eight non-
isomorphic congruence function fields of genus larger than zero and class number one.

1 Introduction

Let K be a congruence function field with exact field of constants Fq, the finite field of q ele-
ments. Consider the class group of divisors of degree zero of K: C0K . It is a finite abelian group
with hK elements, hK is called the class number of K. When K is a function field of genus 0,
we have hK = 1. Thus, we consider K of genus gK ≥ 1. When q ≥ 5 and gK ≥ 1 we have
hK > 1. In [2] R. MacRae found all the congruence function fields with class number one in
the particular case that K is a quadratic extension of the rational function field k = Fq(T ) and
K contains a prime divisor of degree one. He proved that there are four quadratic fields with
class number one which have a prime of degree one. M. Madan and C. Queen continued the
study of this problem in [3]. They showed that if q = 2 and gK > 4, or q = 3 and gK > 2 then
hK 6= 1. Finally, they proved that except for the case q = 2 and gK = 4 there exist exactly seven
congruence function fields with class number one and genus larger than zero. The case q = 2,
gK = 4 was not settled.

In [1] J. Leitzel, M. Madan and C. Queen considered the case q = 2 and gK = 4 and claimed
that there is no field of class number one over the finite field of two elements and genus four.
However C. Stirpe [5] found a counterexample to this claim. The example runs as follows. Let
m be the place associated to the irreducible polynomial T 4+T+1 ∈ F2[T ] and let S be the place
associated to the irreducible polynomial T 7 +T 4 + 1. Let Km

S be the ray class field of conductor
m and such that S splits in Km

S /F2(T ). Stirpe established that the subfield of degree five over
F2(T ) satisfies that hK = 1 and gK = 4. Furthermore, Stirpe claims that T 7 + T 4 + 1 is not
unique. For instance, he remarks that we may take S1 to be the place associated to T 7 + T 3 + 1
and the unique subfield K1 of Km

S1
of degree five over F2(T ) also satisfies that hK1 = 1 and

gK1 = 4.
In [6], P. Mercuri and C. Stirpe proved that the two fields found by Stirpe in [5] are in fact

isomorphic. Furthermore, they showed that, up to isomorphism, there is only one field of genus 4
and class number one. This result together with the results of Madan, Leitzel, Queen and Stirpe,
shows that, up to isomorphism, there are exactly eight congruence function fields K of genus
larger than zero and class number one.

In this paper we present another proof that, up to isomorphism, there is only one field of
genus four and class number one. We do not use the examples found by Stirpe in [5]. Our
approach uses the theory of cyclotomic function fields of Carlitz–Hayes. First, we consider
a field K over F2 such that hK = 1 and gK = 4. We show that K has a unique rational
function subfield k := F2(T ) such that [K : k] = 5 and that the extension K/k is cyclic.
There is only one prime of k ramified in K and this place is of degree four. From the result
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of Madan and Queen [3] that states that a function field K over F2 satisfies that hK = 1 and
gK = 4 if and only if N1 = N2 = N3 = 0 and N4 = 1 where Ni denotes the number of prime
divisors in K of degree i, we deduce that, up to isomorphism, necessarily K ⊆ k(ΛM )F25 where
M = T 4+T+1 and k(ΛM ) is the cyclotomic function field corresponding to the Carlitz module
ΛM . Finally, we prove that there are precisely two fields K over k contained in k(ΛM )F25 such
that N1 = N2 = N3 = 0 and N4 = 1. In one of them T 7 + T 4 + 1 splits and T 7 + T 3 + 1 is inert
and in the other T 7 + T 4 + 1 is inert and T 7 + T 3 + 1 splits. Both fields are isomorphic.

One of the key facts in our proof is that if [K : k] = 5 and p is the divisor of degree four
in K, then the different of K/k is p4 and p is totally ramified. This was proved by Mercuri and
Stirpe in [6].

2 The field K

Let K be a congruence function field with exact field of constants the finite field of q elements
Fq. Let Ni denote the number of prime divisors of degree i in K, i ≥ 1. Let Ai be the number
of integral divisors in K of degree i, i ≥ 0. The genus of K will be denoted by g and the class
number of K by h. Let k = Fq(T ) be a rational congruence function field and let RT = Fq[T ]
be its ring of integers. p∞ will denote the pole divisor of T in k. For the standard results on
congruence function fields and cyclotomic function fields we refer to [7].

