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Abstract. In this paper, we establish some new type of fixed point theorems for a single
self-mapping using expanding and comparison function in the setting of dislocated quasi-metric
space. Our establish results improve and modify some existing results in the literature.

1 Introduction and Preliminaries

Banach contraction principle [1] is one of pivotal results in functional analysis. There are a
number of generalizations of Banach contraction principle in different type of spaces. Dass and
Gupta [2] generalized Banach contraction principle through rational expression in metric spaces.
Mathews [3] introduced the concept of partial metric space (pms) as a part of study of denota-
tional semantics and dataflow networks. The most interesting property in partial metric spaces is
that the self distance between points may not be zero. In 2001, Hitzler [4] generalized the idea of
partial metric spaces and initiated the concept of dislocated metric (d-metric) space. Dislocated
metric play a vital role in logic programming semantics, computer science and electronic engi-
neering etc. Hitzler [4] showed that Banach contraction principle is valid in dislocated metric
space.

Zeyada et al. [5] further generalized the concept of dislocated metric space and introduced
the idea of complete dislocated quasi-metric space. In this new notion the symmetric property is
also omitted. Sevaral papers have been published containing fixed point results for a single and a
pair of self-mappings with different contraction conditions in dislocated quasi-metric space (see
[6, 7, 8]).

The purpose of this article is to obtain some new fixed point theorems in dislocated quasi-
metric space using the concepts of expanding and comparison mappings. Examples are given in
the support of our establish results.

We begin with the following definitions.

Definition [5]. Let X be a non-empty set and let d : X x X — R™ U {0} be a distance function
satisfying the following conditions

dy) d(z,y) = d(y,z) = 0 implies = = y;

dp) d(z,y) < d(x,2) +d(z,y) forall z,y,z € X.

Then d is called dislocated quasi-metric on X and the pair (X, d) is called dislocated quasi-
metric (dg-metric) space.

Example. Let X=R define the distance function d : X x X — R* U {0} by

d(z,y) = |z| forall z,y € X.

In the main work we will use the following definitions which can be found in [5].
Definition. A sequence {z,} in dislocated quasi-metric space (X, d) is called dislocated quasi
convergent (dg-convergent) if for n € N we have

nlgrgo d(zp,z) = nlgrgo d(z,z,) = 0.
In such a case z is called dislocated quasi limit (dg-limit) of the sequence {z,, }.
Definition. A sequence {x,} in dislocate quasi-metric space (X, d) is called Cauchy sequence
if for € > 0 there exists a positive integer ng such that for m,n > ng, we have d(z,,,z,) < ei.e

lim d(z,,2,) =0.
n,M— 00
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Definition. A dislocated quasi-metric space (X, d) is said to be complete if every Cauchy se-
quence in X converges to a point in X.

Definition. Let (X, d) be a dislocated quasi-metric space. A mapping 7' : X — X is called
contraction if there exist 0 < a < 1 such that

d(Tz,Ty) < ad(z,y) forall z,y € X anda € [0, 1).
The following well-known results can be seen in [5].
Lemma 1.1. Limit in dislocated quasi-metric space (X, d) is unique.

Theorem 1.2. Let (X, d) be a complete dislocated quasi-metric space T : X — X be a contrac-
tion. Then T has a unique fixed point.

Definition[10]. A map ¢ : Ry — R is called comparison function if it satisfies:
(i) ¢ is monotonic increasing;

(ii) The sequence {¢"(t)}>°, converge to zero for all t € R, where ™ stand for nth iterate of

©.
If o satisfies:

(iii) > ¢*(t) converge for all t € R,
k=0

Then ¢ is called (c¢)-comparison function.
Thus every comparison function is (c¢)-comparison function. A prototype example for com-
parison function is
pot)=at teRy 0<a< .

Some more examples and properties of comparison and (c)-comparison function can be found
in [10].

Lemma 1.3. [10]. For every comparison function for t > 0 implies that
o(t) <t
and p(t) =0ifft = 0.

Definition[11]. Let (X, d) be a metric space. Let T : X — X be a self-mapping. Then T is
called Kannan mapping if

d(Tz,Ty) < ald(z,Tz) + d(y,Ty)] forall z,y € X and « € [0,1/2). (1.1)

Definition. Let (X, d) be a metric space. Let T : X — X be a self-mapping. Then T is called
conjugate Kannan mapping if

d(Tz,Ty) < a[d(Tz,z) + d(Ty,y)] forall z,y € X and « € [0,1/2). (1.2)

2 Main Results

Now we use conjugate type of mapping to establish fixed point theorem for expanding mapping
in dislocated quasi-metric space.

