
Palestine Journal of Mathematics

Vol. 5(1) (2016) , 166–170 © Palestine Polytechnic University-PPU 2016

Structure Space of Prime Ideals of Γ-Semirings

R. D. Jagatap and Y. S. Pawar

Communicated by Ayman Badawi

MSC 2010 Classifications: 16Y60, 16Y99

Keywords and phrases: Prime ideal, Maximal ideal, Hull kernel topology, Hausdorff space, Regular space, Compact
space, Irreducible space.

Abstract The space of prime ideals of a Γ-semiring endowed with the hull kernel toplogy.
Various properties of the space of prime ideals of a Γ-semiring endowed with the hull kernel
toplogy are studied.

1 Introduction

As a generalization of a Γ-ring and a semiring the notion of a Γ-semiring was introduced by
Rao [11]. Various characterizations of a semiring were done in [2, 8, 9]. Also some work on a
Γ-semiring was given in [5, 6, 7, 11]. The Structure spaces of a semiring was studied by Adhikari
and Das in [1] while the structure spaces of a Γ-semigroup by Chattppadhay and Kar in [4]. In
this paper efforts are taken for the study of structure spaces of prime ideals of a Γ-semiring.

The set ℘ of all prime ideals in a Γ-semiring S endowed with the hull kernel toplogy τ .
Various topological properties of the space (℘, τ) are studied. Necessary and sufficient condi-
tions for the space (℘, τ) to be T1, T2, T3 are furnished. It is observed that space (℘, τ) is a
compact space if and only if for any collection {ai}i∈Λ ⊂ S there exists a finite subcollection
{a1, a2, a3, · · · · · · , an} in S such that I ∈ ℘ there exist ai such that ai /∈ I .

2 Preliminaries

First we recall some definitions of the basic concepts of a Γ-semiring that we need in sequel. For
this we follow Dutta and Sardar [5]. Also for the basic concepts of topology we follow Kelly
[10].

Definition 2.1. Let S and Γ be two additive commutative semigroups. S is called a Γ-semiring
if there exists a mapping S×Γ×S −→ S denoted by aαb; for all a, b ∈ S and α ∈ Γ satisfying
the following conditions:
(i) aα (b+ c) = (a αb) + (a αc)
(ii) (b+ c)αa = (b αa) + (c αa)
(iii) a(α+ β)c = (a αc) + (a βc)
(iv) aα (bβc) = (aαb)βc ; for all a, b, c ∈ S and for all α, β ∈ Γ .

Obviously, every semiring S is a Γ-semiring.

Definition 2.2. An element 0 ∈ S is said to be an absorbing zero if 0αa = 0 = aα0, a+ 0 =
0 + a = a ; for all a ∈ S and α ∈ Γ.

Now onwards S denotes a Γ-semiring with absorbing zero unless otherwise stated.

Definition 2.3. A nonempty subset T of S is called a left (respectively right) ideal of S if T is a
subsemigroup of (S,+) and xαa ∈ T (respectively aαx ∈ T ) for all a ∈ T, x ∈ S and α ∈ Γ.

Definition 2.4. If T is both left and right ideal of S, then T is known as an ideal of S.

Definition 2.5. An ideal P of S is called a prime ideal if AΓB ⊆ P implies A ⊆ P or B ⊆ P
for any ideals A and B of S.

Definition 2.6. A prime ideal P of S is said to be a minimal prime ideal if there does not exist
any other prime ideal of S containing P properly.

A proper ideal M of S is said to be a maximal ideal if there does not exist any other proper
ideal of S containing M properly.

(a) denotes an ideal generated by a ∈ S and is defined as (a) = N0a + SΓa, where N0
denotes the set of non negative integers.
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3 Prime Ideal Space

Let ℘ denote the collection of all prime ideals of S. For any subset A of ℘ we define A ={
I ∈ ℘

∣∣ ∩
Iα∈A Iα ⊆ I

}
.

Then Further we have

Theorem 3.1. The function A → A is a closure operator on ℘.

