An Interesting q-Continued Fractions of Ramanujan

S. N. Fathima, T. Kathiravan and Yudhisthira Jamudulia
Communicated by Zafar Ahsan

MSC 2010 Classifications: 11A55.
Keywords and phrases: Continued fractions, Modular Equations.
The first-named author is thankful to UGC, New Delhi for awarding research project [No. F41-1392/2012/(SR)], under which this work has been done.

Abstract

In this paper, we establish an interesting q-identity and an integral representation of a q-continued fraction of Ramanujan. We also compute explicit evaluation of this continued fraction and derive its relation with Ramanujan Göllnitz -Gordon continued fraction.

1 Introduction

Ramanujan a pioneer in the theory of continued fraction has recorded several in the process rediscovered few continued fractions found earlier by Gauss, Eisenstein and Rogers in his notebook [10]. In fact Chapter 12 and Chapter 16 of his Second Notebook [10] is devoted to continued fractions. Proofs of these continued fractions over years are given by several mathematician, we mention here specially G.E. Andrews[3], C. Adiga, S. Bhargava and G.N. Watson [1] whose works have been compiled in [4] and [5].

The celebrated Roger Ramanujan continued fraction is defined by

$$
R(q):=\frac{1}{1}+\frac{q}{1}+\frac{q^{2}}{1}+\frac{q^{3}}{1}+\cdots, \quad|q|<1
$$

On page 365 of his lost notebook [11], Ramanujan recorded five modular equations relating $R(q)$ with $R(-q), R\left(q^{2}\right), R\left(q^{3}\right) R\left(q^{4}\right)$ and $R\left(q^{5}\right)$.

The well known Ramanujan's cubic continued fraction defined by

$$
J(q):=\frac{q^{1 / 3}}{1}+\frac{q+q^{2}}{1}+\frac{q^{2}+q^{4}}{1}+\frac{q^{3}+q^{6}}{1}+\cdots, \quad|q|<1
$$

is recorded on page 366 of his lost notebook [11]. Several new modular equation relating $J(q)$ with $J(-q), J\left(q^{2}\right)$ and $J\left(q^{3}\right)$ are established by H.H. Chan [8].

Similarly the Ramanujan Göllnitz-Gordon continued fraction K(q) defined by

$$
K(q):=\frac{q^{1 / 2}}{1+q}+\frac{q^{2}}{1+q^{3}}+\frac{q^{4}}{1+q^{5}}+\frac{q^{6}}{1+q^{7}}+\cdots, \quad|q|<1
$$

satisfies several beautiful modular relations. One may see traces of modular equation related to $K(q)$ on page 229 of Ramanujan's lost notebook [11]. Further works related to $K(q)$ in recent years have been done by various authors including Chan and S.S Huang [9] and K.R. Vasuki and B.R. Srivatsa Kumar [12].

Motivated by these works in this paper we study the Ramanujan continued fraction

$$
\begin{align*}
M(q) & :=\frac{q^{1 / 2}}{1-q}+\frac{q(1-q)^{2}}{(1-q)\left(1+q^{2}\right)}+\frac{q\left(1-q^{3}\right)^{2}}{(1-q)\left(1+q^{4}\right)}+\frac{q\left(1-q^{5}\right)^{2}}{(1-q)\left(1+q^{6}\right)}+\ldots,|q|<1 \\
& =q^{1 / 2} \frac{\left(q^{4} ; q^{4}\right)_{\infty}^{2}}{\left(q^{2} ; q^{4}\right)_{\infty}^{2}} \tag{1.1}
\end{align*}
$$

In Chapter 16 Entry 12 of [5], Ramanujan has recorded the following continued fraction

$$
\begin{align*}
\frac{\left(a^{2} q^{3} ; q^{4}\right)_{\infty}\left(b^{2} q^{3} ; q^{4}\right)_{\infty}}{\left(a^{2} q ; q^{4}\right)_{\infty}\left(b^{2} q ; q^{4}\right)_{\infty}}= & \frac{1}{1-a b}+\frac{(a-b q)(b-a q)}{(1-a b)\left(1+q^{2}\right)}+ \\
& \frac{\left(a-b q^{3}\right)\left(b-a q^{3}\right)}{(1-a b)\left(1+q^{4}\right)}+\cdots, \quad|a b|<1,|q|<1 \tag{1.2}
\end{align*}
$$