Theorem 2.1. Let (X, d) be a complete dislocated quasi-metric space. T : X — X be a self-
mapping satisfying

d(Tz, 2)[1 +d(Ty,y)] N [d(Tz, ) + d(Ty,y)]d(x,y)

d(Tz, Ty) > ad(x b
(Tz,Ty) > ad(z,y) + 1+ d(z,y) ¢ d(Tzx,y)

2.1)

forall z,y € X and a,b,c > Owitha > 1 and b < 1 also d(Tz,y) # 0. Then T has a unique
fixed point.

Proof. Since a > 1 and b,¢ > 0 then obviously a + b + ¢ > 1. For zp € X we define a
sequence {z, } in X by the following way

Tp =Txpyy for n=0,1,2,3,........
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Consider
d(xnfla xn) = d(Txru Tanrl)-

Using (2.1) and the defined construction of the sequence we have

d(TxnvxTL)[l + d(Tanrlaan)]

> ad ") b
> ad(Tp, Tpi1) + 1+ d(xp, Tni1)

+

[d(Txnv xn) + d(T$n+1, 1’n+l)]d(1’n7 xn+l)
d(Txnv xn-‘rl)

d(a/‘n,], xn)[l + d(x’ru xn-}—l)} + C[d(xnflaxn) + d(.l?n, xn-‘rl)]d(qf'n; xn-‘rl)
1+ d(xnaxn+l) d(xn—laanrl)

By simplification and using the fact that

c

= ad(Tp,Tnt1) + 0

[d(xn—l » xn) + d(:Cn, Tn+1 )]d(.’ﬂn, anrl)

d(xp, <
(@0, Tns) < PTCTEY

‘We have
(CL + C)d(ﬂ?n, xn-‘rl) < (1 - b)d(mn—la an)
Awnnin) < (0 )d(wamr, )
TnyTn+l1) > ate Tn—1,Tn)-
Let ’
=h<l1

So the above inequality take the form
d(x'ru xn-‘rl) < hd(xnfla xn)

Also
d(xnfla xn) < hd(xn727 xn71)~

Hence
d(xna $n+l) < hzd(l'n,z, xnfl)-

Continuing the same procedure we have
d(x’na xn+l) S hnd(x(b xl)'
Since h < 1 and taking n — oo, h"™ — 0. Hence

lim d(z,,xn+1) =0
n—oo

which proves that {z,,} is a Cauchy sequence in complete dislocated quasi-metric space X. So
there must exists u € X such that lim,, ,., x,, = u. Also since T is continuous so

Tlmz,=Tu = limTz,=Tu = lm z,_1=Tu = Tu=u.

n— 00 n— oo n— oo

Hence w is fixed point of 7T'.
Uniqueness. To show that
d(u,u) = d(v,v) = 0.

Where v and v are two distinct fixed points of 7" for this consider

d(u,u) = d(Tu, Tu)

d(Tu,uw)[1 + d(Tu,u)] [d(Tu,u) + d(Tu,u)]d(u,w) .

> ad b
= ad(u,u) + 1+ d(u,u) ¢ d(Tu,u)

Simplification yields
d(u,u) > (a+ b+ c)d(u, u)
which is a contradiction therefore d(u, u) = 0. Similarly we can show that d(v,v) = 0.

Now consider
d(u,v) = d(Tu, Tv)



174 Mujeeb Ur Rahman and Muhammad Sarwar

d(Tu,u)[1 + d(Tv,v)] N C[d(Tu, u) + d(Tv,v)]d(u,v)
1 +d(u,v) d(Tu,v) '

Using the above proved facts we have

> ad(u,v) +b

d(u,v) > ad(u,v)

which is again contradiction thus d(u,v) = 0 similarly we can show that d(v,u) = 0 implies
u = v. Thus fixed point of 7" is unique.

Corollary 2.2. Let (X, d) be a complete dislocated quasi-metric space. T : X — X be a self-

mapping satisfying
d(Tz, Ty) > ad(z,y)

forall x,y € X with a > 1. Then T has a unique fixed point.
Example. Let X = R with complete dislocated quasi-metric on X is defined by
d(z,y) = |z| forall z,y € X

and T'x = 2z forall x € X. Then
3
d(Tz,Ty) = [2z| > §|x\ = ad(z,y).

