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Abstract. Some properties of semiprime submodules are given. Semiradical of a module
and the generalized semiradical formula are defined. Then we showed that Noetherian modules
satisfy the generalized semiradical formula.

1 Introduction

Throughout all rings are commutative and all modules are unitary. Let R be a ring and M be an
R-module. A proper submodule N of M is prime if whenever rm ∈ N , for some r ∈ R,m ∈M
then m ∈ N or rM ⊆ N . A proper submodule N of an R-module M is semiprime, if whenever
rkm ∈ N for some r ∈ R,m ∈ M and k ∈ Z+, then rm ∈ N . The envelope of N in M is
defined as the set

EM (N) = {rm : r ∈ R,m ∈M and rkm ∈ N for some k ∈ Z+}.

Semiprime submodules can be defined in terms of their envelopes, that is, a proper submod-
ule N is semiprime if and only if 〈EM (N)〉 = N . This characterization can be used to show
that semiprime submodules need not be prime despite the fact that every prime submodule is
semiprime. For example, if R = Q[x, y, z], M = R3 and N = 〈ze1, ye1, xye2, xye3, xze2 +
x2ze3〉, then by [6] Theorem 2.5, 〈EM (N)〉 = N . Hence N is a semiprime submodule of
M with N : M = 〈xy〉. On the other hand N is not a prime submodule; if we take r = z
and m = (0, x, x2), then rm = z(0, x, x2) = (0, xz, x2z) ∈ N but r = z /∈ N : M and
m = (0, x, x2) /∈ N .

If N is a proper submodule of an R-module M , then the prime radical of N , radM (N),
is the intersection of all prime submodules containing N . The semiradical of N , denoted by
sradM (N), is defined as the intersection of all semiprime submodules of M containing N . If
there is no semiprime submodule containing N , then sradM (N) = M . We shall denote the
semiradical of M by sradM (0). Since radM (N) is semiprime, we have

N ⊆ 〈EM (N)〉 ⊆ sradM (N) ⊆ radM (N).

In section 2, we study some properties of semiprime submodules. In section 3, semiprime
radical is defined and it is shown that for domains, the study of semiprime radical of any mod-
ules reduces to torsion modules. Also the equality sradM (N) = 〈EM (N)〉 is investigated for
some special cases. In section 4, we define generalized semiradical formula and showed that
Noetherian modules satisfy the generalized semiradical formula.

2 Semiprime Submodules

If N is a prime submodule of an R-module M , then it is well known that N : M is a prime ideal.
If N is semiprime, we have the following.

Lemma 2.1. If N is a semiprime submodule of an R-module M , then N : M is a semiprime
ideal.

Proof. Let x ∈
√
N : M . Then xkM ⊆ N for some k ∈ Z+. Since N is semiprime, xM ⊆ N .

Hence
√
N : M = N : M . This implies that N : M is a radical ideal which means that N : M

is a semiprime ideal.
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Lemma 2.2. Let N be a primary submodule. Then N is semiprime submodule iff N : M is a
semiprime ideal.

Proof. SupposeN : M is semiprime ideal. Let rkm ∈ N where r ∈ R,m ∈M−N and k ∈ Z+.
SinceN is primary andN : M is semiprime, r ∈

√
N : M = N : M . Hence rm ∈ N . Otherside

is clear by the above lemma.

The following lemma shows that a semiprime submodule is prime if it is primary.

Lemma 2.3. Let M be an R-module and N be a proper submodule of M . Then N is prime
submodule of M if and only if N is primary and semiprime.

Proof. Assume that N is primary and semiprime. Let am ∈ N for a ∈ R,m ∈ M . Since N is
primary, either m ∈ N or a ∈

√
N : M . By Lemma 2.1, m ∈ N or a ∈ N : M . Hence N is

prime submodule. The converse is clear.

We also have the followings.

Lemma 2.4. Let M be an R-module. Assume that N and K are submodules of M such that
K ⊆ N withN 6=M . Then, ifK andN/K are semiprime submodules thenN is also semiprime.

Proof. Let rtm ∈ N for r ∈ R,m ∈ M and t ∈ Z+. Then rt(m+K) = rtm+K ∈ N/K. If
rtm ∈ K, then rm ∈ K ⊆ N since K is semiprime. Now, we may assume that rtm /∈ K. Then
rt(m+K) ∈ N/K and N/K is semiprime implies that r(m+K) = rm+K ∈ N/K. Hence
rm ∈ N .

Lemma 2.5. Let M = K ⊕ L be the direct sum of submodules K,L and N be semiprime
submodule of K. Then N ⊕ L is a semiprime submodule of M .

