A note on difference cordial graphs

R. Ponraj, S. Sathish Narayanan and R. Kala
Communicated by Ayman Badawi

MSC 2010 Classifications: 05C78.
Keywords and phrases: Lotus inside a circle, Pyramid, Permutation graphs, t-fold wheel, corona.

Abstract

Let G be a (p, q) graph. Let $f: V(G) \rightarrow\{1,2, \ldots, p\}$ be a function. For each edge $u v$, assign the label $|f(u)-f(v)| . f$ is called a difference cordial labeling if f is a one to one map and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$ where $e_{f}(1)$ and $e_{f}(0)$ denote the number of edges labeled with 1 and not labeled with 1 respectively. A graph which admits a difference cordial labeling is called a difference cordial graph. In this paper we investigate the difference cordial labeling behaviour of $K_{2}+m K_{1}, K_{n}^{c}+2 K_{2}$, Sunflower grpah, Lotus inside a circle, Pyramid, Permutation graphs.

1 Introduction

Let $G=(V, E)$ be (p, q) graph. In this paper we have considered only simple and undirected graphs. The number of vertices of G is called the order of G and the number of edges of G is called the size G. Labeled graphs are used in several areas of science and technology such as astronomy, radar, circuit design and database management[2]. The origin of graph labeling is Graceful labeling which was introduced by Rosa [11] in the year 1967. In 1980, Cahit [1] introduced the cordial labeling of graphs. Cordiality behavior of numerous graphs were studied by several authors $[4,12,14,20,5,15,16,17,18,19,13]$. In this approach, R. Ponraj, S. Sathish Narayanan and R. Kala introduced difference cordial labeling in [6]. In [6, 7, 8, 9] difference cordial labeling behavior of several graphs like path, cycle, complete graph, complete bipartite graph, bistar, wheel, web and some more standard graphs have been investigated. In this paper, we investigate the difference cordial labeling behavior of $K_{2}+m K_{1}, K_{n}^{c}+2 K_{2}$, Sunflower graph, Lotus inside a circle, Pyramid, Permutation graphs, book with n pentagonal pages, t-fold wheel, double fan. Let x be any real number. Then the symbol $\lfloor x\rfloor$ stands for the largest integer less than or equal to x and $\lceil x\rceil$ stands for the smallest integer greater than or equal to x. Terms and definitions not defined here are used in the sense of Harary [3].

2 Difference cordial labeling

Definition 2.1. Let G be a (p, q) graph. Let f be a map from $V(G)$ to $\{1,2, \ldots, p\}$. For each edge $u v$, assign the label $|f(u)-f(v)| . f$ is called difference cordial labeling if f is $1-1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$ where $e_{f}(1)$ and $e_{f}(0)$ denote the number of edges labeled with 1 and not labeled with 1 respectively. A graph with a difference cordial labeling is called a difference cordial graph.

The following results (theorem 2.1 to 2.9) are used in the subsequent section.
Theorem 2.2. [6] Any Path is a difference cordial graph.
Theorem 2.3. [6] Any Cycle is a difference cordial graph.
Theorem 2.4. [6] If G is a (p, q) difference cordial graph, then $q \leq 2 p-1$.
Theorem 2.5. [6] K_{n} is difference cordial iff $n \leq 4$.
Theorem 2.6. [6] $K_{2, n}$ is difference cordial iff $n \leq 4$.
Theorem 2.7. [6] $K_{3, n}$ is difference cordial iff $n \leq 4$.
Theorem 2.8. [6] The wheel W_{n} is difference cordial.
Theorem 2.9. [10] The ladder L_{n} is difference cordial.
Theorem 2.10. [10] The prism $C_{n} \times P_{2}$ is difference cordial.

The join of two graphs G_{1} and G_{2} is denoted by $G_{1}+G_{2}$ and whose vertex set is $V\left(G_{1}+G_{2}\right)=$ $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set $E\left(G_{1}+G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup\left\{u v: u \in V\left(G_{1}\right), v \in V\left(G_{2}\right)\right\}$

Theorem 2.11. Let G be a (p, q) graph. If $q>p+1$, then $G+K_{1}$ is not difference cordial.
Proof. Obviously, $G+K_{1}$ is a $(p+1, p+q)$ graph. Suppose $G+K_{1}$ is difference cordial, then by theorem $2.4, p+q \leq 2(p+1)-1$. This implies $q \leq p+1$, a contradiction.

Theorem 2.12. Let G_{1} be a $\left(p_{1}, q_{1}\right)$ connected graph and G_{2} be a $\left(p_{2}, q_{2}\right)$ connected graph with $G_{1} \neq K_{1}$ and $p_{2}>3$ then $G_{1}+G_{2}$ is not difference cordial.