Proof :- obviously ϕ = ϕ. (i) By the definition of A for each α, Iα ∈ A. Therefore
∩

Iα∈A Iα ⊆ Iα
implies Iα ∈ A. Hence A ⊆ A.
(ii) Let Iβ ∈ A. Then

∩
Iα∈A Iα ⊆ Iβ . But

∩
Iγ∈A Iγ ⊆ Iα. As this is true for all α ∈ Λ , where Λ

denotes the indexing set. We get
∩

Iγ∈A Iγ ⊆
∩

Iα∈A Iα ⊆ Iβ . This gives Iβ ∈ A. Thus A ⊆ A.

As by (i) A ⊆ A , the result follows.
(iii) Assume that A ⊆ B. Then as

∩
Iα∈B Iα ⊆

∩
Iα∈A Iα ⊆ I we get A ⊆ B.

(iv) By (iii) A ∪ B ⊆ A ∪B . Now let I ∈ A ∪B. Then
∩

Iα∈A∪B Iα ⊆ I . Obviously∩
Iα∈A∪B Iα = (

∩
Iα∈A Iα) ∩ (

∩
Iα∈B Iα). Now

∩
Iα∈A Iα and

∩
Iα∈B Iα are ideals of S and(∩

Iα∈A Iα
)

Γ(
∩

Iα∈B Iα) ⊆ (
∩

Iα∈A Iα) ∩ (
∩

Iα∈B Iα) ⊆ I . As I is a prime ideal of S, we get∩
Iα∈A Iα ⊆ I or

∩
Iα∈B Iα ⊆ I . Hence I ∈ A or I ∈ B. Thus I ∈ A ∪ B. This shows that

A ∪B ⊆ A ∪B.Combining both the inclusions we get A ∪B = A ∪B. 2
The closure operator A → A induces a topology τ on ℘. This topology is the hull kernel

topology and the space (℘, τ) is called the structure space of a Γ-semiring S.
For any ideal I of S, define V (I)= {J ∈ ℘ | I ⊆ J} . As a special property of V (I) we have

Theorem 3.2. Any closed set in ℘ is of the form V (I), for some ideal I of S.

Proof :- Let A be any closed set in ℘. Then A = A . Therefore A =
{
I ∈ ℘

∣∣ ∩
Iα∈A Iα ⊆ I

}
.Define

I =
∩

Iα∈A Iα. Then I is an ideal of S and A = V (I). Now for any J ∈ V (I) implies
I ⊆

∩
Iα∈A Iα ⊆ J . Hence J ∈ V (I) gives

∩
Iα∈V (I) Iα ⊆ J . This implies J ∈ V (I).

V (I) ⊆ V (I) . Thus V (I) = V (I). 2

Remark 3.3. We define U (I) = ℘\ V (I)=
{
J ∈ ℘

∣∣ I * J
}

. Similar to the Theorem3.2, we
have U (I) is an open set, where U (I)denotes the complement of V (I) in ℘ and I is an ideal of
S.

If I is an ideal of S generated by a ∈ S that is I = ⟨a⟩. Then V (I)=V (⟨a⟩). Hence we
define for any a ∈ S, V (a)= {J ∈ ℘ | a ∈ J} and ℘\ V (a) = U (a)= {J ∈ ℘ | a /∈ J}. Then
we have the following results.

Theorem 3.4. {U (a) | a ∈ S} forms a base for open sets for the hull kernel topology τ on ℘
and the space is a T0 space.

Proof :- Let G be any open set in τ . Then by Remark3.3, we have G = U (I), for some ideal
I of S. For any J ∈ G we have I * J . Select a ∈ I such that a /∈ J . Hence J ∈ U (a). Let
K ∈ U (a). Then we have a /∈ K. This gives that I * K. Therefore K ∈ G. Hence U (a) ⊆ G.
Thus we get J ∈ U (a) ⊆ G. Then G =

∪
a∈G U(a). Therefore {U (a) | a ∈ S} forms an open

base for the hull kernel topology τ on ℘. Let I and J be two distinct elements of ℘. Assume that
a ∈ I\J . But then J ∈ U (a) and I /∈ U (a).
Therefore (℘, τ) is a T0 space. 2

Theorem 3.5. If S is a Γ-semiring with unity 1, then (℘, τ) is a T1 space if and only if every
prime ideal of S is maximal.

