Structure Space of Prime Ideals of Γ-Semirings

R. D. Jagatap and Y. S. Pawar

Communicated by Ayman Badawi

MSC 2010 Classifications: 16Y60, 16Y99

Keywords and phrases: Prime ideal, Maximal ideal, Hull kernel topology, Hausdorff space, Regular space, Compact space, Irreducible space.

Abstract The space of prime ideals of a Γ -semiring endowed with the hull kernel toplogy. Various properties of the space of prime ideals of a Γ -semiring endowed with the hull kernel toplogy are studied.

1 Introduction

As a generalization of a Γ -ring and a semiring the notion of a Γ -semiring was introduced by Rao [11]. Various characterizations of a semiring were done in [2, 8, 9]. Also some work on a Γ -semiring was given in [5, 6, 7, 11]. The Structure spaces of a semiring was studied by Adhikari and Das in [1] while the structure spaces of a Γ -semigroup by Chattppadhay and Kar in [4]. In this paper efforts are taken for the study of structure spaces of prime ideals of a Γ -semiring.

The set \wp of all prime ideals in a Γ -semiring S endowed with the hull kernel toplogy τ . Various topological properties of the space (\wp, τ) are studied. Necessary and sufficient conditions for the space (\wp, τ) to be T_1, T_2, T_3 are furnished. It is observed that space (\wp, τ) is a compact space if and only if for any collection $\{a_i\}_{i\in\Lambda} \subset S$ there exists a finite subcollection $\{a_1, a_2, a_3, \cdots, a_n\}$ in S such that $I \in \wp$ there exist a_i such that $a_i \notin I$.

2 Preliminaries

First we recall some definitions of the basic concepts of a Γ -semiring that we need in sequel. For this we follow Dutta and Sardar [5]. Also for the basic concepts of topology we follow Kelly [10].

Definition 2.1. Let *S* and Γ be two additive commutative semigroups. *S* is called a Γ -semiring if there exists a mapping $S \times \Gamma \times S \longrightarrow S$ denoted by $a\alpha b$; for all $a, b \in S$ and $\alpha \in \Gamma$ satisfying the following conditions:

(i) $a\alpha (b+c) = (a \ \alpha b) + (a \ \alpha c)$ (ii) $(b+c) \ \alpha a = (b \ \alpha a) + (c \ \alpha a)$ (iii) $a(\alpha + \beta)c = (a \ \alpha c) + (a \ \beta c)$ (iv) $a\alpha (b\beta c) = (a\alpha b) \ \beta c$; for all $a, b, c \in S$ and for all $\alpha, \beta \in \Gamma$.

Obviously, every semiring S is a Γ -semiring.

Definition 2.2. An element $0 \in S$ is said to be an absorbing zero if $0\alpha a = 0 = a\alpha 0$, a + 0 = 0 + a = a; for all $a \in S$ and $\alpha \in \Gamma$.

Now onwards S denotes a Γ -semiring with absorbing zero unless otherwise stated.

Definition 2.3. A nonempty subset T of S is called a left (respectively right) ideal of S if T is a subsemigroup of (S, +) and $x\alpha a \in T$ (respectively $a\alpha x \in T$) for all $a \in T$, $x \in S$ and $\alpha \in \Gamma$.

Definition 2.4. If T is both left and right ideal of S, then T is known as an ideal of S.

Definition 2.5. An ideal P of S is called a prime ideal if $A\Gamma B \subseteq P$ implies $A \subseteq P$ or $B \subseteq P$ for any ideals A and B of S.

Definition 2.6. A prime ideal P of S is said to be a minimal prime ideal if there does not exist any other prime ideal of S containing P properly.

A proper ideal M of S is said to be a maximal ideal if there does not exist any other proper ideal of S containing M properly.

(a) denotes an ideal generated by $a \in S$ and is defined as $(a) = N_0 a + S \Gamma a$, where N_0 denotes the set of non negative integers.

3 Prime Ideal Space

Let \wp denote the collection of all prime ideals of S. For any subset A of \wp we define $\overline{A} = \{I \in \wp \mid \bigcap_{I_{\alpha} \in A} I_{\alpha} \subseteq I\}$.

Then Further we have

Theorem 3.1. The function $A \to \overline{A}$ is a closure operator on \wp .

