
Palestine Journal of Mathematics

Vol. 5(Special Issue: 1) (2016), 259–268 © Palestine Polytechnic University-PPU 2016

On the Construction of the Family of d-Dimensional Spherically
Symmetric Polynomial Kernels

B. A. Afere and F. O. Oyegue

Communicated by Ayman Badawi

MSC 2010 Classifications: 62G07

Keywords and phrases: Kernel density estimator, spherically symmetric kernel,generalised optimal bandwidth.

Abstract. In this paper, the family of generalisedd-dimensional spherically symmetric polynomial kernels ispresented.
Based upon the general convention on deriving the asymptotic mean integrated squared error (AMISE) and its corresponding
optimal bandwidth(hopt); the generalised scheme for AMISE andhopt as well as its generalised efficiency are derived. The
advantage of this is that, it completely removes the rigour of first calculating both the second moment andL2-norm of any
kernel in the family before obtaining thehopt as well as getting the AMISE and their corresponding efficiency of the kernel.
In addition, it is useful for visual comparison of kernel estimates in a data-driven method.

1 Introduction
Density estimation methods are robust and elegant smoothing methods used for solving statistical (and its related) problems.
To most statisticians, they are methods used for constructing an estimate of the true probability density function (pdf) from the
observed data. That is, a random variableX ∈ R

d has a densityf if, for all Borel sets A∈ R
d,
∫

Af(x)dx = P{x ∈ A}.
The major problem here is to estimatef(x) from an independent identically distributed (i.i.d.)d-variate random sample
X1,X2, · · · ,Xn drawn fromf [5].

There are basically two approaches to density estimation: the parametric and nonparametric approaches. The nonpara-
metric methods consist of sophisticated alternatives to the conventional parametric models for studying multivariate data [11].
This is because the methods eliminate the need for model specification. That is, they can be used with arbitrary distributions
and without the assumptions that the forms of the underlyingdensities are known [15].

In this paper, the focus is on one class of nonparametric density estimators which is kernel density estimators. The kernel
density estimator is a more reliable statistical techniquethat deals with some of the problems associated with histogram which
is discussed in Bowman and Azzalini [2] , Härdle,et al [10], Silverman [16]. Though, the procedure was first introduced in
1951 in an unpublished paper by Fix and Hodges [9], the first published work in this area of mathematical statistics is due
to Rosenblatt [14], and the scope widened by Parzen [13]. Since then, and with the advent of computers, this area hasbeen
expanded greatly.

Given a random sampleX1,X2, · · · ,Xn drawn from a common densityf , the d-dimensional multivariate kernel
density estimator is given by:

f̂h(x) =
1

nhd

n
∑

i=1

K(
x−Xi

h
) (1.1)

wherex = (x1, x2, · · · , xd)
T andXi = (Xi1,Xi2, · · · , Xid)

T,i = 1, 2, · · · , n. H is a symmetric positive definited× d
nonsingular matrix called the bandwidth matrix which generalizes the bandwidthh andK is a d-variate kernel function
which satisfies

∫

RdK(x)dx = 1 [4]. We make use of the parameterisation (H = hId) given by Cacoullos [3] rather than
the range of bandwidths suggested by Epanechnikov [7] and Deheuvels [4], and thus the multivariate kernel density estimator
in (1.1) becomes:

f̂h(x) =
1

nhd

n
∑

i=1

K(
x−Xi

h
) (1.2)

wherex, Xi andK are as given in (1.1) andh is the univariate smoothing parameter [3]. To use the parameterisation
H = hId effectively, the components of the data vector should be commensurate. This can be achieved by using appropriate
transformation in the data set [6, 16, 19]. This transformation involves either pre-scaling each axis or pre-whitening the data.
A detailed study of this can be found in [8].

Many of the studies in density estimation have centred on theunivariate kernel density estimation [16]. This work,
however, focuses on the multivariate kernels with emphasison the classical spherically symmetricd-dimensional polynomial
kernels. The basic motivation for considering (1.2) is that it enables one to obtain a closed form expression forthe asymptotic
mean integrated squared error (AMISE) as well as its corresponding optimal bandwidths which enable us to derive the
generalised AMISE, optimal bandwidth and the generalised efficiency.

