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Abstract The space of prime ideals of a I'-semiring endowed with the hull kernel toplogy.
Various properties of the space of prime ideals of a I'-semiring endowed with the hull kernel
toplogy are studied.

1 Introduction

As a generalization of a I'-ring and a semiring the notion of a I'-semiring was introduced by
Rao [11]. Various characterizations of a semiring were done in [2, 8, 9]. Also some work on a
I'-semiring was given in [5, 6, 7, 11]. The Structure spaces of a semiring was studied by Adhikari
and Das in [1] while the structure spaces of a I'-semigroup by Chattppadhay and Kar in [4]. In
this paper efforts are taken for the study of structure spaces of prime ideals of a I'-semiring.

The set g of all prime ideals in a I'-semiring S endowed with the hull kernel toplogy 7.
Various topological properties of the space (p, 7) are studied. Necessary and sufficient condi-
tions for the space (p, 7) to be Ty, T», T5 are furnished. It is observed that space (p, 7) is a
compact space if and only if for any collection {a;};., C S there exists a finite subcollection
{a1,az, az,--+-+- ,an + in S such that I € g there exist a; such that a; ¢ I.

2 Preliminaries

First we recall some definitions of the basic concepts of a I'-semiring that we need in sequel. For
this we follow Dutta and Sardar [5]. Also for the basic concepts of topology we follow Kelly
[10].

Definition 2.1. Let S and I' be two additive commutative semigroups. S is called a I'-semiring
if there exists a mapping S x I' x S — S denoted by aab; forall a,b € S and o € I' satisfying
the following conditions:

(i) ac (b+ ¢) = (a ab) + (a ac)

(i) (b4 ¢)aa = (b aa) + (c aa)

(iil) a(a + B)c = (a ac) + (a Be)

(iv) aa (bBc) = (aad) Be ;s forall a,b,c € S and forall o, € T .

Obviously, every semiring S is a ['-semiring.

Definition 2.2. An element 0 € S is said to be an absorbing zero if Oaa = 0 = aa0, a + 0 =
O+a=a;foralla e Sanda €T.

Now onwards S denotes a I'-semiring with absorbing zero unless otherwise stated.

Definition 2.3. A nonempty subset 7" of S is called a left (respectively right) ideal of S if T"is a
subsemigroup of (S, +) and zaa € T (respectively aax € T) foralla € T, x € S anda € T.

Definition 2.4. If T is both left and right ideal of .S, then 7" is known as an ideal of S.

Definition 2.5. An ideal P of S is called a prime ideal if ATB C P implies A C Por B C P
for any ideals A and B of S.

Definition 2.6. A prime ideal P of S is said to be a minimal prime ideal if there does not exist
any other prime ideal of S containing P properly.

A proper ideal M of S is said to be a maximal ideal if there does not exist any other proper
ideal of S containing M properly.

(a) denotes an ideal generated by a € S and is defined as (a) = Npa + ST'a, where Ny
denotes the set of non negative integers.
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3 Prime Ideal Space

Let o denote the collection of all prime ideals of S. For any subset A of p we define A =

{I€o|NerleC 1),
Then Further we have

Theorem 3.1. The function A — A is a closure operator on .

Proof :- obviously ¢ = ¢. (i) By the definition of A for each o, I, € A. Therefore N roeala C 1o
implies I, € A. Hence A C A.

(ii) Let Ig € A. Then nIQeZIa C Ig. But mIVeA I, C I,. Asthisis true forall « € A, where A

denotes the indexing set. We get (; ¢4 Iy € ;<7 o C Ip. This gives Is € A.Thus A C A.

Asby (i) A C 4, the result follows.

(iii) Assume that A C B. Then as ﬂIQGB I, C ﬂIQGA I, CTwegetACB.

(iv) By (iii) AUB C AUB . Now let I € AUB. Then (), .4 5 la € I. Obviously

Nr.cavslo = (Nrcala) N (Niepla). Now (N, c4la and (), cp Ia are ideals of S and

(Nroeala) T(N; e la) € (Nrcala) N (N cpla) € 1. As I is a prime ideal of S, we get

Niealoa ©Tor (N cpla ©1. Hence I € AorI € B. Thus I € AU B. This shows that

AUB C AU B.Combining both the inclusions we get AUB = AU B. O

The closure operator A — A induces a topology 7 on . This topology is the hull kernel
topology and the space (g, 7) is called the structure space of a I'-semiring S.

For any ideal I of S, define V (I)={J € p | I C J}. As a special property of V (I) we have

Theorem 3.2. Any closed set in g is of the form V (I), for some ideal I of S.