Proof :- obviously $\overline{\phi} = \phi$. (i) By the definition of \overline{A} for each α , $I_{\alpha} \in A$. Therefore $\bigcap_{I_{\alpha} \in A} I_{\alpha} \subseteq I_{\alpha}$ implies $I_{\alpha} \in \overline{A}$. Hence $A \subseteq \overline{A}$.

(ii) Let $I_{\beta} \in \overline{\overline{A}}$. Then $\bigcap_{I_{\alpha} \in \overline{A}} I_{\alpha} \subseteq I_{\beta}$. But $\bigcap_{I_{\gamma} \in A} I_{\gamma} \subseteq I_{\alpha}$. As this is true for all $\alpha \in \Lambda$, where Λ denotes the indexing set. We get $\bigcap_{I_{\gamma} \in A} I_{\gamma} \subseteq \bigcap_{I_{\alpha} \in \overline{A}} I_{\alpha} \subseteq I_{\beta}$. This gives $I_{\beta} \in \overline{A}$. Thus $\overline{\overline{A}} \subseteq \overline{A}$. As by (i) $\overline{A} \subseteq \overline{\overline{A}}$, the result follows.

(iii) Assume that $A \subseteq B$. Then as $\bigcap_{I_{\alpha} \in B} I_{\alpha} \subseteq \bigcap_{I_{\alpha} \in A} I_{\alpha} \subseteq I$ we get $\overline{A} \subseteq \overline{B}$.

(iv) By (iii) $\overline{A} \cup \overline{B} \subseteq \overline{A \cup B}$. Now let $I \in \overline{A \cup B}$. Then $\bigcap_{I_{\alpha} \in A \cup B} I_{\alpha} \subseteq I$. Obviously $\bigcap_{I_{\alpha} \in A \cup B} I_{\alpha} = (\bigcap_{I_{\alpha} \in A} I_{\alpha}) \cap (\bigcap_{I_{\alpha} \in B} I_{\alpha})$. Now $\bigcap_{I_{\alpha} \in A} I_{\alpha}$ and $\bigcap_{I_{\alpha} \in B} I_{\alpha}$ are ideals of S and $(\bigcap_{I_{\alpha} \in A} I_{\alpha}) \Gamma(\bigcap_{I_{\alpha} \in B} I_{\alpha}) \subseteq (\bigcap_{I_{\alpha} \in A} I_{\alpha}) \cap (\bigcap_{I_{\alpha} \in B} I_{\alpha}) \subseteq I$. As I is a prime ideal of S, we get $\bigcap_{I_{\alpha} \in A} I_{\alpha} \subseteq I$ or $\bigcap_{I_{\alpha} \in B} I_{\alpha} \subseteq I$. Hence $I \in \overline{A}$ or $I \in \overline{B}$. Thus $I \in \overline{A} \cup \overline{B}$. This shows that $\overline{A \cup B} \subseteq \overline{A \cup B}$. Combining both the inclusions we get $\overline{A \cup B} = \overline{A \cup B}$. \Box

The closure operator $A \to \overline{A}$ induces a topology τ on \wp . This topology is the hull kernel topology and the space (\wp, τ) is called the structure space of a Γ -semiring S.

For any ideal I of S, define $V(I) = \{J \in \wp \mid I \subseteq J\}$. As a special property of V(I) we have

Theorem 3.2. Any closed set in \wp is of the form V(I), for some ideal I of S.

Proof :- Let *A* be any closed set in \wp . Then $\overline{A} = A$. Therefore $A = \{I \in \wp \mid \bigcap_{I_{\alpha} \in A} I_{\alpha} \subseteq I\}$. Define $I = \bigcap_{I_{\alpha} \in A} I_{\alpha}$. Then *I* is an ideal of *S* and A = V(I). Now for any $J \in V(I)$ implies $I \subseteq \bigcap_{I_{\alpha} \in A} I_{\alpha} \subseteq J$. Hence $J \in \overline{V(I)}$ gives $\bigcap_{I_{\alpha} \in V(I)} I_{\alpha} \subseteq J$. This implies $J \in V(I)$. $\overline{V(I)} \subseteq V(I)$. Thus $V(I) = \overline{V(I)}$. \Box

Remark 3.3. We define $U(I) = \wp \setminus V(I) = \{J \in \wp \mid I \nsubseteq J\}$. Similar to the Theorem 3.2, we have U(I) is an open set, where U(I) denotes the complement of V(I) in \wp and I is an ideal of S.

