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Abstract. In this paper, the family of generaliseddimensional spherically symmetric polynomial kernelpriesented.
Based upon the general convention on deriving the asynoptatan integrated squared error (AMISE) and its correspondi
optimal bandwidth(hopt); the generalised scheme for AMISE ahght as well as its generalised efficiency are derived. The
advantage of this is that, it completely removes the rigduirst calculating both the second moment abgtnorm of any
kernel in the family before obtaining thept as well as getting the AMISE and their corresponding efficyeof the kernel.

In addition, it is useful for visual comparison of kerneliggites in a data-driven method.

1 Introduction

Density estimation methods are robust and elegant smapthé@thods used for solving statistical (and its relatedpleros.
To most statisticians, they are methods used for constigiatn estimate of the true probability density function Jidfm the
observed data. That is, a random variakles R¢ has a density if, for all Borel sets Ac R?, [, f(x)dx = P{x € A}.
The major problem here is to estimaf¢x) from an independent identically distributed (i.i.ddyvariate random sample
X1,Xy, -+, X, drawn fromf [5].

There are basically two approaches to density estimatlmparametric and nonparametric approaches. The nonpara-
metric methods consist of sophisticated alternativesa@timventional parametric models for studying multivaridata 11].
This is because the methods eliminate the need for modefispéon. That is, they can be used with arbitrary distribos
and without the assumptions that the forms of the underlgiensities are knowrip].

In this paper, the focus is on one class of nonparametridtgezstimators which is kernel density estimators. The &krn
density estimator is a more reliable statistical technitpa¢ deals with some of the problems associated with hiatogrhich
is discussed in Bowman and Azzalir#l] [, Hardle, et al [10], Silverman [L6]. Though, the procedure was first introduced in
1951 in an unpublished paper by Fix and Hodgs the first published work in this area of mathematical stafs is due
to Rosenblatt14], and the scope widened by Parz&][ Since then, and with the advent of computers, this aredbas
expanded greatly.

Given a random samplX;, Xy, - - - , X,, drawn from a common density, the d-dimensional multivariate kernel
density estimator is given by:

fu = = SRR (L.1)
X) = — .
" nhd & h

wherex = (z1, @, -+ ,xq)" andX; = (X1, Xi2, - -+, Xiq) i = 1,2, --- ,n. His a symmetric positive definité x d

nonsingular matrix called the bandwidth matrix which gafizes the bandwidtlh and K is a d-variate kernel function
which satisfies/ ra K (x)dx = 1[4]. We make use of the parameterisatidd & h1,) given by Cacoullosd] rather than
the range of bandwidths suggested by Epanechnikpar{d Deheuvels4], and thus the multivariate kernel density estimator
in (1.1) becomes:
~ 1 n X — Xz
=—3'K
fulod) = S 2K

wherex, X; and K are as given in{.1) and h is the univariate smoothing paramet&}.[ To use the parameterisation
H = hl, effectively, the components of the data vector should bengensurate. This can be achieved by using appropriate
transformation in the data sé§, [16, 19]. This transformation involves either pre-scaling eacis ax pre-whitening the data.

A detailed study of this can be found i8][

Many of the studies in density estimation have centred oruthieariate kernel density estimatiod]. This work,
however, focuses on the multivariate kernels with emphasihe classical spherically symmetdealimensional polynomial
kernels. The basic motivation for consideririgd) is that it enables one to obtain a closed form expressiothéasymptotic
mean integrated squared error (AMISE) as well as its coomdipg optimal bandwidths which enable us to derive the
generalised AMISE, optimal bandwidth and the generalisédency.

The global accuracy used in measuridg? is the mean integrated squared error (MISE) which is gien a

1.2)

2

MISEfex(x) = E | (Fr(x) = 00 dx L3)
R
Thus, from [L7], the expression(3) can be put into the form:
MISEfux(x) = [ Elfia(x) ~ fn(Pax + [ Varfua()dx (1.4)
R R

With the introduction above, the remaining part of this pap@rganized as follows: Section 2 centres on the construc-
tion of the family of thed-dimensional spherically symmetric polynomial kernelsct®n 3 covers the derivation of the
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generalised global error schemes. Section 4 deals with hewgeneralised efficiency scheme for ahglimensional spheri-
cally symmetric polynomial kernel is obtained. While Sentb focuses on numerical verification of results, Sectiohegls
light on the discussion of results and equally gives the lcafireg remarks.