Proof :- Suppose that (℘, τ) is a T1space. Let P ∈ ℘ such that P is not maximal. Then there
exists a maximal ideal M of S such that P ⊂ M . As (℘, τ) is a T1 space and P ̸= M , there exist
basic open sets U (a) and U (b) such that P ∈ U (a), M /∈ U (a) and P /∈ U (b), M ∈ U (b).
As b ∈ P we get b ∈ M and hence M /∈ U (b); a contradiction. Hence every prime ideal of S
is maximal. Conversely, suppose that every prime ideal of S is maximal. To show that structure
(℘, τ) is T1. Let I and J be two distinct elements of ℘. Then by assumption either I * J and
J * I . This shows that there exist a, b ∈ S such that a ∈ I , b ∈ J but a /∈ J ,b /∈ I . Then we
have I ∈ U (b), J ∈ U (a) but I /∈ U (a), J /∈ U (b). Thus (℘, τ) is a T1space. 2

Theorem 3.6. (℘, τ) is a Hausdorff space if and only if for any two distinct pair of elements I
and J of ℘ there exists a, b ∈ S such that a /∈ I , b /∈ J and there does not exist any element K of
℘ such that a /∈ K and b /∈ K.
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Proof :- Suppose that the structure space (℘, τ) is a Hausdorff space. Then for any two distinct
elements I and J of ℘ there exists two open sets U (a) and U (b) such that I ∈ U (a), J ∈ U (b)
and U (a) ∩ U (b)=∅. But then a /∈ I and b /∈ J . Let if possible there exist K in ℘ such that
a /∈ K and b /∈ K. Then K ∈ U (a) and K ∈ U (b) gives K ∈ U (a) ∩ U (b)=∅, which is
a contradiction . Thus there does not exist any element K of ℘ such that a /∈ K and b /∈ K.
Conversely, suppose that given condition holds. To show the space (℘, τ) is a Hausdorff space.
Let I and J be two distinct elements of ℘. Then by assumption there exists a, b ∈ S such that
a /∈ I , b /∈ J . This gives I ∈ U (a), J ∈ U (b). Again by assumption there does not exist any
element K of ℘ such that a /∈ K and b /∈ K. Therefore there does not exist any element K of ℘
such that K ∈ U (a) ∩U (b). Hence U (a) ∩U (b)=∅. Therefore (℘, τ) is a Hausdorff space. 2

Every Hausdorff space being a T1 space we get,

Corollary 3.7. If (℘, τ) is a Hausdorff space, then no prime ideal contains any other prime
ideal.(OR If (℘, τ) is a Hausdorff space, then prime ideal of S is a minimal prime ideal). In
other words If (℘, τ) is a Hausdorff space, then the set of all minimal prime ideals and maximal
ideals coincide.

Theorem 3.8. If (℘, τ) is a Hausdorff space containing more than one element, then there exist
a, b ∈ S such that ℘ = U (a) ∪ U (b) ∪ V (I), where I is an ideal generated by a, b in S.

Proof :- Suppose that (℘, τ) is a Hausdorff space containing more than one element. Let J and
K be any two elements of ℘ such that J ̸= K. J ̸= K and (℘, τ) is a Hausdorff space imply there
exist two open sets say U (a) and U (b)such that J ∈ U (a), K ∈ U (b) and U (a) ∩ U (b)=∅.
Let I be the ideal generated by a, b ∈ S. Now for any K ∈ ℘, a /∈ K, b /∈ K. In this case
K ∈ U (a) and K ∈ U (b)that is K ∈ U (a) ∩ U (b), which is not possible as U (a) ∩ U (b)=∅.
Hence either a ∈ K, b ∈ K then K ∈ U (a) ∪ U (b) ∪ V (I). Thus K ∈ ℘ implies K ∈
U (a)∪U (b)∪V (I). Therefore ℘ ⊆ U (a)∪U (b)∪V (I). But U (a)∪U (b)∪V (I) ⊆ ℘. Hence
℘ = U (a) ∪ U (b) ∪ V (I). 2

Theorem 3.9. (℘, τ) is a regular space if and only if for any I ∈ ℘ and a /∈ I , for a ∈ S there
exist an ideal J of S and b ∈ S such that I ∈ U (b) ⊆ V (J) ⊆ U(a).

