Coefficient Estimates for Certain Subclasses of Meromorphically Bi-Univalent Functions

H. M. Srivastava, Santosh B. Joshi, Sayali S. Joshi and Haridas Pawar
Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 30C45; Secondary 30C50.
Keywords and phrases: Analytic functions; Univalent functions; Meromorphic functions; Carathéodory’s Lemma; Biunivalent functions; Meromorphically bi-univalent functions; Coefficient estimates; Taylor-Maclaurin coefficients.

Abstract. In the present investigation, we obtain the estimates on the initial Taylor-Maclaurin coefficients for functions in two new subclasses of meromorphically bi-univalent functions defined on the domain Δ given by

$$
\Delta=\{z: z \in \mathbb{C} \quad \text { and } \quad 1<|z|<\infty\}
$$

Several other closely-related earlier results are also indicated.

1 Introduction

Let \mathcal{A} denote the class of functions $f(z)$ of the form:

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}, \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit open disk

$$
\mathbb{U}=\{z: z \in \mathbb{C} \quad \text { and } \quad|z|<1\} .
$$

We denote by \mathcal{S} the subclass of \mathcal{A} which consists of functions of the form (1.1), that is, functions which are analytic and univalent in \mathbb{U} and are normalized by the following conditions:

$$
f(0)=0 \quad \text { and } \quad f^{\prime}(0)=1
$$

A function $f \in \mathcal{S}$ is said to be starlike of order $\alpha(0 \leqq \alpha<1)$ in \mathbb{U} if and only if

$$
\Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha \quad(z \in \mathbb{U} ; 0 \leqq \alpha<1)
$$

and convex of order $\alpha(0 \leqq \alpha<1)$ in \mathbb{U} if and only if

$$
\Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha \quad(z \in \mathbb{U} ; 0 \leqq \alpha<1)
$$

As usual, we denote these subclasses of \mathcal{S} by $\mathcal{S}^{*}(\alpha)$ and $\mathcal{K}(\alpha)$, respectively.
Let Σ denote the class of meromorphically univalent functions $g(z)$ of the form:

$$
\begin{equation*}
g(z)=z+b_{0}+\sum_{n=1}^{\infty} \frac{b_{n}}{z^{n}}, \tag{1.2}
\end{equation*}
$$

which are defined on the domain Δ given by

$$
\Delta=\{z: z \in \mathbb{C} \quad \text { and } \quad 1<|z|<\infty\} .
$$

Since $g \in \Sigma$ is univalent, it has an inverse $g^{-1}=h$ that satisfies the following condition:

$$
g^{-1}(g(z))=z \quad(z \in \Delta)
$$

and

$$
g\left(g^{-1}(w)\right)=w \quad(0<M<|w|<\infty)
$$

where

$$
\begin{equation*}
g^{-1}(w)=h(w)=w+B_{0}+\sum_{n=1}^{\infty} \frac{B_{n}}{w^{n}} \quad(0<M<|w|<\infty) \tag{1.3}
\end{equation*}
$$

A simple computation shows that

$$
\begin{align*}
w=g(h(w))=\left(b_{0}+B_{0}\right) & +w+\frac{b_{1}+B_{1}}{w}+\frac{B_{2}-b_{1} B_{0}+b_{2}}{w^{2}} \\
& +\frac{B_{3}-b_{1} B_{1}+b_{1} B_{0}^{2}-2 b_{2} B_{0}+b_{3}}{w^{3}}+\cdots \tag{1.4}
\end{align*}
$$

Comparing the initial coefficients in (1.4), we find that

$$
\begin{aligned}
b_{0}+B_{0}=0 & \Longrightarrow B_{0}=-b_{0} \\
b_{1}+B_{1}=0 & \Longrightarrow B_{1}=-b_{1} \\
B_{2}-b_{1} B_{0}+b_{2}=0 & \Longrightarrow B_{2}=-\left(b_{2}+b_{0} b_{1}\right) \\
B_{3}-b_{1} B_{1}+b_{1} B_{0}^{2}-2 b_{2} B_{0}+b_{3}=0 & \Longrightarrow B_{3}=-\left(b_{3}+2 b_{0} b_{2}+b_{0}^{2} b_{1}+b_{1}^{2}\right)
\end{aligned}
$$