Proof :- Let A be any closed setin . Then A = A . Therefore A = {I €Ep ] N cala € I}.Deﬁne
I = N cala- Then I is an ideal of S and A = V (I). Now for any J € V(I) implies
I € Nj,eala ©J. Hence J € V (I) gives (N cy(s)la ©J. This implies J € V (I).

V(I)CV(I). ThusV(I) =V (I).O

Remark 3.3. We define U (I) = o\ V (I)={J € p|I ¢ J}. Similar to the Theorem3.2, we
have U (I) is an open set, where U (I)denotes the complement of V' (I) in p and I is an ideal of
S.

If I is an ideal of S generated by a € S thatis I = (a). Then V (I) =V ({a)). Hence we
define foranya € S,V (a)={J€placJ}and p\V (a) =U(a)={J € p| a ¢ J}. Then
we have the following results.

Theorem 3.4. {U (a) | a € S} forms a base for open sets for the hull kernel topology T on @
and the space is a Ty space.

Proof :- Let G be any open set in 7. Then by Remark3.3, we have G = U (I), for some ideal
Iof S. Forany J € G we have I ¢ J. Selecta € I such thata ¢ J. Hence J € U (a). Let
K € U (a). Then we have a ¢ K. This gives that I ¢ K. Therefore K € G. Hence U (a) C G.
Thus we get J € U (a) C G. Then G = (U, U(a). Therefore {U (a) | a € S} forms an open
base for the hull kernel topology 7 on p. Let I and J be two distinct elements of p. Assume that
a€I\J.Butthen J € U (a)and I ¢ U (a).

Therefore (p, 7) is a Ty space. O

Theorem 3.5. If S is a [-semiring with unity 1, then (p, 7) is a Ty space if and only if every
prime ideal of S is maximal.

Proof :- Suppose that (p, 7) is a Tispace. Let P € p such that P is not maximal. Then there
exists a maximal ideal M of S such that P C M. As (p, 7) is a Tj space and P # M, there exist
basic open sets U (a) and U (b) such that P € U (a), M ¢ U (a) and P ¢ U (b), M € U (b).
Asb e P wegethb € M and hence M ¢ U (b); a contradiction. Hence every prime ideal of S
is maximal. Conversely, suppose that every prime ideal of S is maximal. To show that structure
(p, 7)is T1. Let I and J be two distinct elements of p. Then by assumption either I ¢ J and
J ¢ 1. This shows that there exist a,b € S suchthata € I,b € Jbuta ¢ J,b ¢ I. Then we
have I € U (b), J € U (a) but I ¢ U (a), J ¢ U (b). Thus (p, 7) is a Tyspace. O

Theorem 3.6. (o, 7) is a Hausdorff space if and only if for any two distinct pair of elements I
and J of p there exists a,b € S such that a ¢ I, b ¢ J and there does not exist any element K of
p such thata ¢ K and b ¢ K.
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Proof :- Suppose that the structure space (p, 7) is a Hausdorff space. Then for any two distinct
elements I and J of g there exists two open sets U (a) and U (b) such that I € U (a), J € U (b)
and U (a) N U (b)=0. Butthena ¢ I and b ¢ J. Let if possible there exist K in g such that
a¢ Kandb ¢ K. Then K € U (a) and K € U (b) gives K € U (a) N U (b) =0, which is
a contradiction . Thus there does not exist any element X of o such that a ¢ K and b ¢ K.
Conversely, suppose that given condition holds. To show the space (p, 7) is a Hausdorff space.
Let I and J be two distinct elements of p. Then by assumption there exists a,b € S such that
a¢ I, b¢ J. Thisgives I € U (a), J € U (b). Again by assumption there does not exist any
element K of p such that « ¢ K and b ¢ K. Therefore there does not exist any element K of p
such that K € U (a) NU (b). Hence U (a) N U (b) =0. Therefore (p, 7) is a Hausdorff space. O
Every Hausdorff space being a T space we get,

Corollary 3.7. If (p, 7) is a Hausdorff space, then no prime ideal contains any other prime
ideal.(OR If (p, 7) is a Hausdorff space, then prime ideal of S is a minimal prime ideal). In
other words If (p, 7) is a Hausdor{f space, then the set of all minimal prime ideals and maximal
ideals coincide.

Theorem 3.8. If (p, 7) is a Hausdorff space containing more than one element, then there exist
a,b e Ssuchthat p =U (a) UU (b) UV (I), where I is an ideal generated by a, bin S.