In fact setting $a=q^{1 / 2}$ and $b=q^{1 / 2}$ in (1.2), we obtain (1.1).
In Section 2 we obtain an interesting q-identity related to $M(q)$ using
manujan's ${ }_{1} \psi_{1}$ summation formula [5, Ch. 16, Entry 17]

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} \frac{(a)_{n}}{(b)_{n}} z^{n}=\frac{(a z)_{\infty}(q / a z)_{\infty}(q)_{\infty}(b / a)_{\infty}}{(z)_{\infty}(b / a z)_{\infty}(b)_{\infty}(q / a)_{\infty}}, \quad|b / a|<|z|<1 \tag{1.3}
\end{equation*}
$$

and Andrew's identity [4, p. 57],

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{q^{k n}}{1-q^{l n+k}}=\sum_{n=0}^{\infty} q^{l n^{2}+2 k n} \frac{1+q^{l n+k}}{1-q^{l n+k}} \tag{1.4}
\end{equation*}
$$

In Section 3 we obtain several relation of $M(q)$ with theta function $\varphi(q), \psi(q)$ and $\chi(q)$. In Section 4 we obtain an integral representation of $M(q)$. In Section 5 we derive a formula that help us to obtain relation among $M\left(q^{1 / 2}\right), M(q), M\left(q^{2}\right)$ and $M\left(q^{4}\right)$. We establish explicit formulas for the evaluation of $\frac{M\left(e^{-\pi \sqrt{n}}\right)}{M\left(e^{-\pi \sqrt{n} / 2}\right)}$ in Section 6.

We conclude this introduction with few customary definition we make use in the sequel. For a and q complex number with $|q|<1$

$$
(a)_{\infty}:=(a ; q)_{\infty}=\prod_{n=0}^{\infty}\left(1-a q^{n}\right)
$$

and

$$
\begin{align*}
(a)_{n} & :=(a ; q)_{n}=\prod_{k=0}^{n-1}\left(1-a q^{k}\right)=\frac{(a)_{\infty}}{\left(a q^{n}\right)_{\infty}}, \quad n: \text { any integer. } \\
f(a, b) & :=\sum_{n=-\infty}^{\infty} a^{n(n+1) / 2} b^{n(n-1) / 2} \tag{1.5}\\
& =(-a ; a b)_{\infty}(-b ; a b)_{\infty}(a b ; a b)_{\infty}, \quad|a b|<1 . \tag{1.6}
\end{align*}
$$

Identity (1.6) is the Jacobi's triple product identity in Ramanujan's notation 16, Entry 19]. It follows from (1.5) and (1.6) that [5, Ch. 16, Entry 22],

$$
\begin{align*}
& \varphi(q) \quad:=f(q, q)=\sum_{n=-\infty}^{\infty} q^{n^{2}}=\frac{(-q ;-q)_{\infty}}{(q ;-q)_{\infty}} \tag{1.7}\\
& \psi(q) \quad:=\quad f\left(q, q^{3}\right)=\sum_{n=0}^{\infty} q^{n(n+1) / 2}=\frac{\left(q^{2} ; q^{2}\right)_{\infty}}{\left(q ; q^{2}\right)_{\infty}} \tag{1.8}
\end{align*}
$$

and

$$
\begin{equation*}
\chi(q):=\left(-q ; q^{2}\right)_{\infty} \tag{1.9}
\end{equation*}
$$

$2 q$-Identity related to $M(q)$

Theorem 2.1

$$
\begin{equation*}
M(q)=\sum_{n=0}^{\infty} q^{n(8 n+4)+1 / 2} \frac{1+q^{8 n+2}}{1-q^{8 n+2}}-\sum_{n=0}^{\infty} q^{(n+1)(8 n+4)+1 / 2} \frac{1+q^{8 n+6}}{1-q^{8 n+6}} \tag{2.1}
\end{equation*}
$$