2 The family of d-dimensional spherically symmetric polynomial kernels

The family ofd-dimensional spherically symmetric polynomial kernelsasiristically deduced as follows: ThHedimensional
spherically symmetric kernel function of the classical Bgxhnikov kernel is:

d(d+2)r(%) T T
KZ4(t) = 4n? -t o=l (2.1a)

, elsewhere
or

(d+2T(4+1)
de(t) = 271'%
0 , elsewhere

whered > 1 andr (-) is a gamma function (see Afere and Ishiekwetidédr the construction of (2.1a) and (2.1b). Whér=

1, we obtain the classical 1-dimensional Epanechnikovetetansity function. Whed = 2, we obtain the 2 - dimensional
spherically symmetric Epanechnikov kernel functioh7{[ pp 105). Also, thed-dimensional spherically symmetric kernel
function of the classical biweight kernel is:

(1—tTe) , [¢7t) <1
. (2.1b)

d+2)(d+Hrd+1
. (d+2)( d) (5 )(l—tTt)z e <1
Ky q(t) = 8r2 (2.2a)
0 , elsewhere
or

d+4Hr(¢+2
< [@+ariz +2) (d? )(1— tTe)”, tTe| < 1
K3 4(t) = 4r2 (2.2b)
0 , elsewhere

whered > 1 andl (-) is a gamma function (see Afere and Ishiekwetief¢r the construction of (2.2a) and (2.2b)). When
d = 1, we obtain the classical 1-dimensional biweight kernelsitg function. Whend = 2, we obtain the 2-dimensional
spherically symmetric biweight kernel function. Based @rlb) and (2.2b), the proposed spherically symmetric kerne
functions of the classical triweight kernel and classiasdyiweight kernels are respectively:

d+6)r(¢+3
. WrOMGH3) g yrep | e <1
K34(t) = 1272 (2.3)
0 , elsewhere

d+8)r(d+4
< @+8(z +4 (j )(17 £t 1Tt <1
KZq(t) = 482 (2.4)
0 , elsewhere

whered > 1 andrl (-) is a gamma function. Thus, the proposed generalised farhilgddmensional spherically symmetric
polynomial kernels is:

d
7(d+2p)r(§d+p) 1—tTt)", tT) < 1
K3 ,t) = 2p)in2 (2.5)

0 , elsewhere

Whenp = 0,1, 2,3, we have respectively thé&-dimensional spherically symmetric uniform, Epanechnikaweight
and triweight kernels. Ap — oo, (2.5 becomes @ - dimensional spherically symmetric Gaussian kernel. Tdmestants of
versions of (2.1) [both a and b] and (2.2) [both a and b] aregted in Table 1.

Table 1. Constants of versions of Epanechnikov and Biweight kernels

Kernel / Dimension Epanechnikov Biweight
d(d+2)dr(%) (d+2)r(§ + 1) (d+2)(d+42]r(g + 1) (d+4)r(§ +2)

Ar 2 2r?2 8r2 Ar>

1 3 3 15 15
4 4 16 16

2 2 3 3

2 o = = =
3 15 15 105 105
8w 8m 32 32

4 6 6 12 12
2 2 2 2

IC vid IC id
5 105 105 945 945
16x° 1612 64> 64r?




On the Construction of the Family @fDimensional Spherically- - 261

3 The generalised global error schemes

The AMISE is one of the most significant segments in bandwsdflection. By using symmetric kernels, the AMISE and
its corresponding optimal bandwidth for the multivariaterriel density estimator are derived. In this section, wee ste
global error schemes of the family d@fdimensional spherically symmetric polynomial kernelq2r5). We first state the
basic definitions before stating the theorem, which willy@asignificant role in the rest of this paper.