Proof. Let r ∈ R,m ∈ M and rtm ∈ N ⊕ L for some t ∈ Z+. Then there exist elements
n ∈ N, l ∈ L such that rtm = n+ l. Since M = K ⊕L, there exists an element k ∈ K such that
rtk ∈ N . Since N is semiprime, rk ∈ N . Hence rm ∈ N ⊕ L.

If we replace the term prime with semiprime in [4], then we get the following which is
straightforward.

Lemma 2.6. Let M,M ′ be R-modules with φ : M → M ′ an R-module epimorphism and N be
a submodule of M such that Kerφ ⊆ N . Then

(i) If P is a semiprime submodule of M containing N , then φ(P ) is a semiprime submodule
of M ′ containing φ(N).

(ii) If P ′ is a semiprime submodule of M ′ containing φ(N), then φ−1(P ′) is a semiprime
submodule of M containing N .

Let K and N be any submodules of an R-module M where N ⊆ K. If we consider the
canonical epimorphism φ : M → M/N , then by Lemma 2.6 it is clear that K is a semiprime
submodule of M if and only if K/N is semiprime submodule of M/N .

3 Semiprime Radical

Let N be a submodule of an R-module. The semiradical of N , sradM (N), is the intersection of
all semiprime submodules of M containing N . Since intersection of semiprime submodules is
semiprime, sradM (N) is semiprime. Hence sradM (N) is the smallest semiprime submodule of
M containing N . In this section we will give generalization of [1] and [3] to semiprime radical.
The following two lemmas are generalization of [3] Lemma 4 and Lemma 6.

Lemma 3.1. Let R be a ring, M be an R-module and N,K be submodules of M with K ⊆ N .
Then sradN (K) ⊆ sradM (K).

Proof. Let P be any semiprime submodule of M with K ⊆ P . If N ⊆ P , then sradN (K) ⊆ P .
If N * P , then N ∩ P is a semiprime submodule of N . Hence sradN (K) ⊆ N ∩ P ⊆ P . Thus
in any case sradN (K) ⊆ sradM (K).

Lemma 3.2. LetM be the direct sum of theR-modulesMi, i ∈ I . LetN = ⊕Ni be a submodule
of M such that Ni is a submodule of Mi for all i ∈ I . Then sradM (N) = ⊕sradMi

(Ni).
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Proof. By Lemma 3.1, sradMi
(Ni) ⊆ sradM (N) for all i ∈ I . Let m ∈ sradM (N) and

m /∈
⊕
i

sradMi
(Ni). Then there exists j ∈ I such that πj(m) /∈ sradMj

(Nj) where πj : M →

Mj denotes the canonical projection. There exists a semiprime submodule Pj of Mj such that
πj(m) /∈ Pj . By Lemma 2.5, K = Pj

⊕
(
⊕
i 6=j

Mi) is semiprime submodule of M containing N .

Since πj(m) /∈ Pj , m /∈ K. Then m /∈ sradM (N). Therefore sradM (N) =
⊕
i

sradMi
(Ni).

Since every prime submodule is semiprime, T (M) and PM are semiprime submodules of a
module M over a domain where P is maximal ideal of R, [3].

The general form of [1], Proposition 1.3 is

Proposition 3.3. LetR be a domain andM be anR-module with torsion submodule T (M). IfN
is a submodule of T (M), thenN is semiprime submodule of T (M) if and only ifN is semiprime
submodule of M .

Proof. Suppose N is semiprime submodule of T (M). Let 0 6= r ∈ R,m ∈ M with rkm ∈ N
for some k ∈ Z+. Since T (M) is semiprime submodule of M , rm ∈ T (M). Then there exists
nonzero s ∈ R such that s(rm) = 0. Since sr 6= 0, we have m ∈ T (M) which implies that
rm ∈ N . Thus, N is a semiprime submodule of M . The converse is clear.

Now we can show that for domains, the study of semiprime radicals of any modules reduces
to torsion modules.

Corollary 3.4. Let R be a domain and M be an R-module with torsion submodule T (M). Then
sradM (0) = sradT (M)(0).

Proof. Since T (M) is a submodule of M , by Lemma 3.1 sradT (M)(0) ⊆ sradM (0). Now,
suppose sradT (M)(0) =

⋂
N where N is a semiprime submodule of T (M). By Proposition 3.3,

N is also semiprime submodule of M . Hence sradM (0) ⊆ sradT (M)(0).

We also have the following corollary which is the generalization of [1], Lemma 1.7.

Corollary 3.5. Let R be a domain and M be a left R-module with torsion submodule T (M).
Then

sradM (0) ⊆
⋂
{PT (M) : P is a maximal ideal of R}.

Proof. By Corollary 3.4.