Proof :- Suppose that (p, 7) is a Hausdorff space containing more than one element. Let .J and
K be any two elements of p such that J # K. J # K and (g, 7) is a Hausdorff space imply there
exist two open sets say U (a) and U (b)such that J € U (a), K € U (b) and U (a) N U (b) =0.
Let I be the ideal generated by a,b € S. Now for any K € p, a ¢ K, b ¢ K. In this case
K €U (a)and K € U (b)thatis K € U (a) N U (b), which is not possible as U (a) N U (b) =0.
Hence either a € K, b € K then K € U (a) UU (b) UV(I). Thus K € g implies K €
U (a)UU (b)UV(I). Therefore p C U (a)UU (b)UV(I). ButU (a) UU (b)UV (I) C p. Hence
p=U(a)UU (b)UV({).O

Theorem 3.9. (p, 7) is a regular space if and only if for any I € p and a ¢ I, for a € S there
exist an ideal J of S and b € S such that I € U (b) C V(J) C U(a).

Proof :- Suppose that structure space (p, 7) is a regular space. Let [ € panda ¢ I, fora € S.
Asa ¢ I, wehave I € U (a). U (a) is an open set of p implies V (a) = p\U (a) is a closed
set of p not containing I. As (p, 7) is a regular space, there exist two open sets say G and H
suchthat I € G, p\U (a) € Hand GNH = 0. p\U(a) C H gives p\H C U (a). H is
an open set of p implies p\ H is a closed set. Therefore p\H = V(J) for some ideal J of S.
©p\G = V(K) for some ideal K in S (see Theorem3.2). Then we have H C V(K). Since I € G
thatis I ¢ p\G = V(K) implies K ¢ I. K ¢ Igives there existb € K. butb ¢ I. Asb ¢ I
then I € U (b). Now to show that H C V(b). LetT'€ H = V(K). Then K CT. Butb € K
gives b € T, it follows that ' € V (b). Therefore H C V(b). Hence p\V (b) C p\H = V(J).
Thatis U (b) C V(J). Thus we get for any I € o there exist an ideal .J of S and b € S such that
IeU(b) CV(J)CU(a).

Conversely, suppose that for any I € p and a ¢ I, for a € S there exists an ideal J of S
and, b € Ssuchthat I € U (b) C V(J) C U(a). To show the space (p, 7) is a regular space.
Let I € p and V(K) be any closed set of o not containing I. I ¢ V(K) implies K ¢ I.
Therefore there exists a € K but a ¢ I. This gives I € U (a). By the assumption there exist
an ideal J of Sand b € Ssuchthat I € U (b) C V(J) C U(a). a € K gives K € V (a).
Thus we have U (a) NV (K) = 0 then V(K) C p\U(a) C p\V(J). As V(J) is a closed set ,
we have p\V (J) is an open set of p containing closed set V(K). Hence U(b) C V(J) implies
U (b) N (p\V (J)) = (.Thus there exist two disjoint open sets U (b) and (p\V (J)) such that
V(K) C p\V(J)and I € U (b). Therefore the space (p, 7) is a regular space. O

The space (p, 7) is a Tyspace (see Theorem3.4) and every regular Tj space is a T space.
Hence we get

Corollary 3.10. (o, 7) is a T; space if and only if for any I € p and a ¢ I, for a € S there exist
an ideal J of S and b € S such that I € U (b) C V(J) C U(a).

We know that if S contains an unit element, then the structure space (p, 7) is a compact
space. Otherwise we have

Theorem 3.11. (p, 7) is a compact space if and only if for any collection {a;},c, C S there
exists a finite subcollection {ay,ay, az,----- ,an} in S such that I € g there exist a; such that
a; ¢ 1.
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Proof :- Suppose that structure space (p, 7) is a compact space. Let

{U(q, |al € S} be forms an open cover of (p, 7). Then this open cover has a finite subcover
{U(a;)|i=1,2,---,n}. Let I be any element of p. Then I € {U(a,) |i=1,2,--- ,n}.
Therefore I € U(ai) for some a; € S. Hence a; ¢ I. Thus {ay,ay, az, - ,an} is the
required finite subcollection of elements of S such that a; ¢ I. Conversely, suppose that
given condition hold. To show the space (p, 7) is a compact space. Let {U )a; € S}
be forms an open cover of (p, 7). Assume that no finite subcollection of {U(a |aZ €S} be
forms a cover of p. This shows that for any finite set {a;,a, az, -+ ,an} of elements of
S, Ula) UU(ay))U------ UU(a,) # p. Therefore p\[U(a,) UU(a,)U------ UU(a,)] # 0.
Then V(a,) N V(ay)N------ NV(a,) # 0. This implies there exist I € p such that I €
Via)NV(ay)N------ NV(a,), gives that al,az, az, - ,a, € I. Which is a contradiction
to the hypothesis. Hence our assumption {U(a,)|a; € S} has no finite subcover which covers p
is wrong. {U(a,)|a; € S} has finite subcover Wthh covers p. Therefore the space (p, 7)is a
compact space. O

By the Theorem3.11 immediately we get

Corollary 3.12. If S is finitely generated , then the space (p, T) is compact.