3.1 Basic definitions

Definition 3.1: If f(x) is thed x d normal (Gaussian) distribution which is pairwise uncatet (i.ex ~ N (0, X))whereX
is the covariance matrix, then the Hessian matriy of) denoted by is:

3%%") 0 .- 0 0
0 0
H= : : (3.1)
0 0
O 0 - 0 %fT%l")
Definition 3.2: The trace of the Hessian matrk in (10) denoted by? is givén by:
2 52 2 2
vzf(x)zaaggudag;)+86];(§‘)+-~-+%(§‘) (3.2)

Definition 3.3: Let f be ad-variate function and be a sequence af x 1 vectors with all components tending to zero. Also,
let D (x) be the vector of first-order partial derivatives ond# be the Hessian matrix ir8(1), thed x d matrix having

2
(4, j)entry equal oL — g ;@ # j. Then, assuming that all entries &f are continuous in a neighbourhood:of

Oz ;0 j
we have:

m 1 T T n—1 1 T n T

t) = —————(t Dy)(t' Hyt t' Hst t't 3.3
FOc 0= 569+ 3 (g, — gy FTPAGETHAA™ 4 5 (670" + 0(eTe) (33)
Theorem 3.4 Supposef is continuously differentiable an#’,,, (t) is any differentiable multivariate spherically symmetric
polynomial kernel that is parameterised By = h1;, which satisfies

Uim :/ (tTt) Km(t)dt, 0<i<m, m=1,2 < co (3.4)
RA
such that
. Upm=14 ,1=0
it. Ujm = 04 ,0<i<m-—1 (3.5)
i, Uipm = Kom - lg , 1=m
If in addition, fRd(Vsz(x))zdx = ||V2mf||3 is the generalised constant of squared integrable muliterGaus-
sian distribution with meang. = (1, p2, - - - ,ud)T equals zero and pair-wise uncorrelated covariance majix =
diag(c?, 03, -, o2), then the optimal asymptotic bandwidth parameter is given b
D T
2m)! d IHamo 1
LT ) 3.6)
(4m) [Kom - 1a]”[IV2™ I3

and the corresponding optimal asymptotic mean integratgeheed error is

d
2 dram

d
d+ 4 4 d+4m m
+4m (4m) + ’VmeHZ) niﬁ (3.7)

Ty ) NI 2 (0 107

whereK’5 and||K*||3 are given inProposition 3.5.
Proof: Now, the AMISE for (L.4) is given by:

AMISE fj, (x) = (

AMISE fi1 (x) = AISB fiz(x) + AIV fr1(x) (3.8)
where
AISB fex (x) = / Biag fix (x)dx (3.9)
RrRd
and
AWV fer(x) = / Var fex (x)dx (3.10)
Rd
The bias in 8.9) is given by: R R
Biasfu (x) = Efu(x) — f(x) (3.11)
If we substitute 1.2) into (3.12) and simplify, we have:
Biasfi(x) = | K(t)f(x— tH?))dt — f(x) (3.12)
R

Thus, on using3.1) and @.3) and on using the moment conditions 8f%), the bias in 8.12) reduces to:

Biasfr (x) = T;)!tr{(/w (tT6) " K (t)dt) (H2H  H2)  } + o((tTt)HZ) " (3.13)
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Using Definition (.2), the bias becomes:
1 Te\m 2 ° T m
(Zm)![/R , (676" K (6)dt][V2 (0] ™ [tr(ED)™] + of (7 6)H) (3.14)

Squaring both sides 08(14) and using the bandwidth matrBd = hl; and Definition 3.2 and then substituting in®.9),
the AISB is obtained as:

Biasfy (x) =

AISBJ (X) = ——— (Ko - |d]2[Hv2’”fH2}2[h4m] (3.15)
’ ((emn?™ " 2
where
Koy = / (tTt)" K (t)dt (3.16)
Rd
The variance term is given by: A A .
Var fr(x) = Ef4(x) — E?fr1(x) (3.17)
On substituting 1.2) into (3.17) and using the necessary assumptions as in the case of eiasve:
~ —1 —1 2
Var fa(x) = (nH?) K2(t)f(x — tH2)dt — [(nH?) K2(t)f(x — tH?)dt] (3.18)
R4 R4