By putting these values in the equation (1.3), we get

$$
\begin{equation*}
g^{-1}(w)=h(w)=w-b_{0}-\frac{b_{1}}{w}-\frac{b_{2}+b_{0} b_{1}}{w^{2}}-\frac{b_{3}+2 b_{0} b_{2}+b_{0}^{2} b_{1}+b_{1}^{2}}{w^{3}}+\cdots \tag{1.5}
\end{equation*}
$$

A systematic study of the class Σ of bi-univalent analytic functions in \mathbb{U}, which was introduced in 1967 by Lewin [12], was revived in recent years by Srivastava et al. [14]. Ever since then, several authors investigated various subclasses of of the class Σ of bi-univalent analytic functions and found estimates on the initial Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in these subclasses (see, for example, $[2,3,4,6,13,15,17,18]$; see also [16] and the references cited therein). In our present investigation, the concept of bi-univalency is extended to the class Σ of meromorphic functions defined on Δ.

The function $g(z) \in \Sigma$ given by (1.2) is said to be meromorphically bi-univalent in Δ if both g and its inverse $g^{-1}=h$ are meromorphically univalent in Δ. The class of all meromorphically bi-univalent functions is denoted by Σ_{B}.

Estimates on the coefficients of meromorphically univalent functions were widely investigated in the literature on Geometric Function Theory. Recently, several researchers such as (for example) Halim et al. [8], Janani and Murugusundaramoorthy [11] and Hamidi et al. [9, 10] introduced new subclasses of meromorphically bi-univalent functions and obtained estimates on the initial coefficients for functions in each of these subclasses.

Babalola [1] defined the class $\mathscr{L}_{\lambda}(\beta)$ of λ-pseudo-starlike functions of order β as follows:
Definition 1 (see [1]). Let $f \in \mathcal{A}$ and suppose that $0 \leqq \beta<1$ and $\lambda \geqq 1$. Then $f(z) \in \mathscr{L}_{\lambda}(\beta)$ of λ-pseudo-starlike functions of order β in \mathbb{U} if and only if

$$
\begin{equation*}
\Re\left(\frac{z\left[f^{\prime}(z)\right]^{\lambda}}{f(z)}\right)>\beta \quad(z \in \mathbb{U} ; 0 \leqq \beta<1 ; \lambda \geqq 1) \tag{1.6}
\end{equation*}
$$

In particular, Babalola [1] proved that all λ-pseudo-starlike functions are Bazilevič of type $1-\frac{1}{\lambda}$ and order $\beta^{\frac{1}{\lambda}}$ and are univalent in open unit disk \mathbb{U}.

Motivated by the aforecited works, in our present investigation, we introduce two new subclasses of the class Σ_{B} of meromorphically bi-univalent functions and obtained the estimates for the initial coefficients $\left|b_{0}\right|$ and $\left|b_{1}\right|$ of functions in these subclasses.

In order to derive our main results, we recall here the following lemma.
Carathéodory's Lemma (see, for example, [7]; see also [5, p. 41]). If $\mathfrak{p} \in \mathcal{P}$, then

$$
\left|\mathfrak{p}_{j}\right| \leqq 2 \quad(j \in \mathbb{N})
$$

where \mathcal{P} is the family of all functions $\mathfrak{p}(z)$, analytic in Δ, for which

$$
\Re(\mathfrak{p}(z))>0 \quad(z \in \Delta)
$$

where

$$
\mathfrak{p}(z)=1+\frac{\mathfrak{p}_{1}}{z}+\frac{\mathfrak{p}_{2}}{z^{2}}+\frac{\mathfrak{p}_{3}}{z^{3}}+\cdots \quad(z \in \Delta)
$$

\mathbb{N} being the set of positive integers.