Proof: Changing q to q^{8}, then setting $a=q^{2}, b=q^{10}$ and $z=q^{2}$ in ${ }_{1} \psi_{1}$ summation formula (1.3) we obtain

$$
\begin{equation*}
\frac{\left(q^{4} ; q^{4}\right)_{\infty}^{2}}{\left(q^{2} ; q^{4}\right)_{\infty}^{2}}=\sum_{n=0}^{\infty} \frac{q^{2 n}}{1-q^{8 n+2}}-\sum_{n=0}^{\infty} \frac{q^{6 n+4}}{1-q^{8 n+6}} \tag{2.2}
\end{equation*}
$$

employing Andrews identity (1.4) with $k=2, l=8$ and $k=6, l=8$ in both the summations in right side of the identity (2.2) respectively and finally multiplying both sides of the resulting identity with $q^{1 / 2}$ and using product represtation of $M(q)$ (1.1), we complete the proof of Theorem 2.1.

3 Some Identities involving $M(q)$

We obtain relation of $M(q)$ in terms of theta function $\varphi(q), \psi(q)$ and $\chi(q)$.

Theorem 3.1

$$
\begin{align*}
M(q) & =q^{1 / 2} \frac{\psi^{4}(q)}{\varphi^{2}(q)} \tag{3.1}\\
8 M\left(q^{2}\right) & =\varphi^{2}(q)-\varphi^{2}(-q), \tag{3.2}\\
16 M^{2}(q) & =\varphi^{4}(q)-\varphi^{4}(-q), \tag{3.3}\\
\frac{M^{2}(q)}{M\left(q^{2}\right)} & =\varphi^{2}\left(q^{2}\right) \tag{3.4}\\
4 M\left(q^{2}\right) & =\varphi^{2}(q)-\varphi^{2}\left(q^{2}\right) \tag{3.5}\\
\frac{M^{-1}(q)+M(q)}{M^{-1}(q)-M(q)} & =\frac{1+q \psi^{4}\left(q^{2}\right)}{1-q \psi^{4}\left(q^{2}\right)} \tag{3.6}\\
8 M\left(q^{2}\right) & =\frac{\chi^{2}(q)}{\chi^{2}(-q)} \phi^{2}\left(-q^{2}\right)-\phi^{2}(-q) \tag{3.7}
\end{align*}
$$

Proof: Using [5, Ch. 16, Entry 22(ii)] in (1.1), we obtain

$$
\begin{equation*}
M(q)=q^{1 / 2} \psi^{2}\left(q^{2}\right) \tag{3.8}
\end{equation*}
$$

Employing [5, Ch. 16, Entry 25(iv)] in (3.8), we obtain (3.1).
From (3.1) we have

$$
\begin{equation*}
M\left(q^{2}\right)=q \frac{\psi^{4}\left(q^{2}\right)}{\varphi^{2}\left(q^{2}\right)} \tag{3.9}
\end{equation*}
$$

Employing [5, Ch. 16, Entry 25(vii)] and [5, Ch. 16, Entry 25(vi)] in (3.9), we obtain (3.2). Identity (3.3) immediately follows from (3.8) and [5, Ch. 16, Entry 25(vii)]. Again from (3.1), we have

$$
\begin{equation*}
\frac{M^{2}(q)}{M\left(q^{2}\right)}=\frac{\psi^{8}(q) \varphi^{2}\left(q^{2}\right)}{\psi^{4}\left(q^{2}\right) \varphi^{4}(q)} \tag{3.10}
\end{equation*}
$$

employing [5, Ch. 16, Entry 25(iv)] in the identity (3.10) we obtain (3.4).
From (3.2) and (3.3), we have

$$
\begin{equation*}
64 M^{2}\left(q^{2}\right)+16 M^{2}(q)=16 \varphi^{2}(q) M\left(q^{2}\right) \tag{3.11}
\end{equation*}
$$

dividing the identity (3.11) throughout by $16 M\left(q^{2}\right)$ and using (3.4) we obtain (3.5).
From (3.1) we deduce that

$$
\begin{equation*}
M^{-1}(q)+M(q)=\frac{\varphi^{4}(q)+q \psi^{8}(q)}{q^{1 / 2} \varphi^{2}(q) \psi^{4}(q)} \tag{3.12}
\end{equation*}
$$

and

$$
\begin{equation*}
M^{-1}(q)-M(q)=\frac{\varphi^{4}(q)-q \psi^{8}(q)}{q^{1 / 2} \varphi^{2}(q) \psi^{4}(q)} \tag{3.13}
\end{equation*}
$$