The global accuracy used in measuring (1.2) is the mean integrated squared error (MISE) which is given as:

MISEf̂H(x) = E

∫

R

(f̂H(x)− f(x))
2
dx (1.3)

Thus, from [17], the expression (1.3) can be put into the form:

MISEf̂H(x) =

∫

R

E[f̂H(x)− fH(x)]2dx +

∫

R

Varf̂H(x)dx (1.4)

With the introduction above, the remaining part of this paper is organized as follows: Section 2 centres on the construc-
tion of the family of thed-dimensional spherically symmetric polynomial kernels. Section 3 covers the derivation of the
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generalised global error schemes. Section 4 deals with how the generalised efficiency scheme for anyd-dimensional spheri-
cally symmetric polynomial kernel is obtained. While Section 5 focuses on numerical verification of results, Section 6 sheds
light on the discussion of results and equally gives the concluding remarks.

2 The family of d-dimensional spherically symmetric polynomial kernels
The family ofd-dimensional spherically symmetric polynomial kernels isheuristically deduced as follows: Thed-dimensional
spherically symmetric kernel function of the classical Epanechnikov kernel is:

KS
e,d(t) =















d(d + 2)Γ( d2 )

4π
d
2

(1− t
T
t) , |tT

t| ≤ 1

0 , elsewhere















. (2.1a)

or

KS
1, d(t) =















(d + 2)Γ( d2 + 1)

2π
d
2

(1− t
T
t) , |tT

t| ≤ 1

0 , elsewhere

. (2.1b)

whered ≥ 1 andΓ(·) is a gamma function (see Afere and Ishiekwene [1] for the construction of (2.1a) and (2.1b). Whend =
1, we obtain the classical 1-dimensional Epanechnikov kernel density function. Whend = 2, we obtain the 2 - dimensional
spherically symmetric Epanechnikov kernel function ([17]; pp 105). Also, thed-dimensional spherically symmetric kernel
function of the classical biweight kernel is:

KS
b,d(t) =















(d + 2)(d + 4)Γ( d2 + 1)

8π
d
2

(1− t
T
t)

2
, |tT

t| ≤ 1

0 , elsewhere

(2.2a)

or

KS
2,d(t) =















(d + 4)Γ( d2 + 2)

4π
d
2

(1− t
T
t)

2
, |tT

t| ≤ 1

0 , elsewhere

(2.2b)

whered ≥ 1 andΓ(·) is a gamma function (see Afere and Ishiekwene [1] for the construction of (2.2a) and (2.2b)). When
d = 1, we obtain the classical 1-dimensional biweight kernel density function. Whend = 2, we obtain the 2-dimensional
spherically symmetric biweight kernel function. Based on (2.1b) and (2.2b), the proposed spherically symmetric kernel
functions of the classical triweight kernel and classical quadriweight kernels are respectively:

KS
3,d(t) =















(d + 6)Γ( d2 + 3)

12π
d
2

(1− t
T
t)

3
, |tT

t| ≤ 1

0 , elsewhere

(2.3)

KS
4,d(t) =















(d + 8)Γ( d2 + 4)

48π
d
2

(1− t
T
t)

4
, |tT

t| ≤ 1

0 , elsewhere

(2.4)

whered ≥ 1 andΓ(·) is a gamma function. Thus, the proposed generalised family of d-dimensional spherically symmetric
polynomial kernels is:

KS
d,p(t) =















(d + 2p)Γ( d2 + p)

2(p)!π
d
2

(1− t
T
t)

p
, |tT

t| ≤ 1

0 , elsewhere

(2.5)

Whenp = 0, 1, 2, 3, we have respectively thed-dimensional spherically symmetric uniform, Epanechnikov, biweight
and triweight kernels. Asp → ∞, (2.5) becomes ad - dimensional spherically symmetric Gaussian kernel. The constants of
versions of (2.1) [both a and b] and (2.2) [both a and b] are presented in Table 1.

