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Abstract The notion of Vector valued metric (VVM) space was introduced by K.P.R. Sastry
et al. (IJMA-3(7), 2012, 2680-2685.), by replacing real numbers with n-dimensional Euclidean
space equipped with a partial order, in the definition of metric space and proved a couple of
common fixed point theorem over such spaces. The purpose of this paper is to show that every
Vector valued metric induces a metric on the underlying space, the induced metric topology
coincides with VVM topology, thereby we prove that VVM topology is metrizable and some
fixed point results over these spaces are derived.

1 Introduction

In what follows R and N denote the set of all real and natural numbers respectively and Rn, the
set of all n-tuples a = (a1, a2, ..., an) of reals with partial ordering ≤ defined on Rn by a ≤ b if
and only if ai ≤ bi for each i, i ∈ {1, 2, ..., n}. For each a, b ∈ Rn, we write a << b if ai < bi
for each i ∈ {1, 2, ..., n} and for each a ∈ R, â stands for the element (a, a, . . . , a) ∈ Rn. For
undefined terms and notations refer to ([1, 2, 4]). In [1], the concept of Vector Valued Metric
space was introduced, as a generalization of metric space as well as of complex valued metric
space as follows:

Definition 1.1. Let X be a nonempty set. Suppose that the mapping d : X ×X → Rn satisfies:

(D1) 0̂ ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0̂ if and only if x = y;

(D2) d(x, y) = d(y, x) for all x, y ∈ X;

(D3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X .

Then d is called n-dimensional vector valued metric(for short VVM) on X and the pair (X, d) is
called a n-dimensional vector valued metric space(for short VVM space).

Definition 1.2. [1] Let (xn) be a sequence in a VVM space (X, d), x ∈ X . We say that

(i) {xn} converges to x if for every r ∈ Rn with 0̂ << r there is a N ∈ N such that for all
n > N, d(xn, x) << r. In this case we write limxn = x in (X, d),

(ii) {xn} is a Cauchy sequence in X if for every r ∈ Rn with 0̂ << r there is a N ∈ N such
that for all k,m > N, d(xk, xm) << r,

(iii) (X, d) is a complete VVM space if every Cauchy sequence in (X, d) is convergent to an
element in (X, d).

Let (X, d) be a VVM space and A ⊂ X . We declare A to be open if for each a ∈ A, there
exists 0̂ << ra ∈ Rn such that A ⊂ Bd(a, ra) where Bd(a, ra) = {x ∈ X : d(x, a) << ra}.
Then the family F = {Bd(x, r) : x ∈ X, 0̂ << r ∈ Rn} forms a subbase for a Hausdorff
topology τd on X (See [1]).

Example 1.3. Let D1, D2, ..., Dn be metrics on X . Then the mapping d : X ×X → Rn defined
by d(x, y) = (D1(x, y), D2(x, y), ..., Dn(x, y)) is a VVM on X . In particular, if D1 = D2 =
... = Dn = D then d(x, y) = D(x, y)1̂, is a VVM on X . More generally, if 0̂ << a ∈ Rn and D
is a metric on X , then the function d : X ×X → Rn defined by d(x, y) = D(x, y)a is a VVM
on X .



On VVM Spaces 417

2 MAIN RESULTS

Throughout this paper (X, d) will denote a VVM space.

Lemma 2.1. If we define D : X×X → R by D(x, y) = max{a1, a2, ..., an} where a = d(x, y) ∈
Rn, then

(i) D is a metric on X ,

(ii) lim d(xn, x) = 0̂ if and only if limD(xn, x) = 0,

(iii) {xn} is a Cauchy sequence in (X, d) if and only if {xn} is a Cauchy sequence in (X,D),

(iv) (X, d) is complete if and only if (X,D) is complete.

Proof. It is enough to verify Triangle inequality to prove (i).
Let x, y, z ∈ X . Then a = d(x, y), b = d(x, z), c = d(z, y) are in Rn.
By (D3), a ≤ b+ c which implies max{a1, a2, ..., a3} ≤ max{b1, b2, ..., bn}+ max{c1, c2, ..., cn}
⇒ D(x, y) ≤ D(x, z) +D(z, y). Hence (X,D) is a metric space. Proof of (ii),(iii) and (iv) are
clear.2

Remark 2.2. It is clear from Lemma 2.1 that every VVM d on X induces a metric D on X . In
fact, d induces several metrics on X . For instance, if 1 ≤ p < ∞ then the real function Dp on
X ×X defined by

Dp(x, y) = {
n∑

i=0

api }
1
p (2.1)

for all x, y ∈ X , where a = d(x, y) ∈ Rn, is a metric on X .

Theorem 2.3. Let D be an induced metric on X defined as in Lemma 2.1. Then the induced
metric topology τD coincides with the VVM topology τd on X .

Proof. Let y ∈ Bd(x, r). Then d(x, y) << r which implies a << r where d(x, y) = a ∈ Rn. Put
r = min{r1−a1, r2−a2, ..., rn−an}. Then r > 0 and if z ∈ BD(y, r), then max{b1, b2, ..., bn} <
r where b = d(y, z) ∈ Rn. Now,
max{b1, b2, ..., bn} < r = min{r1 − a1, r2 − a2, ..., rn − an}
⇒ b+ a << r
⇒ d(x, z) ≤ d(x, y) + d(y, z) << r
⇒ z ∈ Bd(x, r).
Therefore BD(y, r) ⊂ Bd(x, r) and hence Bd(x, r) is open in the usual sense.
Now, Let y ∈ BD(x, r) for some r > 0. Then D(x, y) < r.
⇒ max{a1, a2, ..., a3} < r where a = d(x, y) ∈ Rn.
⇒ a << r̂.
Let z ∈ Bd(x, r̂). Then d(x, z) << r̂ imply D(x, y) < r. Therefore, Bd(x, r̂) ⊂ BD(x, r) and
hence BD(x, r) is an open set in (X, d). This completes the proof. 2

In view of Theorem 2.3, we have

Corollary 2.4. The Hausdorff topology τd induced by d on X is metrizable.

Theorem 2.1 of [1] that every complex valued metric space (CVM space for short) is metriz-
able, can be proved as a consequence of Theorem 2.3, as every CVM space is a VVM space
.

Theorem 2.5. Let T be a contraction on a complete VVM space (X, d) with contracting constant
λ. Then T has a unique fixed point in X .

Proof. LetD be defined as in Lemma 2.1. Then (X,D) is a complete metric space. Let x, y ∈ X .
Then d(Tx, Ty) ≤ λd(x, y) implies D(Tx, Ty) ≤ λD(x, y). Therefore, T is contraction on
(X,D). Hence by Banach contraction principle for metric spaces, T has a unique fixed point x
in X . 2
The metric D induced by d on X is very useful in deriving several well known fixed point results
for self maps on (X, d) from its metric counterparts. For instance, if T is a Kannan mapping on a
complete VVM space (X, d), then T is also a Kannan map on (X,D) and hence T has a unique
fixed point in X .
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