If *I* is an ideal of *S* generated by $a \in S$ that is $I = \langle a \rangle$. Then $V(I) = V(\langle a \rangle)$. Hence we define for any $a \in S$, $V(a) = \{J \in \wp \mid a \in J\}$ and $\wp \setminus V(a) = U(a) = \{J \in \wp \mid a \notin J\}$. Then we have the following results.

Theorem 3.4. $\{U(a) \mid a \in S\}$ forms a base for open sets for the hull kernel topology τ on \wp and the space is a T_0 space.

Proof :- Let G be any open set in τ . Then by Remark3.3, we have G = U(I), for some ideal I of S. For any $J \in G$ we have $I \nsubseteq J$. Select $a \in I$ such that $a \notin J$. Hence $J \in U(a)$. Let $K \in U(a)$. Then we have $a \notin K$. This gives that $I \nsubseteq K$. Therefore $K \in G$. Hence $U(a) \subseteq G$. Thus we get $J \in U(a) \subseteq G$. Then $G = \bigcup_{a \in G} U(a)$. Therefore $\{U(a) \mid a \in S\}$ forms an open base for the hull kernel topology τ on \wp . Let I and J be two distinct elements of \wp . Assume that $a \in I \setminus J$. But then $J \in U(a)$ and $I \notin U(a)$. Therefore (\wp, τ) is a T_0 space. \Box

Theorem 3.5. If S is a Γ -semiring with unity 1, then (\wp, τ) is a T_1 space if and only if every prime ideal of S is maximal.

Proof :- Suppose that (\wp, τ) is a T_1 space. Let $P \in \wp$ such that P is not maximal. Then there exists a maximal ideal M of S such that $P \subset M$. As (\wp, τ) is a T_1 space and $P \neq M$, there exist basic open sets U(a) and U(b) such that $P \in U(a)$, $M \notin U(a)$ and $P \notin U(b)$, $M \in U(b)$. As $b \in P$ we get $b \in M$ and hence $M \notin U(b)$; a contradiction. Hence every prime ideal of S is maximal. Conversely, suppose that every prime ideal of S is maximal. To show that structure (\wp, τ) is T_1 . Let I and J be two distinct elements of \wp . Then by assumption either $I \nsubseteq J$ and $J \nsubseteq I$. This shows that there exist $a, b \in S$ such that $a \in I, b \in J$ but $a \notin J, b \notin I$. Then we have $I \in U(b), J \in U(a)$ but $I \notin U(a), J \notin U(b)$. Thus (\wp, τ) is a T_1 space. \Box

Theorem 3.6. (\wp , τ) is a Hausdorff space if and only if for any two distinct pair of elements I and J of \wp there exists $a, b \in S$ such that $a \notin I$, $b \notin J$ and there does not exist any element K of \wp such that $a \notin K$ and $b \notin K$. **Proof :-** Suppose that the structure space (\wp, τ) is a Hausdorff space. Then for any two distinct elements I and J of \wp there exists two open sets U(a) and U(b) such that $I \in U(a), J \in U(b)$ and $U(a) \cap U(b) = \emptyset$. But then $a \notin I$ and $b \notin J$. Let if possible there exist K in \wp such that $a \notin K$ and $b \notin K$. Then $K \in U(a)$ and $K \in U(b)$ gives $K \in U(a) \cap U(b) = \emptyset$, which is a contradiction. Thus there does not exist any element K of \wp such that $a \notin K$ and $b \notin K$. Conversely, suppose that given condition holds. To show the space (\wp, τ) is a Hausdorff space. Let I and J be two distinct elements of \wp . Then by assumption there exists $a, b \in S$ such that $a \notin I$, $b \notin J$. This gives $I \in U(a), J \in U(b)$. Again by assumption there does not exist any element K of \wp such that $a \notin K$ and $b \notin K$. Therefore there does not exist any element K of \wp such that $a \notin I$, $b \notin J$. This gives $I \in U(a), J \in U(b)$. Again by assumption there does not exist any element K of \wp such that $a \notin K$ and $b \notin I$. Therefore there does not exist any element K of \wp such that $a \notin I$ and $f \notin I$ and $f \notin I$. Therefore there does not exist any element K of \wp such that $a \notin I$ and $f \notin I$. Therefore there does not exist any element K of \wp such that $a \notin I$ and $f \notin I$. Therefore there does not exist any element K of \wp such that $a \notin I$ and $f \notin I$. Therefore there does not exist any element K of \wp such that $a \notin I$ and $f \notin I$. Therefore there does not exist any element K of \wp such that $a \notin I$ and $b \notin I$. Therefore there does not exist any element K of \wp such that $a \notin I$ and $b \notin I$. Therefore there does not exist any element K of \wp such that $a \notin I$ and $b \notin I$. Therefore there does not exist any element K of \wp such that $a \notin I$ and $b \notin I$. Therefore (\wp, τ) is a Hausdorff space. \Box Every Hausdorff space being a T_1 space we get,