Table 1. Constants of versions of Epanechnikov and Biweight kernels
Kernel / Dimension Epanechnikov Biweight

d(d+2)Γ( d2 )

4π
d
2

(d+2)Γ( d2 + 1)

2π
d
2

(d+2)(d+4)Γ( d2 + 1)

8π
d
2

(d+4)Γ( d2 + 2)

4π
d
2

1 3
4

3
4

15
16

15
16

2 2
π

2
π

3
π

3
π

3 15
8π

15
8π

105
32π

105
32π

4 6
π

2
6
π

2
12
π

2
12
π

2

5 105
16π2

105
16π2

945
64π2

945
64π2



On the Construction of the Family ofd-Dimensional Spherically· · · 261

3 The generalised global error schemes
The AMISE is one of the most significant segments in bandwidthselection. By using symmetric kernels, the AMISE and
its corresponding optimal bandwidth for the multivariate kernel density estimator are derived. In this section, we state the
global error schemes of the family ofd-dimensional spherically symmetric polynomial kernels in(2.5). We first state the
basic definitions before stating the theorem, which will play a significant role in the rest of this paper.

3.1 Basic definitions
Definition 3.1: If f(x) is thed×d normal (Gaussian) distribution which is pairwise uncorrelated (i.e.x ∼ N(0 , Σ))whereΣ
is the covariance matrix, then the Hessian matrix off(x) denoted byH is:

H =























∂2f (x)

∂x2
1

0 · · · 0 0

0 0
...

.. .
...

0 0

0 0 · · · 0 ∂2f (x)

∂x2
d























(3.1)

Definition 3.2: The trace of the Hessian matrixH in (10) denoted by∇2 is given by:

∇2f(x) =
∂2f(x)

∂x2
1

+
∂2f(x)

∂x2
2

+
∂2f(x)

∂x2
3

+ · · · +
∂2f(x)

∂x2
d

(3.2)

Definition 3.3: Let f be ad-variate function andt be a sequence ofd× 1 vectors with all components tending to zero. Also,
let Df (x) be the vector of first-order partial derivatives off andH be the Hessian matrix in (3.1), thed × d matrix having

( i , j ) entry equal to∂2f (x)
∂xi∂xj

= 0 ; i 6= j. Then, assuming that all entries ofH are continuous in a neighbourhood ofx,

we have:

f(x + t) = f(x) +
m
∑

n=1

{
1

(2n− 1)!
(tTDf )(t

THft)
n−1

+
1

(2n)!
(tTHf t)

n
} + o(tT

t) (3.3)

Theorem 3.4: Supposef is continuously differentiable andKm(t) is any differentiable multivariate spherically symmetric
polynomial kernel that is parameterised byH = hId, which satisfies:

Uim =

∫

Rd

(tT
t)

i
Km(t)dt, 0 ≤ i ≤ m, m = 1, 2, · · · , < ∞ (3.4)

such that:
i. Uim = 1d , i = 0

ii. Uim = 0d , 0 < i ≤ m− 1

iii. Uim = K2m · Id , i = m















(3.5)

If in addition,
∫

Rd (∇
2mf(x))

2
dx = ||∇2mf ||22 is the generalised constant of squared integrable multivariate Gaus-

sian distribution with meansµ = (µ1, µ2, · · · , µd)
T equals zero and pair-wise uncorrelated covariance matrix

∑

=
diag(σ2

1, σ
2
2, · · · , σ

2
d
), then the optimal asymptotic bandwidth parameter is given by:

hopt
∼= (

((2m)!)2

(4m)
‖K‖2

2
d

[K2m · Id]
2 ‖∇2mf‖2

2

)

1
d+4m

n
−

1
d+4m (3.6)

and the corresponding optimal asymptotic mean integrated squared error is:

AMISEf̂h(x) ∼= (
d + 4m

d(4m)
)[

(4m)

((2m)!)2
]

d
d+4m

(d · ‖K‖2
2)

4m
d+4m ((K2m · Id)

2)
d

d+4m (
∥

∥

∥
∇2mf

∥

∥

∥

2

2
)

d
d+4m

n
−

4m
d+4m (3.7)

whereKS
2m and||KS||22 are given inProposition 3.5.