On dividing (3.12) by (3.13) and using [5, Ch. 16, Entry 25(iv)] in the resulting identity, we complete the proof of (3.6).
From (1.7) and (1.9) we have

$$
\varphi(-q)+\frac{\chi(q)}{\chi(-q)} \varphi\left(-q^{2}\right)=\frac{(q ; q)_{\infty}}{(-q ; q)_{\infty}}\left[1+\frac{f(q, q)}{f(-q,-q)}\right]
$$

employing [5, Ch. 16, Entry 30(ii)] in right hand side of above identity we obtain

$$
\begin{equation*}
\varphi(-q)+\frac{\chi(q)}{\chi(-q)} \varphi\left(-q^{2}\right)=\frac{2\left(q^{8} ; q^{8}\right)_{\infty}^{5}\left(q^{32} ; q^{32}\right)_{\infty}^{2}}{\left(q^{4} ; q^{4}\right)_{\infty}^{2}\left(q^{16} ; q^{16}\right)_{\infty}^{2}\left(q^{64} ; q^{64}\right)_{\infty}^{4}} \frac{M\left(q^{16}\right)}{q^{8}} \tag{3.14}
\end{equation*}
$$

Again from (1.7) and (1.9) we have

$$
\varphi(-q)-\frac{\chi(q)}{\chi(-q)} \varphi\left(-q^{2}\right)=\frac{(q ; q)_{\infty}}{(-q ; q)_{\infty}}\left[1-\frac{f(q, q)}{f(-q,-q)}\right]
$$

employing [5, Ch. 16, Entry 30(ii)] and [5, Ch. 16, Entry 18(ii)] in right hand side of above identity we obtain

$$
\begin{equation*}
\varphi(-q)-\frac{\chi(q)}{\chi(-q)} \varphi\left(-q^{2}\right)=\frac{-4 q\left(-q^{8} ; q^{8}\right)_{\infty}\left(q^{64} ; q^{64}\right)_{\infty}^{3}}{\left(-q^{16} ; q^{32}\right)_{\infty}} \frac{q^{8}}{M\left(q^{16}\right)} \tag{3.15}
\end{equation*}
$$

Multiplying (3.14) and (3.15) we complete the proof of (3.7).
Theorem 3.2. Let $u=M(q), v=M(-q)$ and $w=M\left(q^{2}\right)$, then

$$
u^{2}-v^{2}=8 w^{2}
$$

Proof: On substituting (3.4) in (3.5), we obtain

$$
\begin{equation*}
\varphi^{2}(q)=\frac{4 M^{2}\left(q^{2}\right)+M^{2}(q)}{M\left(q^{2}\right)} \tag{3.16}
\end{equation*}
$$

Changing q to $-q$ in (3.16), we have

$$
\begin{equation*}
\varphi^{2}(-q)=\frac{4 M^{2}\left(q^{2}\right)+M^{2}(-q)}{M\left(q^{2}\right)} \tag{3.17}
\end{equation*}
$$

Subtracting (3.17) from (3.16) and using identity (3.2), we complete the proof of Theorem 3.2.

4 Integral Representation of $M(q)$

Theorem 4.1. For $0<|q|<1$,

$$
\begin{equation*}
M(q)=\exp \int\left(\frac{1}{2 q}+\frac{4}{q}\left[\frac{\varphi^{4}(-q)-1}{8}+\frac{q \varphi^{\prime}(q)}{2 \varphi(q)}\right]\right) d q \tag{4.1}
\end{equation*}
$$

where $\varphi(q)$ and $\psi(q)$ are as defined in (1.7) and (1.8).
Proof: Taking \log on both sides of (3.1), we have

$$
\begin{equation*}
\log M(q)=\frac{1}{2} \log q+4 \log \psi(q)-2 \log \varphi(q) \tag{4.2}
\end{equation*}
$$

Employing [5, Ch. 16, Entry 23(ii)] and [5, Ch. 16, Entry 23(i)] on right hand side of (4.2), we obtain

$$
\begin{equation*}
\log M(q)=\frac{1}{2} \log q+4 \sum_{n=1}^{\infty} \frac{q^{2 n}}{2 n\left(1+q^{2 n}\right)} \tag{4.3}
\end{equation*}
$$