Proof. The order and size of $G_{1}+G_{2}$ are $p_{1}+p_{2}$ and $q_{1}+q_{2}+p_{1} p_{2}$ respectively. Suppose $G_{1}+G_{2}$ is difference cordial with $G_{1} \neq K_{1}$ and $p_{2}>3$, then by theorem $2.4, q_{1}+q_{2}+p_{1} p_{2} \leq$ $2\left(p_{1}+p_{2}\right)-1, \Rightarrow p_{1} p_{2}-p_{2}-p_{1}+1 \leq 2, \Rightarrow 2 \geq p_{2}\left(p_{1}-1\right)-p_{1}+1>3\left(p_{1}-1\right)-p_{1}+1>2$, a contradiction.

Theorem 2.13. Let G be a (p, q) graph. Then $G+G$ is difference cordial iff $p \leq 3$ and $q \leq 1$.
Proof. The number of vertices and edges in $G+G$ are $2 p$ and $2 q+p^{2}$ respectively. Suppose f is a difference cordial labeling of $G+G$, then by theorem $2.4,2 q+p^{2} \leq 2(2 p)-1$. This implies $p \leq 3$. It follows that $q \leq 1$. When $p=3$ and $q=1$, the difference cordial labeling of $G+G$ is shown in figure 1.

Figure 1
When $p=3$ and $q=0, G+G \cong K_{3,3}$ which is difference cordial by theorem 2.7. When $p=2$ and $q=1, G+G \cong K_{4}$ which is difference cordial by theorem 2.5. When $p=2$ and $q=0$, $G+G \cong K_{2,2}$ which is difference cordial by theorem 2.6. When $p=1, q$ must be 0 . Here, $G+G \cong P_{2}$ this is difference cordial by theorem 2.2.

Theorem 2.14. Let G be a (p, q) difference cordial graph with $k(k>1)$ vertices of degree $p-1$. Then $p \leq 7$.

Proof. Obviously, $e_{f}(1) \leq p-1$. Let $u_{i}(1 \leq i \leq k)$ be the vertex of G such that $\operatorname{deg}\left(u_{i}\right)=p-$ $1(1 \leq i \leq k)$. Then $e_{f}(0) \geq(p-3)+(p-3)-1+\cdots+(p-3)-(k-1)=k(p-3)-\frac{k(k-1)}{2}$. This implies, $e_{f}(0)-e_{f}(1) \geq k(p-3)-\frac{k(k-1)}{2}-p+1$. It follows that $p \leq 7$.

Theorem 2.15. $K_{2}+m K_{1}$ is difference cordial iff $m \leq 4$.
Proof. Suppose $K_{2}+m K_{1}$ is difference cordial then by theorem 2.14, $m \leq 5$. Let $V\left(K_{2}+\right.$ $\left.m K_{1}\right)=\left\{u, v, w_{i}: 1 \leq i \leq m\right\}$ and $E\left(K_{2}+m K_{1}\right)=\left\{u v, u w_{i}, v w_{i}: 1 \leq i \leq m\right\}$. When $m=5$, the maximum value of $e_{f}(1)$ occur when $f(u)=2, f(v)=4, f\left(w_{1}\right)=1, f\left(w_{2}\right)=3$, $f\left(w_{3}\right)=5, f\left(w_{4}\right)=6$ and $f\left(w_{5}\right)=7$. It follows that, $e_{f}(1) \leq 4, e_{f}(0) \geq q-4 \geq 7$. This implies $e_{f}(0)-e_{f}(1) \geq 3$. Hence $K_{2}+5 K_{1}$ is not difference cordial. Since, $K_{2}+K_{1} \cong C_{3}$, by theorem 2.3, $K_{2}+K_{1}$ is difference cordial. The difference cordial labeleling of $K_{2}+2 K_{1}$, $K_{2}+3 K_{1}$ and $K_{2}+4 K_{1}$ are shown in figure 2.

Figure 2

Theorem 2.16. $K_{n}^{c}+2 K_{2}$ is difference cordial iff $n \leq 2$.

Proof. Let $V\left(K_{n}^{c}+2 K_{2}\right)=\left\{u, v, w, z, u_{i}: 1 \leq i \leq n\right\}$ and $E\left(K_{n}^{c}+2 K_{2}\right)=\{u v, w z\} \cup$ $\left\{u u_{i}, v u_{i}, w u_{i}, z u_{i}: 1 \leq i \leq n\right\}$. Clearly, $e_{f}(1) \leq n+3$. Since the degree of the vertices u, v, w and z is $n+1, e_{f}(0) \geq(n-1)+(n-1)-1+(n-1)+(n-1)-1 \geq 4 n-6$. Hence, $e_{f}(0)-e_{f}(1) \geq 3 n-9$. This implies $n \leq 3$. Suppose $n=3$. Here, $e_{f}(1) \leq 6$. Also $e_{f}(0) \geq q-e_{f}(1) \geq 8$. Therefore, $e_{f}(0)-e_{f}(1) \geq 2$. Hence, $K_{3}^{c}++2 K_{2}$ is not difference cordial. For $n \leq 2$, the difference cordial labeling is given in figure 3 .