Proof: Now, the AMISE for (1.4) is given by:

AMISEf̂H(x) = AISBf̂H(x) + AIV f̂H(x) (3.8)

where

AISBf̂H(x) =

∫

Rd

Bias2f̂H(x)dx (3.9)

and

AIV f̂H(x) =

∫

Rd

Varf̂H(x)dx (3.10)

The bias in (3.9) is given by:
Biasf̂H(x) = Ef̂H(x)− f(x) (3.11)

If we substitute (1.2) into (3.11) and simplify, we have:

Biasf̂H(x) =

∫

Rd

K(t)f(x− tH
1
2 ))dt− f(x) (3.12)

Thus, on using (3.1) and (3.3) and on using the moment conditions of (3.5), the bias in (3.12) reduces to:

Biasf̂H(x) =
1

(2m)!
tr{(
∫

Rd

(tT
t)

m
K(t)dt)(H

1
2 HfH

1
2 )

m
} + o((tT

t)H
1
2 )

m
(3.13)
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Using Definition (1.2), the bias becomes:

Biasf̂H(x) =
1

(2m)!
[

∫

Rd

(tT
t)

m
K(t)dt][∇2f(x)]

m
[tr(H)m] + o((tT

t)H)
m

(3.14)

Squaring both sides of (3.14) and using the bandwidth matrixH = hId and Definition 3.2 and then substituting into (3.9),
the AISB is obtained as:

AISBf̂h(x) =
1

((2m)!)2
[K2m · Id]

2[
∥

∥

∥∇2mf
∥

∥

∥

2

2
]
2

[h4m] (3.15)

where

K2m =

∫

Rd

(tT
t)

m
K(t)dt (3.16)

The variance term is given by:
V arf̂H(x) = Ef̂2

H
(x)− E

2f̂H(x) (3.17)

On substituting (1.2) into (3.17) and using the necessary assumptions as in the case of bias, we have:

V arf̂H(x) = (nH
1
2 )

−1
∫

Rd

K2(t)f(x− tH
1
2 )dt− [(nH

1
2 )

−1
∫

Rd

K2(t)f(x− tH
1
2 )dt]

2

(3.18)

Hence, following similar algebraic substitution and Taylor’s series expansion argument as in the case of bias and usingall the
assumptions, (3.18) becomes:

V arf̂H(x) = (nH
1
2 )

−1
‖K‖2

2 f(x) (3.19)

where

‖K‖2
2 =

∫

Rd

K2(t)dt (3.20)

is thed-dimensional squaredL2-norm ofK(t). On substituting (3.19) into (3.11), the resulting equation becomes:

AIV f̂H(x) =

∫

Rd

V arf̂H(x)dx = (nH
1
2 )

−1
‖K‖2

2 (3.21)

Also, using the parameterisationH = h2Id and Definition 3.2, (3.21) becomes:

AIV f̂h(x) = (nhd)
−1

‖K‖2
2 (3.22)

Plugging back (3.15) and (3.22) into (3.8), we have:

AMISEf̂h(x) =
h4m

((2m)!)2
[K2m · Id]

2
∥

∥

∥
∇2mf

∥

∥

∥

2

2
+ (nhd)

−1
‖K‖2

2 (3.23)

Thus, on optimizing (3.23), the generalised asymptotic optimal bandwidth is:

hopt
∼= (

((2m)!)2

(4m)
‖K‖2

2
d

[K2m · Id]
2 ‖∇2mf‖2

2

)

1
d+4m

n
−

1
d+4m (3.24)

On substituting (3.24) into (3.23), then AMISE is:

AMISEf̂h(x) ∼= (
d + 4m

d(4m)
)[

(4m)

((2m)!)2
]

d
d+4m

(d · ‖K‖2
2)

4m
d+4m ((K2m · Id)

2)
d

d+4m (
∥

∥

∥
∇2mf

∥

∥

∥

2

2
)

d
d+4m

n
−

4m
d+4m (3.25)