Differentiating (4.3) and simplifying, we have

$$
\begin{equation*}
\frac{d}{d q} \log M(q)=\frac{1}{2 q}+\frac{4}{q}\left[\sum_{n=1}^{\infty} \frac{(-1)^{n} q^{n}}{\left(1+q^{n}\right)^{2}}+\sum_{n=1}^{\infty} \frac{q^{2 n-1}}{\left(1+q^{2 n-1}\right)^{2}}\right] \tag{4.4}
\end{equation*}
$$

Using Jacobi's identity [5, Ch. 16, Identity 33.5 , p. 54)] and [5, Ch. 16, Entry 23(i)] and integrating both sides and finally exponentiating both sides of identity (4.4), we complete the proof of Theorem 4.1.

5 Modular Equation of Degree n and Relation Between $M(q)$ and $M\left(q^{n}\right)$

In the terminology of hypergeometric function, a modular equation of degree n is a relation between α and β that is induced by

$$
n \frac{{ }_{2} F_{1}(1 / 2,1 / 2 ; 1 ; 1-\alpha)}{{ }_{2} F_{1}(1 / 2,1 / 2 ; 1 ; \alpha)}=\frac{{ }_{2} F_{1}(1 / 2,1 / 2 ; 1 ; 1-\beta)}{{ }_{2} F_{1}(1 / 2,1 / 2 ; 1 ; \beta)}
$$

where

$$
{ }_{2} F_{1}(a, b ; c ; x)=\sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k} k!} x^{k},
$$

and

$$
(a)_{k}=\frac{\Gamma(a+k)}{\Gamma(a)} .
$$

Let $Z_{1}(r)={ }_{2} F_{1}(1 / r, r-1 / r ; 1 ; \alpha)$ and $Z_{n}(r)={ }_{2} F_{1}(1 / r, r-1 / r ; 1 ; \beta)$, where n is the degree of the modular equation. The multiplier $m(r)$ is defined by the equation

$$
m(r)=\frac{Z_{1}(r)}{Z_{n}(r)}
$$

Theorem 5.1. If

$$
\begin{equation*}
q=\exp \left(-\pi \frac{2 F_{1}(1 / 2,1 / 2 ; 1 ; 1-\alpha)}{{ }_{2} F_{1}(1 / 2,1 / 2 ; 1 ; \alpha)}\right) \tag{5.1}
\end{equation*}
$$

then

$$
\begin{equation*}
\alpha=16 \frac{M^{4}(q)}{M^{4}\left(q^{1 / 2}\right)} \tag{5.2}
\end{equation*}
$$

Proof: From (1.1) and (1.7), we have

$$
\begin{align*}
M(q) \varphi^{2}(q) & =q^{1 / 2} \frac{\left(q^{4} ; q^{4}\right)_{\infty}^{2}}{\left(q^{2} ; q^{4}\right)_{\infty}^{2}} \frac{\left(-q ; q^{2}\right)_{\infty}^{4}\left(q^{4} ; q^{4}\right)_{\infty}^{2}}{\left(-q^{2} ; q^{2}\right)_{\infty}^{4}\left(q^{2} ; q^{4}\right)_{\infty}^{2}} \\
& =M^{2}\left(q^{1 / 2}\right) \tag{5.3}
\end{align*}
$$

Substituting (5.3) in (3.3), we obtain

$$
\begin{equation*}
16 M^{2}(q)=\frac{M^{4}\left(q^{1 / 2}\right)}{M^{2}(q)}\left[1-\frac{\varphi^{4}(-q)}{\varphi^{4}(q)}\right] \tag{5.4}
\end{equation*}
$$

From a known identity [5, Ch. 16, p. 100, Entry 5] and (5.1) it is implied that

$$
\begin{equation*}
\alpha=1-\frac{\varphi^{4}(-q)}{\varphi^{4}(q)} . \tag{5.5}
\end{equation*}
$$

Using (5.5) in (5.4), we complete the proof of (5.2).
Let α and β be related by (5.1). If β has degree n over α then from Theorem 5.1, we obtain

$$
\begin{equation*}
\beta=16 \frac{M^{4}\left(q^{n}\right)}{M^{4}\left(q^{n / 2}\right)} . \tag{5.6}
\end{equation*}
$$