Corollary 3.7. If (\wp, τ) is a Hausdorff space, then no prime ideal contains any other prime ideal.(OR If (\wp, τ) is a Hausdorff space, then prime ideal of S is a minimal prime ideal). In other words If (\wp, τ) is a Hausdorff space, then the set of all minimal prime ideals and maximal ideals coincide.

Theorem 3.8. If (\wp, τ) is a Hausdorff space containing more than one element, then there exist $a, b \in S$ such that $\wp = U(a) \cup U(b) \cup V(I)$, where I is an ideal generated by a, b in S.

Proof :- Suppose that (\wp, τ) is a Hausdorff space containing more than one element. Let J and K be any two elements of \wp such that $J \neq K$. $J \neq K$ and (\wp, τ) is a Hausdorff space imply there exist two open sets say U(a) and U(b) such that $J \in U(a)$, $K \in U(b)$ and $U(a) \cap U(b) = \emptyset$. Let I be the ideal generated by $a, b \in S$. Now for any $K \in \wp$, $a \notin K$, $b \notin K$. In this case $K \in U(a)$ and $K \in U(b)$ that is $K \in U(a) \cap U(b)$, which is not possible as $U(a) \cap U(b) = \emptyset$. Hence either $a \in K$, $b \in K$ then $K \in U(a) \cup U(b) \cup V(I)$. Thus $K \in \wp$ implies $K \in U(a) \cup U(b) \cup V(I)$. Therefore $\wp \subseteq U(a) \cup U(b) \cup V(I)$. But $U(a) \cup U(b) \cup V(I) \subseteq \wp$. Hence $\wp = U(a) \cup U(b) \cup V(I)$. \Box

Theorem 3.9. (\wp, τ) is a regular space if and only if for any $I \in \wp$ and $a \notin I$, for $a \in S$ there exist an ideal J of S and $b \in S$ such that $I \in U(b) \subseteq V(J) \subseteq U(a)$.

Proof :- Suppose that structure space (\wp, τ) is a regular space. Let $I \in \wp$ and $a \notin I$, for $a \in S$. As $a \notin I$, we have $I \in U(a)$. U(a) is an open set of \wp implies $V(a) = \wp \setminus U(a)$ is a closed set of \wp not containing I. As (\wp, τ) is a regular space, there exist two open sets say G and Hsuch that $I \in G$, $\wp \setminus U(a) \subseteq H$ and $G \cap H = \emptyset$. $\wp \setminus U(a) \subseteq H$ gives $\wp \setminus H \subseteq U(a)$. H is an open set of \wp implies $\wp \setminus H$ is a closed set. Therefore $\wp \setminus H = V(J)$ for some ideal J of S. $\wp \setminus G = V(K)$ for some ideal K in S (see Theorem3.2). Then we have $H \subseteq V(K)$. Since $I \in G$ that is $I \notin \wp \setminus G = V(K)$ implies $K \nsubseteq I$. $K \nsubseteq I$ gives there exist $b \in K$. but $b \notin I$. As $b \notin I$ then $I \in U(b)$. Now to show that $H \subseteq V(b)$. Let $T \in H = V(K)$. Then $K \subseteq T$. But $b \in K$ gives $b \in T$, it follows that $T \in V(b)$. Therefore $H \subseteq V(b)$. Hence $\wp \setminus V(b) \subseteq \wp \setminus H = V(J)$. That is $U(b) \subseteq V(J)$. Thus we get for any $I \in \wp$ there exist an ideal J of S and $b \in S$ such that $I \in U(b) \subseteq V(J) \subseteq U(a)$.