Proof :- Suppose that structure space (℘, τ) is a regular space. Let I ∈ ℘ and a /∈ I , for a ∈ S.
As a /∈ I , we have I ∈ U (a). U (a) is an open set of ℘ implies V (a) = ℘\U (a) is a closed
set of ℘ not containing I . As (℘, τ) is a regular space, there exist two open sets say G and H
such that I ∈ G, ℘\U (a) ⊆ H and G ∩ H = ∅. ℘\U (a) ⊆ H gives ℘\H ⊆ U (a). H is
an open set of ℘ implies ℘\H is a closed set. Therefore ℘\H = V (J) for some ideal J of S.
℘\G = V (K) for some ideal K in S (see Theorem3.2). Then we have H ⊆ V (K). Since I ∈ G
that is I /∈ ℘\G = V (K) implies K * I . K * Igives there exist b ∈ K. but b /∈ I . As b /∈ I
then I ∈ U (b). Now to show that H ⊆ V (b). Let T ∈ H = V (K). Then K ⊆ T . But b ∈ K
gives b ∈ T , it follows that T ∈ V (b). Therefore H ⊆ V (b). Hence ℘\V (b) ⊆ ℘\H = V (J).
That is U (b) ⊆ V (J). Thus we get for any I ∈ ℘ there exist an ideal J of S and b ∈ S such that
I ∈ U (b) ⊆ V (J) ⊆ U(a).

Conversely, suppose that for any I ∈ ℘ and a /∈ I , for a ∈ S there exists an ideal J of S
and, b ∈ S such that I ∈ U (b) ⊆ V (J) ⊆ U(a). To show the space (℘, τ) is a regular space.
Let I ∈ ℘ and V (K) be any closed set of ℘ not containing I . I /∈ V (K) implies K * I .
Therefore there exists a ∈ K but a /∈ I . This gives I ∈ U (a). By the assumption there exist
an ideal J of S and b ∈ S such that I ∈ U (b) ⊆ V (J) ⊆ U(a). a ∈ K gives K ∈ V (a).
Thus we have U (a) ∩ V (K) = ∅ then V (K) ⊆ ℘\U(a) ⊆ ℘\V (J). As V (J) is a closed set ,
we have ℘\V (J) is an open set of ℘ containing closed set V (K). Hence U(b) ⊆ V (J) implies
U (b) ∩ (℘\V (J)) = ∅.Thus there exist two disjoint open sets U (b) and (℘\V (J)) such that
V (K) ⊆ ℘\V (J) and I ∈ U (b). Therefore the space (℘, τ) is a regular space. 2

The space (℘, τ) is a T0space (see Theorem3.4) and every regular T0 space is a T3 space.
Hence we get

Corollary 3.10. (℘, τ) is a T3 space if and only if for any I ∈ ℘ and a /∈ I , for a ∈ S there exist
an ideal J of S and b ∈ S such that I ∈ U (b) ⊆ V (J) ⊆ U(a).