For any divisor q in K we denote by dK(q) its degree. If PK(u) = a0 + a1u+ · · ·+ a2gu
2g

is the numerator of the zeta function of K, where u = q−s, we have the following relations ([7,
Theorems 6.3.5 and 6.4.1])

a0 = 1, a2g = qg, a2g−i = aiq
g−i, 0 ≤ i ≤ 2g,

ai = Ai − (q + 1)Ai−1 + qAi−2, 0 ≤ i ≤ 2g, with A−1 = A−2 = 0, (2.1)

PK(1) = h, An = h
(qn−g+1 − 1

q − 1

)
for n > 2g − 2.

From now on, K will denote a field over F2 such that g = 4 and h = 1. This condition is
equivalent to N1 = N2 = N3 = 0 and N4 = 1 ([3, Theorem 2 (v)]). From that paper we know
that the numerator of the zeta function of K is PK(u) = 1−3u+2u2 +u4 +8u6−24u7 +16u8.
Let p denote the only prime divisor of degree four in K.

In this case, from (2.1) we obtain that A0 = 1, Ai = Ni = 0, 0 ≤ i ≤ 3, A4 = N4 = 1 and
A5 = N5 = 3. Let Ci, 1 ≤ i ≤ 3 be the three places of degree five in K. Therefore `(C−1

1 ) = 2,
L(C−1

1 ) = {0, 1, T, T + 1} where (T )K = C2
C1

and (T + 1)K = C3
C1

where (y)K denotes the
divisor in K of y ∈ K∗. We have [K : k] = 5. Since L(p−1) = F2, it follows that the minimal n
such that there exists y ∈ K with [K : F2(y)] = n is n = 5 and that k is unique satisfying this
property.

Remark 2.1. Every proper subfield F2 $ E $ K such that K/E is separable, is of genus 0.
Indeed, for any finite subextension E of K, the differential exponent of every prime appearing in
the different DK/E of the extension is greater than or equal to 2 and since the minimum degree
of a prime in K is 4, the degree of d of DK/E is greater than of equal to 8 except in the case
that K/E is unramified. From the Riemann-Hurwitz formula, if gE ≥ 1 and K/E ramified, we
obtain

6 = 2gK − 2 = [K : E](2gE − 2) + d ≥ d ≥ 8.

Thus, if gE ≥ 1, K/E is unramified, [K : E] = 3, and gE = 2. If K/E is normal, let t = p ∩ E.
Then since [K : E] = 3 is relatively prime to degK p = 4, it follows that t decomposes fully in
K/E and in particular K would contain at least 3 primes of degree four. Therefore K/E is non-
normal. Let K̃ be the Galois closure of K/E. Then [K̃ : K] = 2 and since K̃/K is unramified,
it follows that K̃ = KF4. We have that K̃/EF4 is a normal extension of degree 3. Since
degK p = 4 and K̃/K is an extension of constants of degree 2, we obtain that p decomposes
into two primes of degree 2 in K̃ (see [7, Theorem 6.2.1]). Thus K̃ has exactly two primes of
degree 2. Let p̃ be one of them and let t̃ = p̃∩EF4. As above we obtain that t̃ decomposes fully
in K̃/EF4 and in particular we have at least three primes in K̃ of degree 2. This contradiction
shows that gE = 0.
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Remark 2.2. Let θ ∈ G := AutF2 K. Since θ permutes the three divisors Ci, 1 ≤ i ≤ 3, we have
that θ|k ∈ AutF2 k

∼= PSL(2,F2) ∼= S3 where k = F2(T ) and S3 is the symmetric group in three
elements. Therefore KG ⊇ kS3 . Therefore |G| divides 30. If 5 divides |G|, then the field fixed
by an element of order 5 of G is necessarily k and K/k is normal. If K/k is not normal then G
is trivial since otherwise for each non–trivial subgroup of G, the fixed field is of genus 0 but one
of them is of degree less than five. This contradicts that five is the minimum degree of a proper
subfield of K. Therefore, we have that K/k is normal if and only if AutF2 K 6= {Id}.

One of the key facts to prove the uniqueness of K is the following theorem.

Theorem 2.3. The extension K/k is normal.

Proof. Stirpe and Mercuri [6] proved that p is fully ramified inK/k and in particular DK/k = p4,
where DK/k denotes the different of the extension K/k.

Assume that K/k is not normal. Let K̃ be the Galois closure of K/k, G := Gal(K̃/k) and
H := Gal(K̃/K). Then G is a transitive subgroup of S5, the symmetric group in five elements
and H is a subgroup of S4. The field of constants of K̃ is F2 because otherwise, since the primes
of degree one are inert in K/k, we would have an element in G of order 5r with r ≥ 2 contrary
to the fact that the elements in S5 are of order less than or equal to six.