Note that any submoduleN of a moduleM satisfies the radical formula (s.t.r.f ) if radM (N) =
〈EM (N)〉 . It is said that M satisfies the radical formula if for every submodule N of M ,
radM (N) = 〈EM (N)〉. A ring R satisfies the radical formula, if every R-module s.t.r.f..
Modules which satisfy the radical formula was studied in [2], [3] and [4]. In the same man-
ner, we say that M satisfies the semiradical formula (s.t.s.r.f.) if for any submodule N of M ,
sradM (N) = 〈EM (N)〉.

It is well-known that for an ideal I of R,
√√

I =
√
I; but the envelope of a submodule does

not satisfy an equation similiar to this one as the following example shows.

Example 3.6. Let R = Q[x, y, z] and let M be an R-submodule R⊕R. Consider the submodule
N = 〈z2e1, z

2e2, yze2, y
2e1 + ze2, y

2e2, ye1 +x3e2〉. N is p = 〈z, y〉-primary, so by [6] Theorem
2.5,

〈EM (N)〉 = N + 〈z, y〉M = 〈ze1, ze2, ye1, ye2, x
3e2〉.

Primary decompostion is 〈EM (N)〉 = Q1 ∩Q2 where

Q1 = 〈e2, ze1, ye1〉 is 〈z, y〉 − primary,

Q2 = 〈ze1, ze2, ye1, ye2, x
3e1, x

3e2〉 is 〈x, y, z〉 − primary.

Hence,
〈EM (〈EM (N)〉)〉 = 〈ze1, ze2, ye1, ye2, xe2〉 6= 〈EM (N)〉.
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In [2], Azizi and Nikseresht defined the kth envelope ofN recursively byE0(N) = N,E1(N) =
EM (N), E2(N) = EM (〈EM (N)〉) and Ek(N) = EM (〈Ek−1(N))〉 for every submodule N of
M . It is easy to show that

N = 〈E0(N)〉 ⊆ 〈E1(N)〉 ⊆ 〈E2(N)〉 ⊆ · · · · · · ⊆ 〈E∞(N)〉 ⊆ sradM (N) ⊆ radM (N)

where 〈E∞(N)〉 =
∞⋃
k=0
〈Ek(N)〉.

It is clear that, 〈E∞(N)〉 is semiprime and thus 〈E∞(N)〉 = sradM (N). Therefore we have
the following equivalent conditions.

Theorem 3.7. The followings are equivalent.

(i) A module M satisfies the semiradical formula;

(ii) 〈Ei(N)〉 = 〈Ej(N)〉 for all i, j;

(iii) 〈EM (N)〉 = 〈E2(N)〉 for all submodules N of M .

Proof. (i)⇒ (ii) and (ii)⇒ (iii) are clear.

(iii)⇒ (i) 〈EM (N)〉 = 〈E2(N)〉 implies that 〈EM (N)〉 is semiprime submodule and hence
M s.t.s.r.f.

By Theorem 3.7, we can conclude that a module M s.t.s.r.f. if and only if 〈EM (N)〉 is either
M or a semiprime submodule of M for every submodule N of M ; R s.t.s.r.f. if and only if either
〈EM (0)〉 = M or 〈EM (0)〉 is semiprime submodule of M for every non-zero R-module M .
Now, we will investigate the equality sradM (N) = 〈EM (N)〉.

Lemma 3.8. Let M,M ′ be R-modules with φ : M → M ′ an R-module epimorphism and N be
a submodule of M such that Kerφ ⊆ N . Then φ(sradM (N)) = sradM ′(φ(N)).

Lemma 3.9. Let N be a submodule of a module M . Then sradM/N (0) = sradM (N)/N .

Proof. Consider the canonical epimorphism π : M → M/N . Since Kerπ = N , we can apply
Lemma 3.8. Then π(sradM (N)) = sradM/N (π(N)) = sradM/N (0). Let sradM (N) =

⋂
i

Pi.

Then we have;

sradM/N (0) = φ
(⋂
i

Pi) =
⋂
i

(
Pi/N) =

(⋂
i

Pi)/N = sradM (N)/N.

Corollary 3.10. Let N be a submodule of a module M and N ′ be a submodule of a module
M ′ such that M/N ∼= M ′/N ′. Then sradM (N) = 〈EM (N)〉 if and only if sradM ′(N ′) =
〈EM ′(N ′)〉.

Proof. It is clear by the definition of envelope that 〈EM/N (0)〉 = 〈EM (N)〉/N , also by Lemma
3.9, we have

sradM (N) = 〈EM (N)〉 ⇔ sradM (N)/N = 〈EM (N)〉/N
⇔ sradM/N (0) = 〈EM/N (0)〉
⇔ sradM ′/N ′(0) = 〈EM ′/N ′(0)〉
⇔ sradM ′(N ′)/N ′ = 〈EM ′(N ′)〉/N ′

⇔ sradM ′(N ′) = 〈EM ′(N ′).