2 Coefficient Bounds for the Function Class $\boldsymbol{\Sigma}_{B, \lambda^{*}}(\alpha)$

We begin by defining the function class $\Sigma_{B, \lambda^{*}}(\alpha)$ as follows.
Definition 2. A function $g(z) \in \varsigma_{B}$ given by (1.2) is said to be in the class $\Sigma_{B, \lambda^{*}}(\alpha)$ if the following conditions are satisfied:

$$
\begin{equation*}
\left|\arg \left(\frac{z\left[g^{\prime}(z)\right]^{\lambda}}{g(z)}\right)\right|<\frac{\alpha \pi}{2} \quad(z \in \Delta ; 0<\alpha \leqq 1 ; \lambda \geqq 1) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\arg \left(\frac{w\left[h^{\prime}(w)\right]^{\lambda}}{h(w)}\right)\right|<\frac{\alpha \pi}{2} \quad(w \in \Delta ; 0<\alpha \leqq 1 ; \lambda \geqq 1), \tag{2.2}
\end{equation*}
$$

where the function h is inverse of the function g given by

$$
h(w)=w-b_{0}-\frac{b_{1}}{w}-\frac{b_{2}+b_{0} b_{1}}{w^{2}}-\frac{b_{3}+2 b_{0} b_{2}+b_{0}^{2} b_{1}+b_{1}^{2}}{w^{3}}+\cdots .
$$

We call $\Sigma_{B, \lambda^{*}}(\alpha)$ the class of meromorphically strongly λ-pseudo-starlike bi-univalent functions of order α in Δ.

The estimates on the coefficients $\left|b_{0}\right|$ and $\left|b_{1}\right|$ for the function class $\Sigma_{B, \lambda^{*}}(\alpha)$ are given by Theorem 2.1 below.

Theorem 2.1. Let $g(z)$ given by (1.2) be in the class $\Sigma_{B, \lambda^{*}}(\alpha)$. Then

$$
\begin{equation*}
\left|b_{0}\right| \leqq 2 \alpha \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|b_{1}\right| \leqq \frac{2 \sqrt{5} \alpha^{2}}{1+\lambda} \tag{2.4}
\end{equation*}
$$

Proof. Let $g \in \Sigma_{B, \lambda^{*}}(\alpha)$. Then, by Definition 2 of meromorphically bi-univalent function class $\Sigma_{B, \lambda^{*}}(\alpha)$, the conditions (2.1) and (2.2) can be rewritten as follows:

$$
\begin{equation*}
\frac{z\left[g^{\prime}(z)\right]^{\lambda}}{g(z)}=[p(z)]^{\alpha} \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{w\left[h^{\prime}(w)\right]^{\lambda}}{h(w)}=[q(w)]^{\alpha} \tag{2.6}
\end{equation*}
$$

respectively. Here, and in what follows, the functions $p(z) \in \mathcal{P}$ and $q(w) \in \mathcal{P}$ have the following forms:

$$
p(z)=1+\frac{p_{1}}{z}+\frac{p_{2}}{z^{2}}+\frac{p_{3}}{z^{3}}+\cdots \quad(z \in \Delta)
$$

and

$$
q(w)=1+\frac{q_{1}}{w}+\frac{q_{2}}{w^{2}}+\frac{q_{3}}{w^{3}}+\cdots \quad(w \in \Delta)
$$

Clearly, we have

$$
\begin{aligned}
{[p(z)]^{\alpha}=1+} & \frac{\alpha p_{1}}{z}+\frac{\frac{1}{2} \alpha(\alpha-1) p_{1}^{2}+\alpha p_{2}}{z^{2}} \\
& +\frac{\frac{1}{6} \alpha(\alpha-1)(\alpha-2) p_{1}^{3}+\alpha(\alpha-1) p_{1} p_{2}+\alpha p_{3}}{z^{3}}+\cdots
\end{aligned}
$$

and

$$
\begin{aligned}
{[q(w)]^{\alpha}=1+} & \frac{\alpha q_{1}}{w}+\frac{\frac{1}{2} \alpha(\alpha-1) q_{1}^{2}+\alpha q_{2}}{w^{2}} \\
& +\frac{\frac{1}{6} \alpha(\alpha-1)(\alpha-2) q_{1}^{3}+\alpha(\alpha-1) q_{1} q_{2}+\alpha q_{3}}{w^{3}}+\cdots
\end{aligned}
$$