Conversely, suppose that for any $I \in \wp$ and $a \notin I$, for $a \in S$ there exists an ideal J of Sand, $b \in S$ such that $I \in U(b) \subseteq V(J) \subseteq U(a)$. To show the space (\wp, τ) is a regular space. Let $I \in \wp$ and V(K) be any closed set of \wp not containing I. $I \notin V(K)$ implies $K \nsubseteq I$. Therefore there exists $a \in K$ but $a \notin I$. This gives $I \in U(a)$. By the assumption there exist an ideal J of S and $b \in S$ such that $I \in U(b) \subseteq V(J) \subseteq U(a)$. $a \in K$ gives $K \in V(a)$. Thus we have $U(a) \cap V(K) = \emptyset$ then $V(K) \subseteq \wp \setminus U(a) \subseteq \wp \setminus V(J)$. As V(J) is a closed set, we have $\wp \setminus V(J)$ is an open set of \wp containing closed set V(K). Hence $U(b) \subseteq V(J)$ implies $U(b) \cap (\wp \setminus V(J)) = \emptyset$. Thus there exist two disjoint open sets U(b) and $(\wp \setminus V(J))$ such that $V(K) \subseteq \wp \setminus V(J)$ and $I \in U(b)$. Therefore the space (\wp, τ) is a regular space. \Box

The space (\wp, τ) is a T_0 space (see Theorem3.4) and every regular T_0 space is a T_3 space. Hence we get

Corollary 3.10. (\wp, τ) is a T_3 space if and only if for any $I \in \wp$ and $a \notin I$, for $a \in S$ there exist an ideal J of S and $b \in S$ such that $I \in U(b) \subseteq V(J) \subseteq U(a)$.

We know that if S contains an unit element, then the structure space (\wp, τ) is a compact space. Otherwise we have

Theorem 3.11. (\wp, τ) is a compact space if and only if for any collection $\{a_i\}_{i \in \Lambda} \subset S$ there exists a finite subcollection $\{a_1, a_2, a_3, \dots, a_n\}$ in S such that $I \in \wp$ there exist a_i such that $a_i \notin I$.

Proof :- Suppose that structure space (\wp, τ) is a compact space. Let

 $\begin{array}{l} \{U(a_i)|a_i\in S\} \text{ be forms an open cover of } (\wp,\ \tau). \text{ Then this open cover has a finite subcover } \\ \{U(a_i)\mid i=1,2,\cdots,n\}. \text{ Let }I \text{ be any element of } \wp. \text{ Then }I\in \{U(a_i)\mid i=1,2,\cdots,n\}. \\ \text{Therefore }I\in U(a_i) \text{ for some } a_i\in S. \text{ Hence } a_i\notin I. \text{ Thus } \{a_1,a_2,a_3,\cdots,a_n\} \text{ is the required finite subcollection of elements of }S \text{ such that } a_i\notin I. \text{ Conversely, suppose that given condition hold. To show the space } (\wp,\ \tau) \text{ is a compact space. Let } \{U(a_i)|a_i\in S\} \text{ be forms an open cover of } (\wp,\ \tau). \\ \text{Assume that no finite subcollection of } \{U(a_i)|a_i\in S\} \text{ be forms a open cover of } (\wp,\ \tau). \\ \text{Assume that no finite subcollection of } \{U(a_i)|a_i\in S\} \text{ be forms a open cover of } (\wp,\ \tau). \\ \text{Assume that no finite subcollection of } \{U(a_i)|a_i\in S\} \text{ be forms a cover of } \wp. \\ \text{This shows that for any finite set } \{a_1,a_2,a_3,\cdots,a_n\} \text{ of elements of } S, \\ U(a_1)\cup U(a_2)\cup\cdots\cdots\cup U(a_n)\neq\wp. \\ \text{Therefore } \wp\backslash[U(a_1)\cup U(a_2)\cup\cdots\cdots\cup U(a_n)]\neq\emptyset. \\ \text{Then } V(a_1)\cap V(a_2)\cap\cdots\cdots\cap V(a_n), \\ \text{gives that } a_1,a_2,a_3,\cdots\dots,a_n\in I. \\ \text{Which is a contradiction to the hypothesis. Hence our assumption } \{U(a_i)|a_i\in S\} \text{ has no finite subcover which covers } \wp \\ \text{ is wrong. } \{U(a_i)|a_i\in S\} \text{ has finite subcover which covers } \wp. \\ \text{Therefore } Back (\wp,\ \tau) \text{ is a compact space } (\wp,\ \tau) \text{ is a compact space } (\wp,\ \tau) \text{ is a contradiction to the hypothesis. Hence our assumption } \{U(a_i)|a_i\in S\} \text{ has no finite subcover which covers } \wp \\ \text{ is wrong. } \{U(a_i)|a_i\in S\} \text{ has finite subcover which covers } \wp. \\ \text{ Therefore the space } (\wp,\ \tau) \text{ is a compact space. } \Box \end{array}$