From Abhyankar Lemma we obtain that K̃/K is unramified. Let H1 be a proper normal
subgroup of H such that H/H1 is abelian. Then we obtain a non–trivial unramified abelian
extension of K and since the class number of K is one, this extension would be a constant
extension. This contradiction proves that K/k is normal.

We have DK/k = p4. Since N1 = N2 = N3 = 0 and N4 = 1, we obtain that all prime
divisors of k of degree less than or equal to four, except for one of degree four, are inert in K/k
and one prime divisor of degree four is ramified.

In k we have three prime divisors of degree four, namely the ones corresponding to T 4+T+1,
T 4 + T 3 + 1 and T 4 + T 3 + T 2 + T + 1.

Remark 2.4. We may assume without loss of generality that the ramified prime of degree four m
is the place corresponding to M = T 4+T +1 for if m1 is the place corresponding to T 4+T 3+1
(resp. T 4 + T 3 + T 2 + T + 1), then σ : k → k given by σ(T ) = 1

T (resp. σ(T ) = 1
T+1 ) satisfies

σ(T 4 + T + 1) = T 4+T 3+1
T 4 (resp. σ(T 4 + T + 1) = T 4+T 3+T 2+T+1

(T+1)4 ) so that σ(m) = m1 and
extending σ to σ̃ : K → k we obtain σ̃(K) ∼= K and σ(k) = k. In σ̃(K)/k, the prime m1 is the
ramified one.

The extension K/k is a cyclic extension such that all the primes of degree one, two and three
in k ({p∞, T, T+1, T 2+T+1, T 3+T+1, T 3+T 2+1}) and the primes of degree four associated
to T 4 + T 3 + 1 and T 4 + T 3 + T 2 + T + 1 are inert. The prime m associated to T 4 + T + 1 is
ramified.

Since p∞ is unramified in K/k, in fact conk/K p∞ = C1, and m is the only ramified prime
in K and it is tamely ramified we have that K ⊆ k(ΛM )F25 (see [4, Proposition 3.4]) and
[K : k] = 5.

The key step for the main result of this paper is the following theorem.

Theorem 2.5. Up to isomorphism, there exists only one field K with k ⊆ K ⊆ k(ΛM )F25 such
that g = 4 and h = 1.

Proof. To start, let t be any prime divisor of k such that t 6= p∞,m, and let P ∈ RT := F2[T ]
be the monic irreducible polynomial associated to t. Then the Frobenius map ϕP of P in the
extension k(ΛM )/k is given by ϕP (λ) = λP where λ is a generator of ΛM (see [7, Theorem
12.5.1]). In particular for t 6= p∞,m we have that the decomposition group of t is DP = 〈ϕP 〉
and |DP | = o(P mod M).

We have that GM := Gal(k(ΛM )/k) ∼= C15, the cyclic group of 15 elements, and let L be
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the subfield of k(ΛM ) such that [L : k] = 5.

k(ΛM )

3 〈τ 5〉

k(ΛM )F25

L

5 〈τ 3〉

LF25

k kF25

From the isomorphism GM ∼=
(
RT /(M)

)∗
we have that τ , given by τ(λ) = λT , is a genera-

tor of GM . Therefore Gal(L/k) ∼= 〈τ mod 〈τ 5〉〉 ∼= 〈τ 3〉.
Note that P is inert in L/k if and only if o(ϕP ) ∈ {5, 15}. Direct computations give

T 1 ≡ T mod M, T 2 ≡ T 2 mod M, T 3 ≡ T 3 mod M, T 4 ≡ T + 1 mod M,

T 5 ≡ T 2 + T mod M, T 6 ≡ T 3 + T 2 mod M, T 7 ≡ T 3 + T + 1 mod M,

T 8 ≡ T 2 + 1 mod M, T 9 ≡ T 3 + T mod M, T 10 ≡ T 2 + T + 1 mod M,

T 11 ≡ T 3 + T 2 + T mod M, T 12 ≡ T 3 + T 2 + T + 1 mod M, (2.2)

T 13 ≡ T 3 + T 2 + 1 mod M, and T 14 ≡ T 3 + 1 mod M,

and T 4 + T 3 + 1 ≡ T 3 + T mod M, T 4 + T 3 + T 2 + T + 1 ≡ T 3 + T 2 mod M.