We also find that

$$
\begin{aligned}
\frac{z\left[g^{\prime}(z)\right]^{\lambda}}{g(z)}=1- & \frac{b_{0}}{z}+\frac{b_{0}^{2}-(1+\lambda) b_{1}}{z^{2}} \\
& +\frac{b_{0}^{3}-(2+\lambda) b_{0} b_{1}+(1+2 \lambda) b_{2}}{z^{3}}+\cdots
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{w\left[h^{\prime}(w)\right]^{\lambda}}{h(w)}=1+ & \frac{b_{0}}{w}+\frac{b_{0}^{2}+(1+\lambda) b_{1}}{w^{2}} \\
& +\frac{b_{0}^{3}+3(1+\lambda) b_{0} b_{1}+(1+2 \lambda) b_{2}}{w^{3}}+\cdots
\end{aligned}
$$

Now, equating the coefficients in (2.5) and (2.6), we get

$$
\begin{gather*}
-b_{0}=\alpha p_{1} \tag{2.7}\\
b_{0}^{2}-(1+\lambda) b_{1}=\frac{1}{2} \alpha(\alpha-1) p_{1}^{2}+\alpha p_{2} \tag{2.8}\\
b_{0}=\alpha q_{1} \tag{2.9}
\end{gather*}
$$

and

$$
\begin{equation*}
b_{0}^{2}+(1+\lambda) b_{1}=\frac{1}{2} \alpha(\alpha-1) q_{1}^{2}+\alpha q_{2} \tag{2.10}
\end{equation*}
$$

From (2.7) and (2.9), we find that

$$
\begin{equation*}
p_{1}=-q_{1} \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
2 b_{0}^{2}=\alpha^{2}\left(p_{1}^{2}+q_{1}^{2}\right) \tag{2.12}
\end{equation*}
$$

that is,

$$
b_{0}^{2}=\frac{\alpha^{2}\left(p_{1}^{2}+q_{1}^{2}\right)}{2}
$$

Applying Carathéodory's Lemma for the coefficients p_{1} and q_{1}, we immediately have

$$
\left|b_{0}^{2}\right| \leqq \frac{\alpha^{2}(4+4)}{2} \quad \Longrightarrow \quad\left|b_{0}\right| \leqq 2 \alpha
$$

This gives the bound on $\left|b_{0}\right|$ as asserted in (2.3).
Next, in order to find the bound on $\left|b_{1}\right|$, by using the equation (2.8) and the equation (2.10), we get

$$
\begin{aligned}
& {\left[b_{0}^{2}-(1+\lambda) b_{1}\right] \cdot\left[b_{0}^{2}+(1+\lambda) b_{1}\right]} \\
& =\left(\frac{1}{2} \alpha(\alpha-1) p_{1}^{2}+\alpha p_{2}\right) \cdot\left(\frac{1}{2} \alpha(\alpha-1) q_{1}^{2}+\alpha q_{2}\right), \\
& b_{0}^{4}-(1+\lambda)^{2} b_{1}^{2}=\frac{1}{4} \alpha^{2}(\alpha-1)^{2} p_{1}^{2} q_{1}^{2} \\
& \\
& \quad+\frac{1}{2} \alpha^{2}(\alpha-1)\left(p_{2} q_{1}^{2}+p_{1}^{2} q_{2}\right)+\alpha^{2} p_{2} q_{2}, \\
& (1+\lambda)^{2} b_{1}^{2}=\left(b_{0}^{2}\right)^{2}-\frac{1}{4} \alpha^{2}(\alpha-1)^{2} p_{1}^{2} q_{1}^{2} \\
& \\
& \quad-\frac{1}{2} \alpha^{2}(\alpha-1)\left(p_{2} q_{1}^{2}+p_{1}^{2} q_{2}\right)-\alpha^{2} p_{2} q_{2}
\end{aligned}
$$

and

$$
\begin{aligned}
(1+\lambda)^{2} b_{1}^{2}= & \frac{1}{4} \alpha^{4}\left(p_{1}^{2}+q_{1}^{2}\right)^{2}-\frac{1}{4} \alpha^{2}(\alpha-1)^{2} p_{1}^{2} q_{1}^{2} \\
& -\frac{1}{2} \alpha^{2}(\alpha-1)\left(p_{2} q_{1}^{2}+p_{1}^{2} q_{2}\right)-\alpha^{2} p_{2} q_{2}
\end{aligned}
$$