We know that if S contains an unit element, then the structure space (℘, τ) is a compact
space. Otherwise we have

Theorem 3.11. (℘, τ) is a compact space if and only if for any collection {ai}i∈Λ ⊂ S there
exists a finite subcollection {a1, a2, a3, · · · · · · , an} in S such that I ∈ ℘ there exist ai such that
ai /∈ I .
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Proof :- Suppose that structure space (℘, τ) is a compact space. Let{
U(ai)|ai ∈ S

}
be forms an open cover of (℘, τ). Then this open cover has a finite subcover{

U(ai)
∣∣ i = 1, 2, · · · , n

}
. Let I be any element of ℘. Then I ∈

{
U(ai)

∣∣ i = 1, 2, · · · , n
}

.
Therefore I ∈ U(ai) for some ai ∈ S. Hence ai /∈ I . Thus {a1, a2, a3, · · · · · · , an} is the
required finite subcollection of elements of S such that ai /∈ I . Conversely, suppose that
given condition hold. To show the space (℘, τ) is a compact space. Let

{
U(ai)|ai ∈ S

}
be forms an open cover of (℘, τ). Assume that no finite subcollection of

{
U(ai)|ai ∈ S

}
be

forms a cover of ℘. This shows that for any finite set {a1, a2, a3, · · · · · · , an} of elements of
S, U(a1) ∪ U(a2)∪ · · · · · · ∪ U(an) ̸= ℘. Therefore ℘\[U(a1) ∪ U(a2)∪ · · · · · · ∪ U(an)] ̸= ∅.
Then V (a1) ∩ V (a2)∩ · · · · · · ∩ V (an) ̸= ∅. This implies there exist I ∈ ℘ such that I ∈
V (a1) ∩ V (a2)∩ · · · · · · ∩ V (an), gives that a1, a2, a3, · · · · · · , an ∈ I . Which is a contradiction
to the hypothesis. Hence our assumption

{
U(ai)|ai ∈ S

}
has no finite subcover which covers ℘

is wrong.
{
U(ai)|ai ∈ S

}
has finite subcover which covers ℘. Therefore the space (℘, τ)is a

compact space. 2
By the Theorem3.11 immediately we get

Corollary 3.12. If S is finitely generated , then the space (℘, τ) is compact.

Arbitrary intersection of prime ideals is a semiprime ideal in S but need not be a prime ideal.
In the following theorem we give a sufficient condition for intersection of prime ideals of S to
be a prime ideal.

Theorem 3.13. Let {Pi|i ∈ Λ} be the collection of prime ideals of S such that {Pi|i ∈ Λ} forms
a chain of ideals. Then

∩
i∈Λ Pi is a prime ideal of S.

Proof :- Clearly
∩

i∈Λ Pi is an ideal of S. Let A and B be any two ideals of S such that AΓB ⊆∩
i∈Λ Pi. Assume that A *

∩
i∈Λ Pi and B *

∩
i∈Λ Pi. Then there exist i and j such that A * Pi

and B * Pj . As {Pi|i ∈ Λ} forms a chain of ideals, we have either Pi⊆ P j or Pj⊆ P i. Assume
Pj⊆ P i. Then A * Pj . AΓB ⊆

∩
i∈Λ Pi⊆ P j and Pj is a prime ideal of S imply A⊆ P j

or B ⊆ P j , which is a contradiction. Therefore either A ⊆
∩

i∈Λ Pi or B ⊆
∩

i∈Λ Pi. Hence∩
i∈Λ Pi is a prime ideal of S. 2

As in [4] for Γ-semigroup we define

Definition 3.14. The space (℘, τ) is called irreducible if for any decomposition ℘ = A ∪ B,
where A and B are closed subsets of ℘, then either ℘ = A or ℘ = B.

Theorem 3.15. Let A be a closed subset of ℘. Then A is irreducible if and only if
∩

Pi∈A Pi is a
prime ideal of S.

Proof :- Assume that A is irreducible. To Prove that
∩

Pi∈A Pi is a prime ideal of S. Let B and
C be any two ideals of S such that BΓC ⊆

∩
Pi∈A Pi. Then BΓC ⊆ Pi, for each i. As Pi is a

prime ideal of S, we have B⊆ P ior C ⊆ P i for each i. Then Pi ∈ A ∩ B or Pi ∈ A ∩ C give
Pi ∈

(
A ∩ B

)
∪ (A ∩ C). Therefore A =

(
A ∩ B

)
∪
(
A ∩ C

)
.
(
A ∩ B

)
and (A ∩ C) are closed

subsets of A and A is irreducible imply A =
(
A ∩ B

)
or A = (A∩ C). Hence A ⊆ B or A ⊆ C.