Figure 3

The sunflower graph S_{n} is obtained by taking a wheel with central vertex v_{0} and the cycle $C_{n}: v_{1} v_{2} \ldots v_{n} v_{1}$ and new vertices $w_{1} w_{2} \ldots w_{n}$ where w_{i} is joined by vertices $v_{i}, v_{i+1}(\bmod n)$.

Theorem 2.17. The sunflower graph S_{n} is difference cordial, for all n.
Proof. Define $f: V\left(S_{n}\right) \rightarrow\{1,2, \ldots 2 n+1\}$ by $f\left(v_{0}\right)=1, f\left(v_{i}\right)=2 i, 1 \leq i \leq n, f\left(w_{i}\right)=$ $2 i+1, \quad 1 \leq i \leq n$. Now $e_{f}(0)=2 n$ and $e_{f}(1)=2 n$. Therefore f is a difference cordial labeling.

The Lotus inside a circle $L C_{n}$ is a graph obtained from the cycle $C_{n}: u_{1} u_{2} \ldots u_{n} u_{1}$ and a star $K_{1, n}$ with central vertex v_{0} and the end vertices $v_{1} v_{2} \ldots v_{n}$ by joining each v_{i} to u_{i} and $u_{i+1(\bmod n)}$.

Theorem 2.18. The Lotus inside a circle $L C_{n}$ is difference cordial, for all n.
Proof. Define a map f from the vertex set of $L C_{n}$ to the set $\{1,2, \ldots 2 n+1\}$ as follows: $f\left(v_{0}\right)=1, f\left(v_{i}\right)=2 i, 1 \leq i \leq n, f\left(u_{i}\right)=2 i+1,1 \leq i \leq n$. Clearly f is a difference cordial labeling.

A Lotus inside a circle $L C_{4}$ with a difference cordial labeling is shown in figure 4.

Figure 4
The graph obtained by arranging vertices into a finite number of rows with i vertices in the $i^{t h}$ row and in every row the $j^{t h}$ vertex and $j+1^{\text {st }}$ vertex of the next row is called the Pyramid. We denote the Pyramid with n rows by $P y_{n}$.

Theorem 2.19. All Pyramids are difference cordial.

Proof. Let $a_{i, j} \quad(1 \leq j \leq i)$ be the vertices in the $i^{t h}$ row. Define an injective map f from the vertices of the Pyramid $P y_{n}$ to the set $\left\{1,2,3 \ldots \frac{n(n+1)}{2}\right\}$ by $f\left(a_{i, j}\right)=\frac{1}{2}(j-1)(2 n-j)+i, j \leq$ $i \leq n$. Clearly, $e_{f}(0)=e_{f}(1)=\frac{n(n-1)}{2}$. Therefore, f is a difference cordial labeling of the Pyramid.

Example 2.20. The Pyramid $P y_{6}$ with a difference cordial labeling is shown in figure 5.

Figure 5
The graph $P_{n}+2 K_{1}$ is called a double fan $D F_{n}$.
Theorem 2.21. The double fan $D F_{n}$ is difference cordial iff $n \leq 4$.
Proof. Note that $D F_{n}$ is a $(n+2,3 n-1)$ graph. Suppose $D F_{n}$ is difference cordial, then by theorem 2.4, $3 n-1 \leq 2(n+2)-1$. It follows that $n \leq 4$. Since $D F_{1} \cong P_{3}, D F_{3} \cong w_{4}$, using theorem 2.2 and theorem 2.8, $D F_{1}$ and $D F_{3}$ are difference cordial. The difference cordial labeling of $D F_{2}$ and $D F_{4}$ is given in figure 6.