Arbitrary intersection of prime ideals is a semiprime ideal in .S but need not be a prime ideal.
In the following theorem we give a sufficient condition for intersection of prime ideals of S to
be a prime ideal.

Theorem 3.13. Let { P;|i € A} be the collection of prime ideals of S such that { P;|i € A} forms
a chain of ideals. Then ;.5 P is a prime ideal of S.
Proof :- Clearly (), P is an ideal of S. Let A and B be any two ideals of S such that AT'B C
MNica Pi. Assume that A & (), P; and B € (), P;. Then there exist ¢ and j such that A P
and B ¢ P;. As {P;]i € A} forms a chain of ideals, we have either P;C P or P;C P;. Assume
P;,C P;. Then A € P;. ATB C (\,co PiC P; and P; is a prime ideal of S imply AC P;
or B C P;, which is a contradiction. Therefore either A C Nien Pior B C ,cr B Hence
Mica Pi is a prime ideal of S. O

As in [4] for I'-semigroup we define

iEA €A

Definition 3.14. The space (p, 7) is called irreducible if for any decomposition p = AU B,
where A and B are closed subsets of p, then either p = A or p = B.

Theorem 3.15. Let A be a closed subset of p. Then A is irreducible if and only if peabiisa
prime ideal of S.

Proof :- Assume that A is irreducible. To Prove that (), . 4 P is a prime ideal of S. Let B and
C be any two ideals of S such that BI'C' C ﬂPLveA P;. Then BI'C C P;, foreachi. As P;is a
prime ideal of S, we have BC P;or C' C P, for each i. Then P, € ANBor P, € ANC give
€ (ANB) U (ANC). Therefore A = (ANB) U(ANC). (ANB) and (ANC) are closed
subsets of A and A is irreducible imply A = (AN B) or A= (ANC). Hence A C Bor A CC.
This shows that B C ) pea i or C CN peali Therefore [ peabi is a prime ideal of
S. Conversely, suppose that (), ., P; is a prime ideal of S. To show that A is irreducible.
Let B and C are closed subsets of A such that A = BUC. Clearly (p 4 P € (p,cs P and
Npeali SNpec Pi- Also Np e u P = Np,es Pi = (Npesue ) N (Np,ec Bi)- AsNpes P
and (p, . P; are ideals of S, we have
(ﬂPEB ) (Npec Pi) € Npep Piand (Np,es POT(Npec £) € Npyec P

Therefore (ﬂp €B ) (ﬂp ec ) = (ﬂPieB 2) N (ﬂPieC ) ﬂP,,eAP But Np ca P
is a prime ideal of S. Then we have ﬂpieB P, C ﬂPi,eA P; or ﬂpiec P, C nPieA P;. There-

fore NpcpPi = ﬂPGAPZ or NpeePi = NpeaPi- Now forany P, € A, Np P =
Np,eaPiC€ Pror Npce Pi = Np,ea Pi € Pr. As B and C are closed subsets of A, we have
P,C Py, forall P, € B or PQ Py, for all P; € C. Therefore A C BorA C C. Thus A =B
orA = C. Hence A is irreducible. O

For any subset A of p we define 7 (A) = (N, ¢, Ix. Obviously r(p) = [, ¢, Ik is the
p-radical of S. Always r (p) C r( A). We know that A C g is dense in p if 4 = p. We
characterise dense sets in g as follows

Theorem 3.16. The subset A of o is dense in p if and only if v (A) = r( p).

Proof :- Assume that the subset A of p is dense in p. As A C p, we have r (p) C r(A). Only to
show that 7(A) C r(p). A= pgives A={I€p| N, cala CI} =p. P gpimplies P € A
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Then r (A) C P. As this true for each P € p we get r (A) = () ¢4 la QDIQEKJ I, = r(p).

Hence r (A) = r( p). Conversely assume that r (A) = r( p). To show A = p. Suppose
that p\.A # (. Then there is a prime ideal say P of S such that P € p\A that is P € p and

Pe Aie. P ¢ A P ¢ Aimplies there exists any open set say U (I) containing P such that
U (I) N A\{P} = 0. That is open set of p containing P does not contains any other element of
A other than P. Therefore r (p) = (; ¢, la C7(A) =(; cala- Thenr (A) # r( p). Hence
by contrapositive method result holds. O
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