From (2.2) we may compute the order of ϕP :

o(ϕT ) = 15, o(ϕT+1) = 15, o(ϕT 2+T+1) = 3, o(ϕT 3+T 2+1) = 15,

o(ϕT 3+T+1) = 15, o(ϕT 4+T 3+1) = 5, o(ϕT 4+T 3+T 2+T+1) = 5,

and we also have that p∞ is fully decomposed in k(ΛM )/k (see [7, Theorem 12.4.6]), that is
o(ϕp∞) = 1 where ϕp∞ denotes the Frobenius of p∞ in k(ΛM )/k. Therefore, the decomposition
groups of P in k(ΛM )/k are given by

DT = DT+1 = DT 3+T 2+1 = DT 3+T+1 = GM = 〈τ〉,

Dp∞ = {Id}, DT 2+T+1 = 〈τ 5〉, (2.3)

DT 4+T 3+1 = DT 4+T 3+T 2+T+1 = 〈τ 3〉.

In particular p∞ and T 2 + T + 1 are decomposed in L/k and T, T + 1, T 3 + T 2 + 1, T 3 + T +
1, T 4 + T 3 + 1 and T 4 + T 3 + T 2 + T + 1 are inert in L/k.

Now, in the extension of constants k5 := kF25 over k, all the primes of degree i, 1 ≤ i ≤
4, are inert ([7, Theorem 6.2.1]). We have that Gal(k5/k) = 〈χ〉 where χ is induced by the
Frobenius map of the extension F25/F2. More precisely, if Q(T ) =

∑d
i=0 aiT

i ∈ F25 [T ], then
χ(Q(T )) =

∑d
i=0 a

2
iT

i.
Let P (T ) ∈ RT be a prime of degree i, 0 ≤ i ≤ 4. Then the residue fields in k5/k are

isomorphic to F25i/F2i and the Frobenius map δ of F25i/F2i is given by δ(α) = α2i for α ∈ F25i .
Therefore the Frobenius map of P (T ) in k5/k corresponds to 〈χi〉 ∈ Gal(k5/k).

To find the Frobenius map of an arbitrary P ∈ RT in the extensions Lk5 and k(ΛM )k5 we
consider the following general situation. Let E/F, J/F be Galois extensions of global or local
fields such that E ∩ J = F . Let S := EJ .

E EJ = S

F J
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We have the isomorphism

Φ : Gal(S/F )→ Gal(E/F )×Gal(J/F )

Φ(θ) =
(
θ|E , θ|J),

and the inverse of Φ is given by

Ψ : Gal(E/F )×Gal(J/F )→ Gal(S/F )

Ψ(α, β) = α̃β̃,

where α̃ : S → S and β̃ : S → S are defined, for z =
∑t
i=1 xiyi ∈ S with xi ∈ E and yi ∈ J , by

α̃
( t∑
i=1

xiyi
)
=

t∑
i=1

α(xi)yi

and

β̃
( t∑
i=1

xiyi
)
=

t∑
i=1

xiβ(yi).

Let P be a prime in F , P be a prime in S above P and let q := P ∩ J and t := P ∩ E.

Assume that P is unramified in S/F . Let
[
S/F

P

]
∈ Gal(S/F ) be the Frobenius map of P/P .

Then
[
S/F

P

]∣∣∣
E
=

[
E/F

t

]
and

[
S/F

P

]∣∣∣
J
=

[
J/F

q

]
. Therefore

[
S/F

P

]
=

[̃
E/F

t

][̃
J/F

q

]
. (2.4)

We will apply formula (2.4) to our case (F =)k = F2(T ), (E =)L, (J =)k5 and (S =)Lk5.
There exist exactly four extensions Rj , 1 ≤ j ≤ 4 of degree five over k contained in L5 := Lk5
other than L and k5. The fields K we are looking for are, if any, among the fields Rj such that
all the primes P (T ) in k of degree less than or equal to four other than M are inert in K/k. Note
that since k5/k is unramified and the only ramified prime in L/k is m, the only ramified prime
in each Rj is m.

We have Gal(L5/k) ∼= C5 × C5 and the decomposition group of any unramified prime is
cyclic since the characteristic is 2 6= 5. Thus, any prime of degree i with i ≤ 4 other than m is
decomposed in exactly one field among L, Rj , 1 ≤ j ≤ 4, namely, in the fixed field LH5 where H
denotes the decomposition group of the prime in L5/k. Now, p∞ and T 2+T+1 are decomposed
in L/k so they are inert in every Rj , 1 ≤ j ≤ 4.