Figure 6

Theorem 2.22. Books with n pentagonal pages are difference cordial.
Proof. Let G be a book with n pentagonal pages. Let $V(G)=\left\{u_{i}, v_{i}, w_{i}: 1 \leq i \leq n\right\} \cup\{u, v\}$ and $E(G)=\left\{u u_{i}, u_{i} w_{i}, w_{i} v_{i}, v_{i} v: 1 \leq i \leq n\right\}$. Define a map $f: V(G) \rightarrow\{1,2, \ldots, 3 n+2\}$ by

$$
\begin{array}{lll}
f\left(u_{i}\right)=3 i-2 & & 1 \leq i \leq n \\
f\left(w_{i}\right) & =3 i-1 & 1 \leq i \leq n \\
f\left(v_{i}\right) & =3 i & \\
1 \leq i \leq n
\end{array}
$$

$f(u)=3 n+1$ and $f(v)=3 n+2$. Since $e_{f}(1)=2 n+1$ and $e_{f}(0)=2 n, f$ is a difference cordial labeling of G.

$$
H_{n, n} \text { is a graph with vertex set }\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\} \text { and edge set }\left\{u_{i} v_{j}: 1 \leq i \leq j \leq n\right\} .
$$

Theorem 2.23. $H_{n, n}$ is difference cordial iff $n \leq 6$.
Proof. Suppose $H_{n, n}$ is difference cordial, then using theorem $2.4, \frac{n(n+1)}{2} \leq 2(2 n)-1$. It follows that $n \leq 6$. For $n \leq 6$, the difference cordial labeling f is given in table 1 .

n	u_{1}	u_{2}	u_{3}	u_{4}	u_{5}	u_{6}	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}
1	1						2					
2	1	3					2	4				
3	1	3	5				2	4	6			
4	1	3	6	8			2	4	5	7		
5	1	4	6	8	10		2	3	5	7	9	
6	2	4	6	8	10	12	1	3	5	7	9	11

Table 1.

Let G be the graph derived from a wheel W_{n} by duplicating the hub vertex one or more times. We call G a t-fold wheel if there are t hub vertices, each adjacent to all rim vertices and not adjacent to each other.

Proof. The 1 -fold wheel is a wheel and is difference cordial by theorem 2.7. Let $t>1$. Clearly G consists of $n+t$ vertices and $n t+n$ edges. Suppose G is difference cordial with $t \geq 3$, then by theorem 2.3, $n t+n \leq 2(n+t)-1 . \Rightarrow 2 n-1 \geq(n-2) t+n \geq(n-2) 3+n$. It follows that $2 n \leq 5$, a contradiction. Suppose G is difference cordial with $t=2$, then by theorem 2.3, $2 n+n \leq 2(n+2)-1$. This implies $n \leq 3$. The difference cordial labeling of G with $n=3$ and $t=2$ is given in figure 7 .

Figure 7

Next is the permutation graphs. For any permutation fon $1,2, \ldots n$, the f-permutation graph on a graph $G, P(G, f)$ consists of two disjoint copies of G, say G_{1} and G_{2}, each of which has vertices labeled $v_{1}, v_{2} \ldots v_{n}$ with n edges obtained by joining each v_{i} in G_{1} to $v_{f(i)}$ in G_{2}. We shall denote the identity permutation by I.

The product graph $G_{1} \times G_{2}$ is defined as follows: Consider any two vertices $u=\left(u_{1}, u_{2}\right)$ and $v=\left(v_{1}, v_{2}\right)$ in $V=V_{1} \times V_{2}$. Then u and v are adjacent in $G_{1} \times G_{2}$ whenever [$u_{1}=$ v_{1} and u_{2} adj v_{2}] or $\left[u_{2}=v_{2}\right.$ and $\left.u_{1} \operatorname{adj} v_{1}\right]$.

Theorem 2.25. Let G be (p, q) graph with $q \geq p$. Then for any permutation $f, P\left(G \times K_{2}, f\right)$ is not difference cordial.

Proof. The order and size of $P\left(G \times K_{2}, f\right)$ are $4 p$ and $4 q+4 p$ respectively. Suppose $P\left(G \times K_{2}, f\right)$ is difference cordial with $q \geq p$, then by theorem $2.4,4 q+4 p \leq 2(4 p)-1 . \Rightarrow 8 p-1 \geq 4 q+4 p \geq$ $8 p . \Rightarrow-1 \geq 0$, a contradiction.

Theorem 2.26. For any permutation $f, P\left(W_{n}, f\right)$ is not difference cordial.
Proof. Obviously, the order and size of $P\left(W_{n}, f\right)$ are $2 n+2$ and $5 n+1$ respectively. Suppose $P\left(W_{n}, f\right)$ is difference cordial. Then by theorem $2.4,5 n+1 \leq 2(2 n+2)-1 . \Rightarrow n \leq 2$, a contradiction.

For a graph G, the splitting graph of $G, S^{\prime}(G)$, is obtained from G by adding for each vertex v of G a new vertex v^{\prime} so that v^{\prime} is adjacent to every vertex that is adjacent to v.

Theorem 2.27. If G is a (p, q) graph and $S^{\prime}(G)$ be the splitting graph of G with $q \geq p$. Then for any permutation $f, P\left(S^{\prime}(G), f\right)$ is not difference cordial.