Hence, following similar algebraic substitution and Taidseries expansion argument as in the case of bias and alsthg
assumptions,3.18 becomes:

Varfu(x) = (B | K| £(x) (3.19)
where

K115 = /Rd K2(t)dt (3.20)

is thed-dimensional squarefi,-norm of K'(t). On substituting§.19 into (3. l]) the resulting equation becomes:
AV fex(x / Varfu(x)dx = (nHE) K2 (3.2)
Also, using the parameterisatidfi = h2l,; and Definition 3.2,%.21) becomes:

AV fy(x) = (nh®) || K13 (322)
Plugging back3.15 and @.22 into (3.8), we have:

N 2 || w2m ¢ ay—1 2
AMISE i () = 7o am 1 [ 727 1+ o)™ 15 (3.23)
Thus, on optimizing3.23), the generalised asymptotic optimal bandwidth is:
1
2m)1)? d didm 1
hopt 2 ((( m)!) K3 > 5) n_ @ram (3.24)
(4m) [Kom - 1a]~[IV2™ f1I5

On substituting §.24) into (3.23, then AMISE is:

2 d+4m

d+ 4 4 m
A T I T (102 T ([P ) @2s)

a@m) " ((2m). >2]

The proposition below deals with the second moment and sduas-norm of anyd-dimensional spherically symmetric
polynomial kernel.

Proposition 3.5 Under the same conditions in Theorem S.Mﬁp is the proposed family af-dimensional spherically
symmetric polynomial kernels i2.§), then the second moment is given by

d & (d+2i)
H(

AMISE fj, (x) 2 (

, p<
2mtdiimidr2) TS
Ky = (3.26)
2m 4 1
2m+r§r( d)
m+ - , P —> 00
r) 2 P

and the squared.,-norm is

IKS|2 = rz+2p+1 2(p)ir2 (3.27)
4 , p— 00
242
Proof: Substituting 2.5) into (3.16), we have:
d (d+2p)T ( +p) P
K2m:/ ] tf’"tht:/ zm 791: dt
[l s [ 3 an R
d + 2 d + 1 T
( p)l (3 p) / p2md=1(1 _ rz)pdr/ Sint—20,d0; x (3.28)
2(p)tm2 0 0

T T 2w
/ sin®=30,d0, x - -+ x / sinB,_od0y_» d0y_1
0 0 0
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Therefore:

d 4 d+2i
2m+d ;7 (2m+d+ 2i)

This proves the first part 0B(26). However, ap — oo, the second part o8(26) is obtained. Hence:

P
(d + 2i)
2 dH 2 dZ2 P
Ky — m+d o 2m +d+ 2)
ik B P %r(m-i-—) , P — 00

2
Also, on substituting2.5) into (3.20, we have:

IKIE= [ ie)ar

d 2 1 ™
- <w> /Ord—l((l_rz)")zdr/ sin?=20,d0; x

2(p)!7r% 0

T ™ 27
/ Sind7392d92 X oo X / sin9d,2d0d,2/ dfg_1
0 0 0

Therefore:

|K |2 = (2p)! m ((d+ 2p)T (£ +p)>

r4+3 2(p)in?
This proves the first part oB(27). However, ap — oo, the second part o3(27) is obtained. Therefore:

% (d+2p)r(g+p)>
2p)! » S
e < 2 re

2
1Kz =

y , P — 00

2472
The generalised second moment and the squageorm of the family ofd-dimensional spherically symmetric polynomial
kernels above have completely removed the rigour of firstutaling the second moment aig-norm of any kernel in this
family before calculating its optimal asymptotic bandwi@ind the corresponding optimal AMISE.