Applying Carathéodory's Lemma once again for the coefficients p_{1}, q_{1}, p_{2} and q_{2}, we get

$$
\begin{array}{r}
(1+\lambda)^{2}\left|b_{1}^{2}\right| \leqq \frac{1}{4} \alpha^{4}(4+4)^{2}+\frac{1}{4} \alpha^{2}(\alpha-1)^{2}(16) \\
\quad+\frac{1}{2} \alpha^{2}(\alpha-1)(8+8)+\alpha^{2}(4)
\end{array}
$$

that is,

$$
\left|b_{1}^{2}\right| \leqq \frac{20 \alpha^{4}}{(1+\lambda)^{2}} \quad \Longrightarrow \quad\left|b_{1}\right| \leqq \frac{2 \sqrt{5} \alpha^{2}}{1+\lambda}
$$

which evidently completes the proof of Theorem 1.

3 Coefficient Bounds for the Function Class $\boldsymbol{\Sigma}_{B^{*}}(\lambda, \beta)$

We first introduce the function class $\Sigma_{B^{*}}(\lambda, \beta)$ as follows.

Definition 3. A function $g(z) \in \Sigma_{B}$ given by (1.2) is said to be in the class $\Sigma_{B^{*}}(\lambda, \beta)$ if the following conditions are satisfied:

$$
\begin{equation*}
\Re\left(\frac{z\left[g^{\prime}(z)\right]^{\lambda}}{g(z)}\right)>\beta \quad(z \in \Delta ; 0 \leqq \beta<1 ; \lambda \geqq 1) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Re\left(\frac{w\left[h^{\prime}(w)\right]^{\lambda}}{h(w)}\right)>\beta \quad(w \in \Delta ; 0 \leqq \beta<1 ; \lambda \geqq 1) \tag{3.2}
\end{equation*}
$$

where the function h is inverse of the function g given by

$$
h(w)=w-b_{0}-\frac{b_{1}}{w}-\frac{b_{2}+b_{0} b_{1}}{w^{2}}-\frac{b_{3}+2 b_{0} b_{2}+b_{0}^{2} b_{1}+b_{1}^{2}}{w^{3}}+\cdots
$$

We call $\Sigma_{B^{*}}(\lambda, \beta)$ the class of meromorphically λ-pseudo-starlike bi-univalent functions of or$\operatorname{der} \alpha$.

We now derive the estimates on the coefficients $\left|b_{0}\right|$ and $\left|b_{1}\right|$ for the meromorphically biunivalent function class $\Sigma_{B^{*}}(\lambda, \beta)$.

Theorem 3.1. Let $g(z)$ given by (1.2) be in the class $\Sigma_{B^{*}}(\lambda, \beta)$. Then

$$
\begin{equation*}
\left|b_{0}\right| \leqq 2(1-\beta) \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|b_{1}\right| \leqq \frac{2(1-\beta) \sqrt{4 \beta^{2}-8 \beta+5}}{1+\lambda} \tag{3.4}
\end{equation*}
$$

Proof. Let $g \in \Sigma_{B^{*}}(\lambda, \beta)$. Then, Definition 3 of the meromorphically bi-univalent function class $\Sigma_{B^{*}}(\lambda, \beta)$, the conditions (3.1) and (3.2) can be rewritten as follows:

$$
\begin{equation*}
\frac{z\left[g^{\prime}(z)\right]^{\lambda}}{g(z)}=\beta+(1-\beta) p(z) \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{w\left[h^{\prime}(w)\right]^{\lambda}}{h(w)}=\beta+(1-\beta) q(w) \tag{3.6}
\end{equation*}
$$

respectively. Here, just as in our proof of Theorem 1, the functions $p(z) \in \mathcal{P}$ and $q(w) \in \mathcal{P}$ have the following forms:

$$
p(z)=1+\frac{p_{1}}{z}+\frac{p_{2}}{z^{2}}+\frac{p_{3}}{z^{3}}+\cdots \quad(z \in \Delta)
$$

and

$$
q(w)=1+\frac{q_{1}}{w}+\frac{q_{2}}{w^{2}}+\frac{q_{3}}{w^{3}}+\cdots \quad(w \in \Delta)
$$