Proof. The order and size of $P\left(S^{\prime}(G), f\right)$ are $4 p$ and $6 q+2 p$ respectively. Suppose $P\left(S^{\prime}(G), f\right)$ is difference cordial, then by theorem $2.4,6 q+2 p \leq 2(4 p)-1 . \Rightarrow 6 p-1 \geq 6 q \geq 6 p . \Rightarrow-1 \geq 0$, a contradiction.

The helm H_{n} is the graph obtained from a wheel by attaching a pendant edge at each vertex of the n-cycle. A flower $F l_{n}$ is the graph obtained from a helm by joining each pendant vertex to the central vertex of the helm.

Theorem 2.28. For any permutation $f, P\left(F l_{n}, f\right)$ is not difference cordial.
Proof. The order and size of $P\left(F l_{n}, f\right)$ are $4 n+2$ and $10 n+1$ respectively. Suppose $P\left(F l_{n}, f\right)$ is difference cordial. Then by theorem $2.4,10 n+1 \leq 2(4 n+2)-1 . \Rightarrow n \leq 1$, a contradiction. $\quad \square$

Theorem 2.29. $P\left(P_{2 k}, f\right)$ is difference cordial where $f=(12)(34) \ldots(k k+1) \ldots(2 k-12 k)$.

Proof. Let u_{i} and v_{i} be the vertices in the first and second copies of $P_{2 k}$. Define, $f: V\left(P\left(P_{2 k}, f\right)\right)$
$\rightarrow\{1,2, \ldots, 4 k\}$ by $f\left(u_{i}\right)=i, 1 \leq i \leq 2 k$,

$$
\begin{array}{llll}
f\left(v_{4 i-3}\right)=2 k+4 i-3 & 1 \leq i \leq \frac{k+1}{2} & \text { if } \quad 2 k \equiv 2(\bmod 4) \\
& 1 \leq i \leq \frac{k}{2} & \text { if } \quad 2 k \equiv 0(\bmod 4) \\
f\left(v_{4 i-2}\right)=2 k+4 i-2 & 1 \leq i \leq \frac{k+1}{2} & \text { if } \quad 2 k \equiv 2(\bmod 4) \\
& 1 \leq i \leq \frac{k}{2} & \text { if } \quad 2 k \equiv 0(\bmod 4) \\
f\left(v_{4 i-1}\right)=2 k+4 i & 1 \leq i \leq \frac{k-1}{2} & \text { if } & 2 k \equiv 2(\bmod 4) \\
& 1 \leq i \leq \frac{k}{2} & \text { if } \quad 2 k \equiv 0(\bmod 4) \\
f\left(v_{4 i}\right)=2 k+4 i-1 & 1 \leq i \leq \frac{k-1}{2} & \text { if } \quad 2 k \equiv 2(\bmod 4) \\
& 1 \leq i \leq \frac{k}{2} & \text { if } \quad 2 k \equiv 0(\bmod 4) .
\end{array}
$$

Since, $e_{f}(0)=e_{f}(1)=3 k-1, f$ is a difference cordial labeling.
Theorem 2.30. $P\left(P_{n}, I\right)$ is difference cordial.
Proof. Since $P\left(P_{n}, I\right) \cong L_{n}$, proof follows from theorem 2.9.
Theorem 2.31. $P\left(C_{n}, I\right)$ is difference cordial.
Proof. Since $P\left(C_{n}, I\right) \cong C_{n} \times P_{2}$, proof follows from theorem 2.10.
Theorem 2.32. $P\left(K_{n}, I\right)$ is difference cordial iff $n \leq 3$.
Proof. Since $P\left(K_{1}, I\right) \cong K_{2}, P\left(K_{2}, I\right) \cong C_{4}$ and $P\left(K_{n}, I\right) \cong C_{3} \times P_{2}, P\left(K_{n}, I\right), n \leq 3$ is difference cordial. The order and size of $P\left(K_{n}, I\right)$ are $2 n$ and n^{2} respectively. Suppose $P\left(K_{n}, I\right)$ is difference cordial, then by theorem $2.4, n^{2} \leq 4 n-1$. It follows that $n \leq 3$.