By the Theorem3.11 immediately we get

Corollary 3.12. If S is finitely generated, then the space (\wp, τ) is compact.

Arbitrary intersection of prime ideals is a semiprime ideal in S but need not be a prime ideal. In the following theorem we give a sufficient condition for intersection of prime ideals of S to be a prime ideal.

Theorem 3.13. Let $\{P_i | i \in \Lambda\}$ be the collection of prime ideals of S such that $\{P_i | i \in \Lambda\}$ forms a chain of ideals. Then $\bigcap_{i \in \Lambda} P_i$ is a prime ideal of S.

Proof :- Clearly $\bigcap_{i \in \Lambda} P_i$ is an ideal of *S*. Let *A* and *B* be any two ideals of *S* such that $A \Gamma B \subseteq \bigcap_{i \in \Lambda} P_i$. Assume that $A \nsubseteq \bigcap_{i \in \Lambda} P_i$ and $B \nsubseteq \bigcap_{i \in \Lambda} P_i$. Then there exist *i* and *j* such that $A \nsubseteq P_i$ and $B \nsubseteq P_j$. Assume that $A \nsubseteq P_i$ and $B \nsubseteq P_i$. Then there exist *i* and *j* such that $A \nsubseteq P_i$ and $B \nsubseteq P_j$. As $\{P_i | i \in \Lambda\}$ forms a chain of ideals, we have either $P_i \subseteq P_j$ or $P_j \subseteq P_i$. Assume $P_j \subseteq P_i$. Then $A \nsubseteq P_j$. $A \Gamma B \subseteq \bigcap_{i \in \Lambda} P_i \subseteq P_j$ and P_j is a prime ideal of *S* imply $A \subseteq P_j$ or $B \subseteq P_j$, which is a contradiction. Therefore either $A \subseteq \bigcap_{i \in \Lambda} P_i$ or $B \subseteq \bigcap_{i \in \Lambda} P_i$. Hence $\bigcap_{i \in \Lambda} P_i$ is a prime ideal of *S*. \Box

As in [4] for Γ -semigroup we define

Definition 3.14. The space (\wp, τ) is called irreducible if for any decomposition $\wp = \mathcal{A} \cup \mathcal{B}$, where \mathcal{A} and \mathcal{B} are closed subsets of \wp , then either $\wp = \mathcal{A}$ or $\wp = \mathcal{B}$.

Theorem 3.15. Let A be a closed subset of \wp . Then A is irreducible if and only if $\bigcap_{P_i \in A} P_i$ is a prime ideal of S.