Clearly, we have

$$
\beta+(1-\beta) p(z)=1+\frac{(1-\beta) p_{1}}{z}+\frac{(1-\beta) p_{2}}{z^{2}}+\frac{(1-\beta) p_{3}}{z^{3}}+\cdots
$$

and

$$
\beta+(1-\beta) q(w)=1+\frac{(1-\beta) q_{1}}{w}+\frac{(1-\beta) q_{2}}{w^{2}}+\frac{(1-\beta) q_{3}}{w^{3}}+\cdots
$$

We also find that

$$
\begin{aligned}
\frac{z\left[g^{\prime}(z)\right]^{\lambda}}{g(z)}=1- & \frac{b_{0}}{z}+\frac{b_{0}^{2}-(1+\lambda) b_{1}}{z^{2}} \\
& +\frac{b_{0}^{3}-(2+\lambda) b_{0} b_{1}+(1+2 \lambda) b_{2}}{z^{3}}+\cdots
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{w\left[h^{\prime}(w)\right]^{\lambda}}{h(w)}=1+ & \frac{b_{0}}{w}+\frac{b_{0}^{2}+(1+\lambda) b_{1}}{w^{2}} \\
& +\frac{b_{0}^{3}+3(1+\lambda) b_{0} b_{1}+(1+2 \lambda) b_{2}}{w^{3}}+\cdots
\end{aligned}
$$

Now, equating the coefficients in (3.5) and (3.6), we get

$$
\begin{gather*}
-b_{0}=(1-\beta) p_{1} \tag{3.7}\\
b_{0}^{2}-(1+\lambda) b_{1}=(1-\beta) p_{2} \tag{3.8}\\
b_{0}=(1-\beta) q_{1} \tag{3.9}
\end{gather*}
$$

and

$$
\begin{equation*}
b_{0}^{2}+(1+\lambda) b_{1}=(1-\beta) q_{2} \tag{3.10}
\end{equation*}
$$

From (3.7) and (3.9), we obtain

$$
\begin{equation*}
p_{1}=-q_{1} \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
2 b_{0}^{2}=(1-\beta)^{2}\left(p_{1}^{2}+q_{1}^{2}\right) \tag{3.12}
\end{equation*}
$$

which readily yields

$$
b_{0}^{2}=\frac{(1-\beta)^{2}\left(p_{1}^{2}+q_{1}^{2}\right)}{2}
$$

Applying Carathéodory's Lemma for the coefficients p_{1} and q_{1}, we immediately have

$$
\left|b_{0}^{2}\right| \leqq \frac{(1-\beta)^{2}(4+4)}{2} \quad \Longrightarrow \quad\left|b_{0}\right| \leqq 2(1-\beta)
$$

This gives the bound on $\left|b_{0}\right|$ as asserted in (3.3).
Next, in order to find the bound on $\left|b_{1}\right|$, by using the equation (3.8) and the equation (3.10), we get

$$
\begin{gathered}
{\left[b_{0}^{2}-(1+\lambda) b_{1}\right] \cdot\left[b_{0}^{2}+(1+\lambda) b_{1}\right]=\left[(1-\beta) p_{2}\right] \cdot\left[(1-\beta) q_{2}\right]} \\
b_{0}^{4}-(1+\lambda)^{2} b_{1}^{2}=(1-\beta)^{2} p_{2} q_{2} \\
(1+\lambda)^{2} b_{1}^{2}=\left(b_{0}^{2}\right)^{2}-(1-\beta)^{2} p_{2} q_{2}
\end{gathered}
$$

and

$$
(1+\lambda)^{2} b_{1}^{2}=\frac{1}{4}(1-\beta)^{4}\left(p_{1}^{2}+q_{1}^{2}\right)^{2}-(1-\beta)^{2} p_{2} q_{2}
$$

Applying Carathéodory's Lemma once again for the coefficients p_{1}, q_{1}, p_{2} and q_{2}, we get

$$
(1+\lambda)^{2}\left|b_{1}^{2}\right| \leqq \frac{1}{4}(4+4)^{2} \cdot(1-\beta)^{4}+4 \cdot(1-\beta)^{2}
$$

which readily yields the following inequality:

$$
\left|b_{1}\right| \leqq \frac{2(1-\beta) \sqrt{4 \beta^{2}-8 \beta+5}}{1+\lambda}
$$

This completes the proof of Theorem 2.
Remark. By suitably specializing the various parameters involved in the assertions of Theorem 1 and Theorem 2, we can deduce the corresponding coefficient estimates for several simpler meromorphically bi-univalent function classes. The details involved are being left for the interested reader.