L

〈τ3〉

〈χ̃〉 L5

〈τ̃3〉

〈τ̃3χ̃〉

〈τ̃12χ̃〉

〈τ̃6χ̃〉

〈τ̃9χ̃〉

•R1

•R2

•R3

•R4

k 〈χ〉 k5
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Next we compute the decomposition group DP in k(ΛM )k5/k for P ∈ {T, T + 1, T 3 + T 2 +
1, T 3 + T + 1, T 4 + T 3 + 1, T 4 + T 3 + T 2 + T + 1} using formula (2.4). We denote by ξP the
Frobenius of P in k5/k and by ϕP the Frobenius of P in k(ΛM )/k (see (2.3)). Therefore, the
Frobenius θP of P in k(ΛM )k5/k is given by θP = ϕ̃P ξ̃P .

From (2.2) and from the fact that the Frobenius ξ̃P of any P of degree i in k5/k corresponds
to 〈χi〉, we obtain θP and the decomposition groupDP = 〈θP 〉 for each P in k(ΛM )k5 as follows

θT = τ̃ χ̃, θT+1 = τ̃ 4χ̃, θT 3+T 2+1 = τ̃ 13χ̃3,

θT 3+T+1 = τ̃ 7χ̃3, θT 4+T 3+1 = τ̃ 9χ̃4, θT 4+T 3+T 2+T+1 = τ̃ 6χ̃4.

Now let HP be the subgroup of DP of order 5. We obtain

HT = HT 3+T 2+1 = HT 4+T 3+1 = 〈τ̃ 6χ̃〉, (2.5)

HT+1 = HT 3+T+1 = HT 4+T 3+T 2+T+1 = 〈τ̃ 9χ̃〉,

and note that 〈τ̃ 6χ̃〉 6= 〈τ̃ 9χ̃〉.
Let R3 = L

〈τ̃ 6χ̃〉
5 and R4 = L

〈τ̃ 9χ̃〉
5 . From (2.5) we have that in R3/k, T, T 3 + T 2 + 1 and

T 4 + T 3 + 1 split and in R4/k, T + 1, T 3 + T + 1 and T 4 + T 3 + T 2 + T + 1 split. Therefore
all the primes of degree i with 1 ≤ i ≤ 4 other than m are inert in R1/k and in R2/k, where
R1 = L

〈τ̃ 3χ̃〉
5 and R2 = L

〈τ̃ 12χ̃〉
5 and we have 〈τ̃ 3χ̃〉 6= 〈τ̃ 12χ̃〉. The fields R1 and R2 are of genus

four and class number one.
Finally, we will prove that R1 ∼= R2. Let σ : k → k be given by σ(T ) = 1

T and extend σ to
σ̃ : R1 → k̄. Since R1 and R2 are the only subfields of L5 of genus four and class number one,
necessarily we have σ(R1) = R1 or R2. Now consider the primes T 7 + T 4 + 1 and T 7 +T 3 + 1.
Since T 7 + T 4 + 1 ≡ T 3 + 1 mod M we have that HT 7+T 4+1 = 〈τ̃ 12χ̃〉. Therefore T 7 + T 4 + 1
splits in R2 and is inert in R1.

Now consider the prime T 7 + T 3 + 1. Since T 7 + T 3 + 1 ≡ T mod M , it follows that
HT 7+T 3+1 = 〈τ̃ 3χ̃〉 so that T 7 + T 3 + 1 splits in R1 and is inert in R2. Since σ(T 7 + T 4 + 1) =
T 7+T 3+1

T 7 it follows that σ(R1) = R2 and R1 ∼= R2. This proves Theorem 2.5.

Remark 2.6. The fields R1 and R2 are the fields described by C. Stirpe in [5].

The main result of this paper is a consequence of Theorem 2.3, Remark 2.4 and Theorem 2.5.

Theorem 2.7. Up to isomorphism, there exists exactly one function field over the finite field of
two elements of class number one and genus four.

Remark 2.8. The field K (equal to either R1 or R2) satisfies that G = AutF2 K = AutkK =
Gal(K/k) ∼= C5. Indeed, if |G| > 5, there would exist an element of order 2 or 3 in G and if S
were the group generated by this element, we would have 1 < [K : KS ] = |S| < 5, thus KS

would be of genus 0 (see Remark 2.1). This contradicts that five is the minimum degree of a
proper subfield of K.
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