Proof :- Assume that \mathcal{A} is irreducible. To Prove that $\bigcap_{P_i \in \mathcal{A}} P_i$ is a prime ideal of S. Let B and C be any two ideals of S such that $B\Gamma C \subseteq \bigcap_{P_i \in \mathcal{A}} P_i$. Then $B\Gamma C \subseteq P_i$, for each i. As P_i is a prime ideal of S, we have $B \subseteq P_i$ or $C \subseteq P_i$ for each i. Then $P_i \in \mathcal{A} \cap \overline{\mathcal{B}}$ or $P_i \in \mathcal{A} \cap \overline{\mathcal{C}}$ give $P_i \in (\mathcal{A} \cap \overline{\mathcal{B}}) \cup (\mathcal{A} \cap \overline{\mathcal{C}})$. Therefore $\mathcal{A} = (\mathcal{A} \cap \overline{\mathcal{B}}) \cup (\mathcal{A} \cap \overline{\mathcal{C}})$ and $(\mathcal{A} \cap \overline{\mathcal{C}})$ are closed subsets of \mathcal{A} and \mathcal{A} is irreducible imply $\mathcal{A} = (\mathcal{A} \cap \overline{\mathcal{B}})$ or $\mathcal{A} = (\mathcal{A} \cap \overline{\mathcal{C}})$. Hence $\mathcal{A} \subseteq \overline{\mathcal{B}}$ or $\mathcal{A} \subseteq \overline{\mathcal{C}}$. This shows that $B \subseteq \bigcap_{P_i \in \mathcal{A}} P_i$ or $C \subseteq \bigcap_{P_i \in \mathcal{A}} P_i$. Therefore $\bigcap_{P_i \in \mathcal{A}} P_i$ is a prime ideal of S. Conversely, suppose that $\bigcap_{P_i \in \mathcal{A}} P_i$ is a prime ideal of S. To show that \mathcal{A} is irreducible. Let \mathcal{B} and \mathcal{C} are closed subsets of \mathcal{A} such that $\mathcal{A} = \mathcal{B} \cup \mathcal{C}$. Clearly $\bigcap_{P_i \in \mathcal{A}} P_i \subseteq \bigcap_{P_i \in \mathcal{B}} P_i$ and $\bigcap_{P_i \in \mathcal{C}} P_i$. Also $\bigcap_{P_i \in \mathcal{A}} P_i = \bigcap_{P_i \in \mathcal{B}} P_i = (\bigcap_{P_i \in \mathcal{B} \cup \mathcal{C}} P_i) \cap (\bigcap_{P_i \in \mathcal{C}} P_i)$. As $\bigcap_{P_i \in \mathcal{B}} P_i$ and $\bigcap_{P_i \in \mathcal{C}} P_i$ are ideals of S, we have

 $(\bigcap_{P_i \in \mathcal{B}} P_i) \Gamma(\bigcap_{P_i \in \mathcal{C}} P_i) \subseteq \bigcap_{P_i \in \mathcal{B}} P_i \text{ and } (\bigcap_{P_i \in \mathcal{B}} P_i) \Gamma(\bigcap_{P_i \in \mathcal{C}} P_i) \subseteq \bigcap_{P_i \in \mathcal{C}} P_i.$

Therefore $(\bigcap_{P_i \in \mathcal{B}} P_i) \cap (\bigcap_{P_i \in \mathcal{C}} P_i) \subseteq (\bigcap_{P_i \in \mathcal{B}} P_i) \cap (\bigcap_{P_i \in \mathcal{C}} P_i) = \bigcap_{P_i \in \mathcal{A}} P_i$. But $\bigcap_{P_i \in \mathcal{A}} P_i$ is a prime ideal of S. Then we have $\bigcap_{P_i \in \mathcal{B}} P_i \subseteq \bigcap_{P_i \in \mathcal{A}} P_i$ or $\bigcap_{P_i \in \mathcal{C}} P_i \subseteq \bigcap_{P_i \in \mathcal{A}} P_i$. Therefore $\bigcap_{P_i \in \mathcal{B}} P_i = \bigcap_{P_i \in \mathcal{A}} P_i$ or $\bigcap_{P_i \in \mathcal{C}} P_i = \bigcap_{P_i \in \mathcal{A}} P_i$. Now for any $P_k \in \mathcal{A}, \bigcap_{P_i \in \mathcal{B}} P_i = \bigcap_{P_i \in \mathcal{A}} P_i \subseteq P_k$ or $\bigcap_{P_i \in \mathcal{C}} P_i = \bigcap_{P_i \in \mathcal{A}} P_i$. As \mathcal{B} and \mathcal{C} are closed subsets of \mathcal{A} , we have $P_i \subseteq P_k$, for all $P_i \in \mathcal{B}$ or $P_i \subseteq P_k$, for all $P_i \in \mathcal{C}$. Therefore $\mathcal{A} \subseteq \mathcal{B}$ or $\mathcal{A} \subseteq \mathcal{C}$. Thus $\mathcal{A} = \mathcal{B}$ or $\mathcal{A} = \mathcal{C}$. Hence \mathcal{A} is irreducible. \Box

For any subset \mathcal{A} of \wp we define $r(\mathcal{A}) = \bigcap_{I_k \in \wp} I_k$. Obviously $r(\wp) = \bigcap_{I_k \in \wp} I_k$ is the \wp -radical of S. Always $r(\wp) \subseteq r(\mathcal{A})$. We know that $\mathcal{A} \subseteq \wp$ is dense in \wp if $\overline{\mathcal{A}} = \wp$. We characterise dense sets in \wp as follows

Theorem 3.16. The subset \mathcal{A} of \wp is dense in \wp if and only if $r(\mathcal{A}) = r(\wp)$.