References

[1] K. O. Babalola, On λ-pseudo-starlike functions, J. Class. Anal. 3 (2013), 137-147.
[2] D. Bansal and J. Sokól, Coefficient bound for a new class of analytic and bi-univalent functions, J. Fract. Calc. Appl. 5 (1) (2014), 122-128.
[3] D. A. Brannan and J. G. Clunie (Editors), Aspects of Contemporary Complex Analysis, Proceedings of the NATO Advanced Study Institute (University of Durham, Durham; July 1-20, 1979), Academic Press, New York and London, 1980.
[4] D. A. Brannan and T. S. Taha, On some classes of bi-unvalent functions, in Mathematical Analysis and Its Applications (Kuwait; February 18-21, 1985) (S. M. Mazhar, A. Hamoui and N. S. Faour, Editors), pp. 53-60, KFAS Proceedings Series, Vol. 3, Pergamon Press (Elsevier Science Limited), Oxford, 1988; see also Studia Univ. Babeş-Bolyai Math. 31 (2) (1986), 70-77.
[5] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, SpringerVerlag, New York, Berlin, Heidelberg and Tokyo, 1983.
[6] B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011), 1569-1573.
[7] A. W. Goodman, Univalent Functions, Vol. I, Polygonal Publishing House, Washington, New Jersey, 1983.
[8] S. A. Halim, S. G. Hamidi and V. Ravichandran, Coefficient estimates for meromorphic bi-univalent functions, arXiv:1108.4089v1 (2011), 1-9.
[9] S. G. Hamidi, S. A. Halim and J. M. Jahangiri, Faber polynomial coefficient estimates for meromorphic bi-starlike functions, Internat. J. Math. Math. Sci. 2013 2013, Article ID 498159, 1-4.
[10] S. G. Hamidi, S. A. Halim and J. M. Jahangiri, Coefficient estimates for a class of meromorphic biunivalent functions, C. R. Acad. Sci. Paris Sér. I 351 (2013), 349-352.
[11] T. Janani and G. Murugusundaramoorthy, Coefficient estimates of meromorphic bi-starlike functions of complex order, Internat. J. Anal. Appl. 4 (1) (2014), 68-77.
[12] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63-68.
[13] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Arch. Rational Mech. Anal. 32 (1969), 100-112.
[14] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), 1188-1192.
[15] H. M. Srivastava and D. Bansal, Coefficient estimates for a subclass of analytic and bi-univalent functions, J. Egyptian Math. Soc. 23 (2015), 242-246.
[16] H. M. Srivastava, S. S. Eker and R. M. Ali, Coefficient estimates for a certain class of analytic and biunivalent functions, Filomat 29 (2015), 1839-1845.
[17] Q.-H. Xu, Y.-C. Gui and H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25 (2012), 990-994.
[18] Q.-H. Xu, H.-G. Xiao and H. M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput. 218 (2012), 11461-11465.

* Author information

H. M. Srivastava, Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 3R4, Canada.
AND
China Medical University, Taichung 40402, Taiwan, Republic of China.
E-mail: harimsri@math.uvic.ca
Santosh B. Joshi, Department of Mathematics, Walchand College of Engineering, Sangli 416415, Maharashtra, India.
E-mail: joshisb@hotmail.com
Sayali S. Joshi, Department of Mathematics, Sanjay Bhokare Group of Institutes, Miraj 416410, Maharashtra, India.
E-mail: joshiss@sbgimiraj.org
Haridas Pawar, Department of Mathematics, College of Engineering, Sri Vithal Education and Research Institute (SVERI), Pandharpur 413304, Maharashtra, India.
E-mail: haridas_pawar007@yahoo.co.in
Received: January 5, 2016.
Accepted: February 14, 2016
*Corresponding Author: H. M. Srivastava