This shows that B ⊆
∩

Pi∈A Pi or C ⊆
∩

Pi∈A Pi. Therefore
∩

Pi∈A Pi is a prime ideal of
S. Conversely, suppose that

∩
Pi∈A Pi is a prime ideal of S. To show that A is irreducible.

Let B and C are closed subsets of A such that A = B ∪ C. Clearly
∩

Pi∈A Pi ⊆
∩

Pi∈B Pi and∩
Pi∈A Pi ⊆

∩
Pi∈C Pi. Also

∩
Pi∈A Pi =

∩
Pi∈B Pi =

(∩
Pi∈B∪C Pi

)
∩
(∩

Pi∈C Pi

)
. As

∩
Pi∈B Pi

and
∩

Pi∈C Pi are ideals of S, we have
(
∩

Pi∈B Pi)Γ(
∩

Pi∈C Pi) ⊆
∩

Pi∈B Pi and (
∩

Pi∈B Pi)Γ(
∩

Pi∈C Pi) ⊆
∩

Pi∈C Pi.
Therefore

(∩
Pi∈B Pi

)
Γ
(∩

Pi∈C Pi

)
⊆

(∩
Pi∈B Pi

)
∩
(∩

Pi∈C Pi

)
=

∩
Pi∈A Pi. But

∩
Pi∈A Pi

is a prime ideal of S. Then we have
∩

Pi∈B Pi ⊆
∩

Pi∈A Pi or
∩

Pi∈C Pi ⊆
∩

Pi∈A Pi. There-
fore

∩
Pi∈B Pi =

∩
Pi∈A Pi or

∩
Pi∈C Pi =

∩
Pi∈A Pi. Now for any Pk ∈ A,

∩
Pi∈B Pi =∩

Pi∈A Pi⊆ P k or
∩

Pi∈C Pi =
∩

Pi∈A Pi ⊆ Pk. As B and C are closed subsets of A, we have
Pi⊆ P k, for all Pi ∈ B or Pi⊆ P k, for all Pi ∈ C. Therefore A ⊆ B orA ⊆ C. Thus A = B
orA = C. Hence A is irreducible. 2

For any subset A of ℘ we define r (A) =
∩

Ik∈℘ Ik. Obviously r (℘) =
∩

Ik∈℘ Ik is the
℘-radical of S. Always r (℘) ⊆ r( A). We know that A ⊆ ℘ is dense in ℘ if A = ℘. We
characterise dense sets in ℘ as follows

Theorem 3.16. The subset A of ℘ is dense in ℘ if and only if r (A) = r( ℘).

Proof :- Assume that the subset A of ℘ is dense in ℘. As A ⊆ ℘ , we have r (℘) ⊆ r(A). Only to
show that r(A) ⊆ r(℘). A = ℘ gives A =

{
I ∈ ℘

∣∣ ∩
Iα∈A Iα ⊆ I

}
= ℘. P ∈ ℘ implies P ∈ A.
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Then r (A) ⊆ P . As this true for each P ∈ ℘ we get r (A) =
∩

Iα∈A Iα ⊆
∩

Iα∈℘ Iα = r(℘).
Hence r (A) = r( ℘). Conversely assume that r (A) = r( ℘). To show A = ℘. Suppose
that ℘\A ≠ ∅. Then there is a prime ideal say P of S such that P ∈ ℘\A that is P ∈ ℘ and
P ∈ Ã i.e. P /∈ A. P /∈ A implies there exists any open set say U(I) containing P such that
U (I) ∩ A\{P} = ∅. That is open set of ℘ containing P does not contains any other element of
A other than P . Therefore r (℘) =

∩
Iα∈℘ Iα ⊂ r (A) =

∩
Iα∈A Iα. Then r (A) ̸= r( ℘). Hence

by contrapositive method result holds. 2
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