4 The generalised efficiency scheme

Extensive work has been done on univariate kerri8s However, Wand and Jone%7] did an insight into the efficiency of
the second-order multivariate kernels. Their method igthas taking the ratio of the spherically symmetric kernkdtiee
to the product kernel. Hence, we develop a method that ierdift from the technique adopted by Wand and Jahdsgven
though our method is motivated by the work of Silverma] |

We focus our attention on the derivation of the general sehiemvhich the efficiency of any-dimensional spherically
symmetric polynomial kernel can be calculated. Kernel iefficy is measured in comparison to Epanechnikov kernelt Tha
is, it is the ratio of the asymptotic mean integrated squareor of Epanechnikov kernel to the asymptotic mean integra
squared error of any other symmetric kernels. The choiceeEpanechnikov kernel is that it yields the minimum AMISE

[16, 17).
The efficiency of any symmetric kernel in the sense of eqogic?) is defined by:
CKe) |2
Eff(Kop) = - (4.1
= (i)
4
[16] whereC' (K gy) fK t)2dt) 5 is a constant of any given kernel under discussion@q# ) is the Epanech-

nikov kernel constant Thus by drawmg inspiration fromlj, the general expression for the efficiency of multivariate
kernels based on the spherically symmetric kernel apprisadéfined by:

dt+dm

amiesy _ [ CPMEE) N T
Eff (KS'“)_<WK§,J (4.2)

2 4m
whereC?™(K5,) = (Kj )d+am (||KS{|§)‘I+4m is the generalised higher-order constants of dmimensional mul-
tivariate spherically symmetric kernelKS, and ||K5||§ are as defined in3(16) and @.20 respectively. In addition,

C?m(K?#) in equation 4.2) is the generalised higher-order constant of drdimensional spherically symmetric Epanech-
nikov kernel. In what follows, we state the generalised igfficy scheme, which is presented in Theorem 4.1.
Theorem 4.1 Under the same conditions in Theorem 3. 4Kf is the proposed family af-dimensional spherically sym-

metric polynomial kernels ir2(3), then the generalised— dlmen3|onal spherically symmetric polynomial kernel ia $ense
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of (1.2) is given by

p . —1\ zm
d+2 d+2i
I1 : x
2m+d+2 i712m+d:22

(4 +3) pld(d+2)r(d) \? e
@@ +2p+y\2d+2pr@d+p) |

EffPM(Kg,) = N (4.3)
r(d)d+2) ZT"X
2m+%*%(2m+d+2)r(%+m)
204174 ((d(d+2)(4)\
rZ+3)\ a? e

Proof If K;fe(t) is the d-dimensional spherically symmetric classical Epaneahnikernel in (2.1b), then with3(16), we
have:

¢ om (d+2T(%+1)

d
Kom = t?mtht:/ :
n = [ ST K@= [ ST

d+2)r(¢+1) st m
= #/ p2mtd=1lq _ rz)dr/ sin?=20,d6; x
2r2 0 0

™

tT't)dt

T 2T
sin®=30,d0, x - -+ x / Sinf,_pd04_» dbg_1
0 0 0

Therefore:
Koy — d(d+2) @.)
@2m+d)2m+d+2)
Also, putting (2.1b) in 8.20), we have:
K13 = [ (<e)ae
R4
@d+2r(d+1)\* /2 2 [T
(et / rd=1(1 — 1224y / sin—20,d6, x
272 0 0
T T 27
/ Sind7392d92 X oo X / sin9d,2d9d,2/ dfg_1
0 0 0
Therefore:
d d 2
s (d+2)r(4 +1)
||KH§:2 d < dz (4.5)
r(s+3) 2r2

On substituting4.4) and @.5) and using Proposition 3.5 with necessary simplificatiae&ly4.3) which completes the proof.