The corona of G with $H, G \odot H$ is the graph obtained by taking one copy of G and p copies of H and joining the $i^{t h}$ vertex of G with an edge to every vertex in the $i^{\text {th }}$ copy of $H . P_{n} \odot K_{1}$ is called the comb and $P_{n} \odot 2 K_{1}$ is called the double comb.
Theorem 2.33. $P\left(P_{n} \odot K_{1}, I\right)$ is difference cordial.
Proof. Let $V\left(P\left(P_{n} \odot K_{1}, I\right)\right)=\left\{u_{i}, v_{i}, w_{i}, x_{i}: 1 \leq i \leq n\right\}$ and $E\left(P\left(P_{n} \odot K_{1}, I\right)\right)=$ $\left\{u_{i} v_{i}, v_{i} w_{i}, w_{i} x_{i}, u_{i} x_{i}: 1 \leq i \leq n\right\} \cup\left\{u_{i} u_{i+1}, x_{i} x_{i+1}: 1 \leq i \leq n-1\right\}$. Define an injective map $f: V\left(P\left(P_{n} \odot K_{1}, I\right)\right) \rightarrow\{1,2 \ldots 4 n\}$ by

$$
\begin{array}{lll}
f\left(u_{i}\right)=4 i-3 & & 1 \leq i \leq n \\
f\left(v_{i}\right) & =4 i-2 \quad & 1 \leq i \leq n \\
f\left(w_{i}\right) & =4 i-1 & \\
1 \leq i \leq n-1 \\
f\left(x_{i}\right) & =4 i & \\
1 \leq i \leq n-1
\end{array}
$$

$f\left(w_{n}\right)=4 n$ and $f\left(x_{n}\right)=4 n-1$. Since $e_{f}(0)=e_{f}(1)=3 n-1, f$ is a difference cordial labeling of $P\left(P_{n} \odot K_{1}, I\right)$.
Theorem 2.34. $P\left(P_{n} \odot 2 K_{1}, I\right)$ is difference cordial.
Proof. Let $V\left(P\left(P_{n} \odot 2 K_{1}, I\right)\right)=\left\{u_{i}, v_{i}, w_{i}, x_{i}, y_{i}, z_{i}: 1 \leq i \leq n\right\}$ and $E\left(P\left(P_{n} \odot 2 K_{1}, I\right)\right)=$ $\left\{u_{i} w_{i}, u_{i} x_{i}, w_{i} x_{i}, w_{i} y_{i}, y_{i} v_{i}, u_{i} v_{i}, x_{i} z_{i}, z_{i} v_{i}: 1 \leq i \leq n\right\} \cup\left\{u_{i} u_{i+1}, v_{i} v_{i+1}: 1 \leq i \leq n-1\right\}$. Define a one to one map $f: V\left(P\left(P_{n} \odot 2 K_{1}, I\right)\right) \rightarrow\{1,2 \ldots 6 n\}$ as follows:

$$
\begin{array}{llll}
f\left(u_{i}\right) & =6 i-5 & & 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\
f\left(w_{i}\right) & & 6 i-4 & \\
f\left(x_{i}\right) & & 6 i & \\
f\left(y_{i}\right) & & 6 i-3 & 1 \leq i \leq\left\lfloor\frac{n-1}{2}\right\rfloor \\
f\left(z_{i}\right) & & 6 i-1 & \\
f\left(v_{i}\right) & & 6 i-2 & \\
f\left(u_{\left\lceil\frac{n}{2}\right\rceil+i}\right) & =6\left\lceil\frac{n}{2}\right\rceil+5 i-5 & & 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\
f\left(w_{\left\lceil\frac{n}{2}\right\rceil+i}\right) & =6\left\lceil\frac{n}{2}\right\rceil+5 i-4 & & 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor \\
f\left(y_{\left\lceil\frac{n}{2}\right\rceil+i}\right) & =6\left\lceil\frac{n}{2}\right\rceil+5 i-3 & & 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor \\
f\left(v_{\left\lceil\frac{n}{2}\right\rceil+i}\right) & =6\left\lceil\frac{n}{2}\right\rceil+5 i-2 & & 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor \\
f\left(z_{\left\lceil\frac{n}{2}\right\rceil+i}\right) & =6\left\lceil\frac{n}{2}\right\rceil+5 i-1 & & 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor \\
f\left(x_{\left\lceil\frac{n}{2}\right\rceil+i}\right) & =6\left\lceil\frac{n}{2}\right\rceil+5\left\lfloor\frac{n}{2}\right\rfloor+i-1 & & 1 \leq i \leq\left\lceil\frac{n+1}{2}\right\rceil .
\end{array}
$$

The following table 2 shows that f is a difference cordial labeling.

Nature of n	$e_{f}(0)$	$e_{f}(1)$
$n \equiv 0(\bmod 2)$	$\frac{9 n-2}{2}$	$\frac{9 n-2}{2}$
$n \equiv 1(\bmod 2)$	$\frac{9 n-3}{2}$	$\frac{9 n-1}{2}$

Table 2.