Corollary 3.11. Let N,L be submodules of M such that M = N + L and sradL(N ∩ L) =
〈EL(N ∩ L)〉. Then sradM (N) = 〈EM (N)〉.

Proof. Note that M/N = (N + L)/N ∼= L/N ∩ L. Apply Corollary 3.10.

Lemma 3.12. Let M be the direct sum of the R-modules Mi, i ∈ I . Let N = ⊕Ni be a
submodule of M such that Ni is a submodule of Mi for all i ∈ I . Then sradM (N) = 〈EM (N)〉
if and only if sradMi(Ni) = 〈EMi(Ni)〉 for each i.
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Proof. Assume sradMi
(Ni) = 〈EMi

(Ni)〉 for each i. By Lemma 3.2,

sradM (N) =
⊕
i∈I

sradMi
(Ni) =

⊕
i∈I
〈EMi

(Ni)〉.

The result follows by [8], Lemma 2.3.
Conversely, since Ni is a submodule of Mi and N = ⊕Ni, by Lemma 3.2

sradMi(Ni) ⊆ sradM (Ni) ⊆ sradM (N) = 〈EM (N)〉.

Ifm ∈ sradMi
(Ni), then by the definition of envelope it is easy to show thatm ∈ 〈EMi

(Ni)〉.

By Lemma 3.2 and the above lemma, we have the following result.

Corollary 3.13. Let R be any ring and M be any projective R-module. Then sradM (0) =
〈EM (0)〉.

Proof. Since M is projective, there exists a free R-module F such that M is the direct summand
of F . Then there exist an index set Λ and cyclic submodules Fλ of F such that F =

⊕
Λ

Fλ where

λ ∈ Λ by [7]. By Lemma 3.2, sradF (0) =
⊕
Λ

sradFλ(0) and since every cyclic module s.t.r.f.,

sradFλ(0) = 〈EFλ(0)〉 for all λ ∈ Λ. Hence sradF (0) = 〈EF (0)〉 by Lemma 3.12 and thus
sradM (0) = 〈EM (0)〉.

Since every prime submodule is semiprime, this result can also be obtained from [3], Corol-
lary 8.

4 Generalized Semiradical Formula

Suppose that N is a submodule of an R-module M . We say that N satisfies the generalized
semiradical formula (s.t.g.s.r.f.) in M if

(i) N = sradM (N) or

(ii) there exists a submodule L of M such that N ⊆ L ( sradM (N) and sradM (N) =
〈EM (L)〉.

A module M s.t.g.s.r.f. if every submodule of M s.t.g.s.r.f. in M . A ring R s.t.g.s.r.f. as a ring if
every R-module s.t.g.s.r.f. Clearly a module s.t.s.r.f. implies that s.t.g.s.r.f.

Proposition 4.1. If M s.t.g.s.r.f., then every homomorphic image of M s.t.g.s.r.f.

Proof. Assume M s.t.g.s.r.f. Let N be any submodule of M and K be any submodule of M
containing N . If K/N is semiprime submodule of M/N , then sradM (K) = K. So,

sradM/N (K/N) = sradM (K)/N = K/N.

Now, assume K/N is not semiprime submodule of M . So, K is not semiprime submodule
of M . Since M s.t.g.s.r.f., there exists a submodule L of M with K ⊆ L ( sradM (K) and
sradM (K) = 〈EM (L)〉. Then we have

sradM/N (K/N) = sradM (K)/N

= 〈EM (L)〉/N
= 〈EM/N (L/N)〉.

where K/N ⊆ L/N ( sradM/N (K/N). Therefore M/N s.t.g.s.r.f.

Theorem 4.2. If M is Noetherian, then M s.t.g.s.r.f.

Proof. Let N be any submodule of M . Then we have the chain

N = 〈E0(N)〉 ⊆ 〈E1(N)〉 ⊆ 〈E2(N)〉 ⊆ · · · · · · ⊆ 〈E∞(N)〉 = sradM (N) ⊆ radM (N).

Since M is Noetherian, there exists a natural number k such that the chain terminates, that is
〈Ek(N)〉 = 〈Ek+1(N)〉. Hence 〈Ek(N)〉 is a semiprime submodule and sradM (N) = 〈Ek(N)〉.

We may assume that k is the smallest such number. If k = 0, then sradM (N) = N . If k ≥ 1,
then 〈Ek(N)〉 = 〈EM (〈Ek−1(N)〉)〉. By the minimality of k, we have N ⊆ 〈Ek−1(N)〉 (
sradM (N) and sradM (N) = 〈EM (〈Ek−1(N)〉)〉. Therefore N s.t.g.s.r.f. in M .
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