Satisty all the conditions of Corollary 2.2 having z = 0 is the unique fixed point of 7.

Theorem 2.3. Let (X, d) be a complete dislocated quasi-metric space. T : X — X be a self-
mapping satisfying

d(Tz, Ty) < apd(z,y) + bp max {d(w, Tz),d(z, y)}—l—

d(x,y)[1 + /d(z,y)d(z, Tz))?
o) e

forall xz,y € X, a,b,c > Owitha+ b+ c < 1 and ¢ is a comparison function as defined in
Definition 1. Then T has a unique fixed point.

Proof. Let x( be arbitrary point in X. Define a sequence {z,,} in X by the rule
Tpe1 =Txy, n=0,1,2,......

Consider
d(fEn, anrl) = d(Txn—l ) Tzn)

Now using (2.2) we have

< a¢d<xn—l y :L'") + bSO max {d(x71,—l yTx, )7 d(xn—l y xn)}+

d(xp_1,20)[1 + \/d(acn,l7 2p)d(Tn_1, TTn_1)]?
Cw( (1 d(zn1,20))? >

Now using the defined construction and then simplifying we have

= awd(xn—l y xn) + b‘P max {d(zn—] 5 xn)v d(xn—l y xn)}'i‘

d(.%‘n,h l'n)[l + \/d(xnfla xn)d(xnflﬂ mn)]z
C(p( (1 +d(@p—1,2,))? )

=(a+b+c)pd(Tn, Tni1)-
Since p(t) <tVit>0so0

d(le?m’fLJrl) < (a + b+c)d(mn—laxn)'
Leth=a+ b+ c < 1. Hence

d(xnv x’l’L-‘rl) S hd(xnfla xn)
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Continuing the same procedure we have
d(n, Tns1) < R d(zo, x1).
Taking limit n — oo so h"™ — 0. Therefore

nlinc}o d(xn; xn+l> =0

which prove that {x,,} is a Cauchy sequence in complete dislocated quasi-metric space X. So
there must exists v € X such that

lim z,, = u.
n—oo

Also since T is continuous function so we have

Tu=T lim z, = lim Tz, + hm Tpil = U
n—oo n—oo

Therefore u is the fixed point of 7T'.
Uniqueness. Let © # v are two distinct fixed points of 7" then consider

d(u,v) = d(Tu, Tv).

Using (2.2) we have

+m>

(144 ))?
V(u, v)d(u, u)]*
= ayd(u,v) 4+ by max {d(u, u), d(u, v)} + cg@(d(u7 v)[1(1++ dc(igj;};)))j(% w] ) . (2.3)
It is easy to show that d(u,u) = 0 by putting x = y = u in (2.2) and similarly we can show that
d(v,v) = 0 by putting z = y = v in (2.2). Putting these information in (2.3) we get
d(u,v)
(1+d(u,v))>

< agd(u, v) + by max {d(u,Tu), d(u,v)} + w(

d(u,v) < apd(u,v) + bed(u,v) + cp (2.4)

Since
1 <1+d(u,v) so 1 <[l+d(u,v)]?
d(u,v) < [1 4 d(u,v)]*d(u,v)
d(u, v) < d(u,v).
[1+d(u,v)]2 = 7
Thus (2.4) becomes

d(u,v) < (a4 b+ c)pd(u,v).
Again since o(t) < ¢ forall ¢ > 0. So
d(u,v) < (a+ b+ c)d(u,v).

Since a + b + ¢ < 1 so the above inequality is possible only if d(u,v) = 0. Similarly we can
show that d(v,u) = 0 which implies that u = v. Hence fixed point of T is unique.

Corollary 2.4. Let (X, d) be a complete dislocated quasi-metric space. T : X — X be a self-

mapping satisfying
d(Tx, Ty) < apd(z,y)

Jorall z,y € X with0 < a < 1 and ¢ is a comparison function as defined in Definition 1. Then
T has a unique fixed point.

Remark 2.5. In Corollary 2.4 if ¢ = I(identity). Then we get the result of Zeyada et al. [5] as a
corollary of our Theorem 2.3.

Example. Let X = R and the complete dislocated quasi-metric on X is defined by
d(x,y) = |z| forall z,y € X

and Tz = g for all x € X then

A(Ta, Ty) =151 < 5] = glel = 5 51e] = apld(a,9)).

Thus for a = % and ¢(t) = % for all ¢ > O satisfy all the conditions of Corollary 2.4 having
2 = 0 is the unique fixed point of T'.
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