The proposition below deals with the second moment and squared L2-norm of anyd-dimensional spherically symmetric
polynomial kernel.
Proposition 3.5: Under the same conditions in Theorem 3.4, ifKS

d,p
is the proposed family ofd-dimensional spherically

symmetric polynomial kernels in (2.5), then the second moment is given by:

KS
2m =



























d

2m + d

p
∏

i=1

(d + 2i)

(2m + d + 2i)
, p < ∞

2m+ d
2 −

1
2

Γ( d2 )
Γ(m +

d

2
) , p → ∞

(3.26)

and the squaredL2-norm is:

||KS||22 =























(2p)!
π

d
2

Γ( d2 + 2p + 1)

(

(d+ 2p)Γ( d2 + p)

2(p)!π
d
2

)2

, p < ∞

1

2dπ
d
2

, p → ∞

(3.27)

Proof: Substituting (2.5) into (3.16), we have:

K2m =

∫

Rd

∑d

i=1
t2mi K(t)dt =

∫

Rd

∑d

i=1
t2mi

(d + 2p)Γ( d2 + p)

2(p)!π
d
2

(tT t)
p
dt

=
(d+ 2p)Γ( d2 + p)

2(p)!π
d
2

∫ 1

0
r2m+d−1(1− r2)

p
dr

∫ π

0
sind−2θ1dθ1×

∫ π

0
sind−3θ2dθ2 × · · · ×

∫ π

0
sinθd−2dθd−2

∫ 2π

0
dθd−1

(3.28)
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Therefore:

K2m =
d

2m + d

p
∏

i=1

(d + 2i)

(2m + d + 2i)

This proves the first part of (3.26). However, asp → ∞, the second part of (3.26) is obtained. Hence:

K2m =























d

2m + d

p
∏

i=1

(d + 2i)

(2m + d + 2i)
, p < ∞

2m+ d
2 −

1
2 π−

d
2 Γ(m +

d

2
) , p → ∞

Also, on substituting (2.5) into (3.20), we have:

||K||22 =

∫

Rd

(K(t))2dt

=

(

(d + 2p)Γ( d2 + p)

2(p)!π
d
2

)2
∫ 1

0
rd−1((1− r2)

p
)
2
dr

∫ π

0
sind−2θ1dθ1×

∫ π

0
sind−3θ2dθ2 × · · · ×

∫ π

0
sinθd−2dθd−2

∫ 2π

0
dθd−1

Therefore:

||K||22 = (2p)!
π

d
2

Γ( d2 + 3)

(

(d + 2p)Γ( d2 + p)

2(p)!π
d
2

)

This proves the first part of (3.27). However, asp → ∞, the second part of (3.27) is obtained. Therefore:

||K||22 =























(2p)!
π

d
2

Γ( d2 + 3)

(

(d+ 2p)Γ( d2 + p)

2(p)!π
d
2

)

, p < ∞

1

2dπ
d
2

, p → ∞

The generalised second moment and the squaredL2-norm of the family ofd-dimensional spherically symmetric polynomial
kernels above have completely removed the rigour of first calculating the second moment andL2-norm of any kernel in this
family before calculating its optimal asymptotic bandwidth and the corresponding optimal AMISE.

4 The generalised efficiency scheme
Extensive work has been done on univariate kernels [16]. However, Wand and Jones [17] did an insight into the efficiency of
the second-order multivariate kernels. Their method is based on taking the ratio of the spherically symmetric kernel relative
to the product kernel. Hence, we develop a method that is different from the technique adopted by Wand and Jones [17], even
though our method is motivated by the work of Silverman [16].

We focus our attention on the derivation of the general scheme in which the efficiency of anyd-dimensional spherically
symmetric polynomial kernel can be calculated. Kernel efficiency is measured in comparison to Epanechnikov kernel. That
is, it is the ratio of the asymptotic mean integrated squarederror of Epanechnikov kernel to the asymptotic mean integrated
squared error of any other symmetric kernels. The choice of the Epanechnikov kernel is that it yields the minimum AMISE
[16, 17].