Theorem 2.35. $P\left(K_{2}+m K_{1}, I\right)$ is difference cordial iff $m \leq 3$.
Proof. The order and size of $P\left(K_{2}+m K_{1}, I\right)$ are $2 m+4$ and $5 m+4$ respectively. By theorem 2.4, $5 m+4 \leq 2(2 m+4)-1$. It follows that $m \leq 3$. The difference cordial of $K_{2}+K_{1}$, $K_{2}+2 K_{1}$ and $K_{2}+3 K_{1}$ are shown in figure 8.

Figure 8

Theorem 2.36. Let C_{n} be the cycle $u_{1} u_{2} \ldots u_{n} u_{1}$. Let G^{*} be the graph with $V\left(G^{*}\right)=V\left(C_{n}\right) \cup$ $\left\{v_{i}, w_{i}: 1 \leq i \leq n\right\}$ and $E\left(G^{*}\right)=E\left(C_{n}\right) \cup\left\{u_{i} v_{i}, u_{i+1(\bmod n)} w_{i}, v_{i} w_{i}: 1 \leq i \leq n\right\}$. Then G^{*} is difference cordial.

Proof. Define a function $f: V\left(G^{*}\right) \rightarrow\{1,2 \ldots 3 n\}$ as follows:

$$
\begin{array}{lll}
f\left(u_{i}\right) & =i & \\
f\left(v_{i}\right) & =n+2 i+1 \leq i \leq n \\
f\left(w_{i}\right) & =n+2 i+2 & \\
1 \leq i \leq n-1 \\
& 1 \leq i \leq n-1
\end{array}
$$

$f\left(v_{n}\right)=n+1$ and $f\left(w_{n}\right)=n+2$. Since $e_{f}(0)=e_{f}(1)=2 n, f$ is a difference cordial labeling of G^{*}.

Theorem 2.37. $P\left(K_{m, n}, I\right)(m, n>1)$ is difference cordial iff $m=n=2$ and $n=3,4,5$.
Proof. The order and size of $P\left(K_{m, n}, I\right)$ are $2 m+2 n$ and $2 m n+m+n$ respectively. Suppose $P\left(K_{m, n}, I\right)$ is difference cordial, then by theorem $2.4,2 m n+m+n \leq 2(2 m+2 n)-1$. $\Rightarrow 2 m n \leq 3 m+3 n-1 \longrightarrow$ (1).
Case 1. $m=n$.
(1) $\Rightarrow 2 m^{2} \leq 6 m-1 . \Rightarrow m=n=2$.

Case 2. $m \neq n$.
Assume $m>n \geq 2$. (1) $\Rightarrow 0 \leq-2 m n+3 m+3 n-1<-2 m n+6 m-1 . \Rightarrow 6 m-1>$ $2 m n \longrightarrow$ (2).
Subcase 1. $n \geq 3$.
(2) $\Rightarrow 6 m-1 \geq 6 m . \Rightarrow-1 \geq 0$, a contradiction.

Subcase 2. $n=2$.
Here $p=2 m+4$ and $q=5 m+2$. Suppose f is difference cordial, then by theorem 2.4, $5 m+2 \leq 2(2 m+4)-1$. This implies $m \leq 5$. Since $P\left(K_{2,2}, I\right) \cong C_{4} \times P_{2}$, by theorem 2.10, $P\left(K_{2,2}, I\right)$ is difference cordial. The difference cordial labeling of $P\left(K_{2,3}, I\right), P\left(K_{2,4}, I\right)$ and $P\left(K_{2,5}, I\right)$ is shown in figure 9.

Figure 9

Finally we investigate the difference cordial labeling behavior of special graphs which are generated from cycle.

Theorem 2.38. Let C_{n} be the cycle $u_{1} u_{2} \ldots u_{n} u_{1}$. Let G be a graph with $V(G)=V\left(C_{n}\right) \cup\left\{w_{i}\right.$: $1 \leq i \leq n\}$ and $E(G)=E\left(C_{n}\right) \cup\left\{u_{i} w_{i}, u_{i+1(\bmod n)} w_{i}: 1 \leq i \leq n\right\}$. Then G is difference cordial.

Proof. Define a map $f: V(G) \rightarrow\{1,2 \ldots 2 n\}$ as follows:
Case 1. n is even.

$$
\begin{array}{llll}
f\left(u_{i}\right) & =2 i-1 & & 1 \leq i \leq \frac{n+4}{2} \\
f\left(u_{\frac{n+4}{2}+i}\right) & =\frac{3 n+4}{2}+i & & 1 \leq i \leq \frac{n-4}{2} \\
f\left(w_{i}\right) & =2 i & & 1 \leq i \leq \frac{n+2}{2} \\
f\left(w_{n-i}\right) & =n+2+i & 1 \leq i \leq \frac{n-2}{2}
\end{array}
$$

Case 2. n is odd.

$$
\begin{array}{lll}
f\left(u_{i}\right) & =2 i-1 & \\
f\left(u_{\frac{n+5}{2}+i}\right) & =\frac{3 n+5}{2}+i & \\
1 \leq i \leq \frac{n+5}{2} \\
f\left(w_{i}\right) & =2 i & \\
f\left(w_{n-i}\right) & =n+4+i \leq i \leq \frac{n+5}{2} \\
\hline & & 1 \leq i \leq \frac{n-3}{2}
\end{array}
$$

The table 3 gives the nature of the edge condition of the above labeling f. It follows that f is a difference cordial labeling.