5 Numerical verification of results

In this section, the results in Sections 3 and 4 shall be edrlfiy means of numerical simulations. In doing this, we agslm
that the size of the samples is large. Throughout this secfiox) is assumed to be the unitvariate Gaussian distribu-
tions (see 16], pp 86). The AMISE of some 2-dimensional (biweight, triglei and quadriweight) kernels considered were
obtained using a two dimensional Blood fat concentratiota @& sizen = 320 (see 15]), and the efficiencies of som&
dimensional (biweight, triweight and quadriweight) kden@for d = 1, 2, 3, 4,5, 6) are obtained. These are achieved using
the platform of Mathematica 6.0 and the graphs plotted uSiRgITAB 17 [12] and Mathematica 6.0LB].
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[la. AMISE of Bivariate Biweight kernel,

a

[1b. AMISE of Bivariate Triweight kernel

[Lc. AMISE of Bivariate Quadriweight kerne ,

Figure 1. AMISE of Bivariate kernels using Blood fat concentration data 320.
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[2a. Boxplot of efficiency ofl-dimensional spherically symmetric biweight kernel at different
dimension]
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[2b. Boxplot of efficiency ofi-dimensional spherically symmetric triweight kernel at different
dimension]
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[2c.  Boxplot of efficiency ofd-dimensional spherically symmetric quadriweight kernel at
different dimension]
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Figure 2. Efficiencies of kernels
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10
Biw eight _Kernel
Trive eight. <ernel
QDuadrive eight _Kermel
o8
L
>
> i
= os
>
=
=
Ll
O -1
o>
[a N8 )
(8] p=d L 3 I [ &3 s mlel

Comparison of efficiencies of some spherically symmetrioéks for different dimensions

6 Discussion of results and conclusion

This work exhibits the convention in literature - se§][and [17]. That is, as the order of the efficiency increases, the
efficiency decreases. However, it is evident in the boxploFigures 2a through 2c that the efficiency of these kernels
decreases as the dimension of the kernels increases. atstie the observation that relative to the Epanechnikoreker
the biweight kernel (whep = 2 in equation 2.5)), the triweight kernel (whep = 3 in equation 2.5)) and the quadriweight
kernel (whenp = 4 in equation 2.5)) shed about 1%, 1% and 2% respectively in efficiencydfor 1. Examining these
figures for higher dimensional kernel fdr= 2, it is observed that relatives to the Epanechnikov kettheke is 14% loss

in efficiency for biweight kernel, the triweight kernel 1c85% in efficiency and the quadriweight kernel lost about 32% i
efficiency. Ford = 3,4, 5, 6; the biweight kernel lost 24980% 35%, 39% respectively in efficiency; the triweight kernel
lost about 38%49%, 53% 60% respectively in efficiency; and the quadriweight kerost about 49%60%, 68% 73%
respectively in efficiency. These may have been attribudeéle curse of multidimensionality.

A further comparison of these three beta densities (bivtetgiveight and quadriweight) shows that the biweight kern
gives relatively better efficiency than the triweight ancadaweight kernels. This is visible in Figure 4 where theseai
sharp drop in the efficiencies of both the triweight and queelght kernels as their dimension increases. This clesitws
that the triweight and quadriweight kernel are highly ir@éint with the increase efficiency loss as the dimensionaises.
These remarks are evidently buttressed with the smallfeSBIESE of the bivariate biweight kernel and the smoothness o
the AMISE plot of the bivariate biweight kernel using the ddiofat concentration data in Figure 1la in comparison with the
AMISE plots of bivariate triweight and bivariate quadrigkt in Figure 1b and 1c respectively.

In this work, we are able to propose the familydtlimensional spherically symmetric polynomial kerneldsd the
rigour of first computing the second moment and its corredpnl,-norm of any spherically symmetric polynomial kernel
for each dimension before calculating their AMISE, the wyati bandwidth and their efficiencies have been simplifiedusTh
a new computational approach has been developed for the EMiftimal bandwidth and efficiency of the family df
dimensional spherically symmetric polynomial kernelse Hpanechnikov kernel was used as a theoretical underpirfoin
the derivation of the efficiency formula. The constants efrtiew generalised family of kernels were compared with iexgjst
one in the literature and were seen to be in consonance vagtetin the literature (see Table 1).

In addition, the new generalised efficiency formula was erpented with three of the beta kernels - biweight, triweigh
and quadriweight kernel; our findings reveal that the bilelgrnel has relatively high efficiency values at both trghker
dimension and higher-order. However, we cannot just junip @oncluding that the biweight kernel supersedes all other
kernels in the beta family in terms of efficiency. More inwgation is needed in this regard.
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