The efficiency of any symmetric kernel in the sense of equation (1.2) is defined by:

Eff(Ksk) =

(

C(Ke)

C(Ksk)

) 5
4

(4.1)

[16] whereC(Ksk) = (K2)
2
5 (
∫

K(t)2dt)
4
5 is a constant of any given kernel under discussion andC(Ke) is the Epanech-

nikov kernel constant. Thus, by drawing inspiration from (4.1), the general expression for the efficiency of multivariate
kernels based on the spherically symmetric kernel approachis defined by:

Eff2m(KS
sk) =

(

C2m(KS
e )

C2m(KS
sk
)

) d+4m
4m

(4.2)

whereC2m(KS
sk
) = (KS

2m)
2

d+4m (
∥

∥KS
∥

∥

2
2)

4m
d+4m is the generalised higher-order constants of anyd-dimensional mul-

tivariate spherically symmetric kernel.KS
sk

and
∥

∥KS
∥

∥

2
2 are as defined in (3.16) and (3.20) respectively. In addition,

C2m(KS
e ) in equation (4.2) is the generalised higher-order constant of thed-dimensional spherically symmetric Epanech-

nikov kernel. In what follows, we state the generalised efficiency scheme, which is presented in Theorem 4.1.
Theorem 4.1: Under the same conditions in Theorem 3.4, ifKS

d,p
is the proposed family ofd-dimensional spherically sym-

metric polynomial kernels in (2.3), then the generalisedd−dimensional spherically symmetric polynomial kernel in the sense



264 B. A. Afere and F. O. Oyegue

of (1.2) is given by:

Eff2m(KS
d,p) =







































































































d + 2

2m + d + 2

(

p
∏

i=1

d + 2i

2m + d = 2i

)−1




1
2m

×





2Γ( d2 + 3)

(2p)!Γ( d2 + 2p + 1)

(

p!(d(d+ 2))Γ( d2 )
2(d + 2p)Γ( d2 + p)

)2


 , p < ∞





Γ( d2 )(d+ 2)

2m+ d
2 −

1
2 (2m + d + 2)Γ( d2 +m)





1
2m

×





2d+1πd

Γ( d2 + 3)

(

(d(d+ 2))Γ( d2 )

4π
d
2

)2


 , p → ∞

(4.3)

Proof If KS
de
(t) is thed-dimensional spherically symmetric classical Epanechnikov kernel in (2.1b), then with (3.16), we

have:

K2m =

∫

ℜd

∑d

i=1
t2mi K(t)dt =

∫

ℜd

∑d

i=1
t2mi

(d+ 2)Γ( d2 + 1)

2π
d
2

(tT t)dt

=
(d + 2)Γ( d2 + 1)

2π
d
2

∫ 1

0
r2m+d−1(1− r2)dr

∫ π

0
sind−2θ1dθ1×

∫ π

0
sind−3θ2dθ2 × · · · ×

∫ π

0
sinθd−2dθd−2

∫ 2π

0
dθd−1

Therefore:

K2m =
d(d + 2)

(2m + d)(2m + d + 2)
(4.4)

Also, putting (2.1b) in (3.20), we have:

||K||22 =

∫

Rd

(K(t))2dt

=

(

(d + 2)Γ( d2 + 1)

2π
d
2

)2
∫ 1

0
rd−1(1− r2)

2
dr

∫ π

0
sind−2θ1dθ1×

∫ π

0
sind−3θ2dθ2 × · · · ×

∫ π

0
sinθd−2dθd−2

∫ 2π

0
dθd−1

Therefore:

||K||22 = 2
π

d
2

Γ( d2 + 3)

(

(d+ 2)Γ( d2 + 1)

2π
d
2

)2

(4.5)

On substituting (4.4) and (4.5) and using Proposition 3.5 with necessary simplifications yield (4.3) which completes the proof.