Values of n	$e_{f}(0)$	$e_{f}(1)$
$n \equiv 0(\bmod 2)$	$\frac{3 n}{2}$	$\frac{3 n}{2}$
$n \equiv 1(\bmod 2)$	$\frac{3 n-1}{2}$	$\frac{3 n+1}{2}$

Table 3.

References

[1] I. Cahit, Cordial graphs: a weaker version of graceful and harmonious graphs, Ars combin., 23 (1987) 201-207.
[2] J. A. Gallian, A Dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 18 (2012) \#Ds6.
[3] F. Harary, Graph theory, Addision wesley, New Delhi (1969).
[4] Y. S. Ho, S. M. Lee, and S. C. Shee, Cordial labellings of unicyclic graphs and generalized Petersen graphs, Congr. Numer., 68 (1989) 109-122.
[5] S. M. Lee and A. Liu, A construction of cordial graphs from smaller cordial graphs, Ars Combin., 32 (1991) 209-214.
[6] R. Ponraj, S. Sathish Narayanan and R. Kala, Difference cordial labeling of graphs, Global Journal of Mathematical Sicences: Theory and Practical, 3(2013), 192-201.
[7] R. Ponraj and S. Sathish Narayanan, Further Results on Difference cordial labeling of corona graphs, The Journal of The Indian Academy of Mathematics, 35(@)(2013), 217-235.
[8] R. Ponraj, S. Sathish Narayanan and R. Kala, Difference cordial labeling of graphs obtained from double snakes, International Journal of Mathematics Research, 5(2013), 317-322.
[9] R. Ponraj and S. Sathish Narayanan, Difference cordiality of some graphs obtained from double alternate snake graphs, Global Journal of Mathematical Sciences: Theory and Practical, 5(2013), 167-175.
[10] R. Ponraj, S. Sathish Narayanan and R. Kala Difference cordiality of product related graphs, (communicated).
[11] A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs (Internat. Symposium, Rome, July 1966), Gordon and Breach, N. Y. and Dunod Paris (1967) 349-355.
[12] M. A. Seoud and A. E. I. Abdel Maqsoud, On cordial and balanced labelings of graphs, J. Egyptian Math. Soc., 7(1999) 127-135.
[13] M. A. Seoud and A. E. I. Abdel Maqsoud, On 3-equitable and magic labelings, preprint.
[14] M. A. Seoud, A. T. Diab, and E. A. Elsahawi, On strongly-C harmonious, relatively prime, odd graceful and cordial graphs, Proc. Math. Phys. Soc. Egypt, No. 73 (1998) 33-55.
[15] S. K. Vaidya, G. Ghodasara, S. Srivastav, and V. Kaneria, Cordial labeling for two cycle related graphs, Math. Student, 76 (2007) 237-246.
[16] S. K. Vaidya, G. Ghodasara, S. Srivastav, and V. Kaneria, Some new cordial graphs, Internat. J. Scientific Computing, 2 (2008) 81-92.
[17] S. K. Vaidya, K. Kanani, S. Srivastav, and G. Ghodasara, Baracentric subdivision and cordial labeling of some cycle related graphs, Proceedings of the First International Conference on Emerging Technologies and Applications in Engineering, Technology and Sciences, (2008) 1081-1083.
[18] S. K. Vaidya, K. Kanani, P. Vihol, and N. Dani, Some cordial graphs in the context of barycentric subdivision, Int. J. Comtemp. Math. Sciences, 4 (2009) 1479-1492.
[19] S. K. Vaidya and P. L. Vihol, Cordial labeling for middle graph of some graphs, Elixir Discrete Math., 34C (2011) 2468-2475.
[20] M. Z. Youssef, Graph operations and cordiality, Ars Combin., 97 (2010) 161-174.

Author information

R. Ponraj, S. Sathish Narayanan, Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627 412, Tamil Nadu, India.
E-mail: ponrajmaths@gmail.com; sathishrvss@gmail.com
R. Kala, Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli-627 012, Tamil Nadu,

India.

E-mail: karthipyi91@yahoo.co.in
Received: July 26, 2013.
Accepted: January 23, 2014.