Proof :- Assume that the subset \mathcal{A} of \wp is dense in \wp . As $\mathcal{A} \subseteq \wp$, we have $r(\wp) \subseteq r(\mathcal{A})$. Only to show that $r(\mathcal{A}) \subseteq r(\wp)$. $\overline{\mathcal{A}} = \wp$ gives $\overline{\mathcal{A}} = \{I \in \wp \mid \bigcap_{I_{\alpha} \in \mathcal{A}} I_{\alpha} \subseteq I\} = \wp$. $P \in \wp$ implies $P \in \overline{\mathcal{A}}$.

Then $r(\mathcal{A}) \subseteq P$. As this true for each $P \in \wp$ we get $r(\mathcal{A}) = \bigcap_{I_{\alpha} \in A} I_{\alpha} \subseteq \bigcap_{I_{\alpha} \in \wp} I_{\alpha} = r(\wp)$. Hence $r(\mathcal{A}) = r(\wp)$. Conversely assume that $r(\mathcal{A}) = r(\wp)$. To show $\overline{\mathcal{A}} = \wp$. Suppose that $\wp \setminus \overline{\mathcal{A}} \neq \emptyset$. Then there is a prime ideal say P of S such that $P \in \wp \setminus \overline{\mathcal{A}}$ that is $P \in \wp$ and $P \in \widetilde{\overline{\mathcal{A}}}$ i.e. $P \notin \overline{\mathcal{A}}$. $P \notin \overline{\mathcal{A}}$ implies there exists any open set say U(I) containing P such that $U(I) \cap \overline{\mathcal{A}} \setminus \{P\} = \emptyset$. That is open set of \wp containing P does not contains any other element of \mathcal{A} other than P. Therefore $r(\wp) = \bigcap_{I_{\alpha} \in \wp} I_{\alpha} \subset r(\mathcal{A}) = \bigcap_{I_{\alpha} \in A} I_{\alpha}$. Then $r(\mathcal{A}) \neq r(\wp)$. Hence by contrapositive method result holds. \Box

References

- [1] M.R.Adhikari, M.K.Das; Structure Spaces of Semiring, Bull. Cal. Math. Soc., 313-317 (1994).
- [2] J.Ahsan; Fully Idempotent Semiring, Proc. Japan Acad. 32 (series A), 185-188 (1956).
- [3] G.L.Booth, N.J. Groenewald; On Prime One sided Bi-ideals and Quasi-ideals of a Gamma Ring, Jour. Austral. Math. Soc.(series A), 53, 55-63 (1992).
- [4] S.Chattppadhay, S.Kar; On Structure Spaces of Γ-Semigroup, Acta Univ. Palacki. Olomuc., Fac. Rev. Nat., Mathematica, 47, 37-46 (2008).
- [5] T.K. Dutta, S.K. Sardar; Structure Spaces of Γ-semiring, Novi Sad Jour. Math., 30 (1), 97-108 (2000).
- [6] R.D.Jagatap, Y.S. Pawar; Quasi-ideals and Minimal Quasi-ideals in Γ-semiring, Novi Sad Jour. Math., 39 (2), 79-87 (2009).
- [7] R.D.Jagatap, Y.S. Pawar; Quasi-ideals in Regular Γ-semiring, Bull. of Kerala Mathematics Association, 7(2), 51-62 (2010).
- [8] K.Iseki; Ideal Theory of semiring, Proc. Japan Acad., 32, 554-559 (1956).
- [9] K.Iseki; Ideals in semirings, Proc. Japan Acad., 34, 29-31 (1958).
- [10] J.L. Kelly; General Topology, New York, Van Nostrand, 1969.
- [11] M. M. K.Rao; Γ-semirings 1, Southeast Asian Bull. of Math., 19, 49-54 (1995).

Author information

R. D. Jagatap and Y. S. Pawar, Department of Mathematics, Shivaji University, Kolhapur,. E-mail: ravindrajagatap@yahoo.co.in, pawar_y_s@yahoo.com

Received: October 19, 2014.

Accepted: April 21, 2015