5 Numerical verification of results

In this section, the results in Sections 3 and 4 shall be verified by means of numerical simulations. In doing this, we assumed
that the size of the samples is large. Throughout this section, f(x) is assumed to be the unitd-variate Gaussian distribu-
tions (see [16], pp 86). The AMISE of some 2-dimensional (biweight, triweight and quadriweight) kernels considered were
obtained using a two dimensional Blood fat concentration data of sizen = 320 (see [15]), and the efficiencies of somed-
dimensional (biweight, triweight and quadriweight) kernels (for d = 1, 2, 3, 4, 5, 6) are obtained. These are achieved using
the platform of Mathematica 6.0 and the graphs plotted usingMINITAB 17 [ 12] and Mathematica 6.0 [18].
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[1a. AMISE of Bivariate Biweight kernel]

[1b. AMISE of Bivariate Triweight kernel]

[1c. AMISE of Bivariate Quadriweight kernel]

Figure 1. AMISE of Bivariate kernels using Blood fat concentration datan = 320.
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[2a. Boxplot of efficiency ofd-dimensional spherically symmetric biweight kernel at different
dimension]

[2b. Boxplot of efficiency ofd-dimensional spherically symmetric triweight kernel at different
dimension]

[2c. Boxplot of efficiency ofd-dimensional spherically symmetric quadriweight kernel at
different dimension]

Figure 2. Efficiencies of kernels
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Comparison of efficiencies of some spherically symmetric kernels for different dimensions

6 Discussion of results and conclusion
This work exhibits the convention in literature - see [16] and [17]. That is, as the order of the efficiency increases, the
efficiency decreases. However, it is evident in the boxplot in Figures 2a through 2c that the efficiency of these kernels
decreases as the dimension of the kernels increases. This leads to the observation that relative to the Epanechnikov kernel,
the biweight kernel (whenp = 2 in equation (2.5)), the triweight kernel (whenp = 3 in equation (2.5)) and the quadriweight
kernel (whenp = 4 in equation (2.5)) shed about 1%, 1% and 2% respectively in efficiency ford = 1. Examining these
figures for higher dimensional kernel ford = 2, it is observed that relatives to the Epanechnikov kernel,there is 14% loss
in efficiency for biweight kernel, the triweight kernel lost25% in efficiency and the quadriweight kernel lost about 32% in
efficiency. Ford = 3, 4, 5, 6; the biweight kernel lost 24%, 30%, 35%, 39% respectively in efficiency; the triweight kernel
lost about 38%, 49%, 53%, 60% respectively in efficiency; and the quadriweight kernellost about 49%, 60%, 68%, 73%
respectively in efficiency. These may have been attributed to the curse of multidimensionality.

A further comparison of these three beta densities (biweight, triweight and quadriweight) shows that the biweight kernel
gives relatively better efficiency than the triweight and quadriweight kernels. This is visible in Figure 4 where there is a
sharp drop in the efficiencies of both the triweight and quadriweight kernels as their dimension increases. This clearlyshows
that the triweight and quadriweight kernel are highly inefficient with the increase efficiency loss as the dimension inceases.
These remarks are evidently buttressed with the smallness of AMISE of the bivariate biweight kernel and the smoothness of
the AMISE plot of the bivariate biweight kernel using the blood fat concentration data in Figure 1a in comparison with the
AMISE plots of bivariate triweight and bivariate quadriweight in Figure 1b and 1c respectively.

In this work, we are able to propose the family ofd-dimensional spherically symmetric polynomial kernels. Also, the
rigour of first computing the second moment and its correspondingL2-norm of any spherically symmetric polynomial kernel
for each dimension before calculating their AMISE, the optimal bandwidth and their efficiencies have been simplified. Thus,
a new computational approach has been developed for the AMISE, optimal bandwidth and efficiency of the family ofd-
dimensional spherically symmetric polynomial kernels. The Epanechnikov kernel was used as a theoretical underpinning for
the derivation of the efficiency formula. The constants of the new generalised family of kernels were compared with existing
one in the literature and were seen to be in consonance with those in the literature (see Table 1).

In addition, the new generalised efficiency formula was experimented with three of the beta kernels - biweight, triweight
and quadriweight kernel; our findings reveal that the biweight kernel has relatively high efficiency values at both the higher
dimension and higher-order. However, we cannot just jump into concluding that the biweight kernel supersedes all other
kernels in the beta family in terms of efficiency. More investigation is needed in this regard.
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