Corollary 5.2. Let $u=M\left(q^{1 / 2}\right), v=M(q), w=M\left(q^{2}\right)$ and $x=M\left(q^{4}\right)$, then

$$
\begin{equation*}
16 x^{4} v^{2}+32 x^{3} w v^{2}-4 x^{3} w u^{4}+24 x^{2} w^{2} v^{2}+8 x w^{3} v^{2}-x w^{3} u^{4}+w^{4} v^{2}=0 . \tag{5.7}
\end{equation*}
$$

Proof: From [5, Entry 24(v), p. 216], we have

$$
\begin{equation*}
\sqrt{1-\alpha}=\left(\frac{1-\beta^{1 / 4}}{1+\beta^{1 / 4}}\right)^{2} \tag{5.8}
\end{equation*}
$$

On using (5.6) with $n=4$ and (5.2) in (5.8), we obtain

$$
\begin{equation*}
\sqrt{\frac{u^{4}-16 v^{4}}{u^{4}}}=\left(\frac{w-2 x}{w+2 x}\right)^{2} \tag{5.9}
\end{equation*}
$$

Squaring both side of (5.9) and then simplifying, we obtain (5.7).

6 Evaluations of $M(q)$

As an application of Theorem 5.1, we establish few explicit evaluation of $M(q)$.
Let $q_{n}=e^{-\pi \sqrt{n}}$ and let α_{n} denote the corresponding value of α in (5.1). Then by Theorem 5.1, we have

$$
\begin{equation*}
\frac{M\left(e^{-\pi \sqrt{n}}\right)}{M\left(e^{-\pi \sqrt{n} / 2}\right)}=\frac{1}{2} \alpha_{n}^{1 / 4} \tag{6.1}
\end{equation*}
$$

From [5, Ch. 17, p. 97], we have $\alpha_{1}=\frac{1}{2}, \alpha_{2}=(\sqrt{2}-1)^{2}$ and $\alpha_{4}=(\sqrt{2}-1)^{4}$.
Thus from (6.1), it immediately follows

$$
\begin{align*}
\frac{M\left(e^{-\pi}\right)}{M\left(e^{-\pi / 2}\right)} & =\left(\frac{1}{2}\right)^{5 / 4} \tag{6.2}\\
\frac{M\left(e^{-\sqrt{2} \pi}\right)}{M\left(e^{-\pi / \sqrt{2}}\right)} & =\frac{1}{2} \sqrt{\sqrt{2}-1} \tag{6.3}\\
\frac{M\left(e^{-2 \pi}\right)}{M\left(e^{-\pi}\right)} & =\frac{\sqrt{2}-1}{2} \tag{6.4}
\end{align*}
$$

Ramanujan has recorded several modular equation in his notebook [10, p. 204-237] and [10, p. 156-160] which are very useful in the computation of class invariants and the values of theta function. Ramanujan has also recorded several values of theta function $\varphi(q)$ and $\psi(q)$ in his notebook. For example

$$
\begin{align*}
\varphi\left(e^{-\pi}\right) & =\frac{\pi^{1 / 4}}{\Gamma(3 / 4)} \tag{6.5}\\
\psi\left(e^{-\pi}\right) & =2^{-5 / 8} e^{\pi / 8} \frac{\pi^{1 / 4}}{\Gamma(3 / 4)} \tag{6.6}\\
\frac{\varphi\left(e^{-\pi}\right)}{\varphi\left(e^{-3 \pi}\right)} & =\sqrt[4]{6 \sqrt{3}-9} \tag{6.7}
\end{align*}
$$

From (3.8) and (6.6), we have

$$
\begin{equation*}
M\left(e^{-\pi / 2}\right)=2^{-5 / 4} \frac{\sqrt{\pi}}{\Gamma^{2}(3 / 4)} \tag{6.8}
\end{equation*}
$$

Using (6.8) and (6.2), we obtain

$$
\begin{equation*}
M\left(e^{-\pi}\right)=\frac{\sqrt{\pi}}{\Gamma^{2}(3 / 2)} \tag{6.9}
\end{equation*}
$$

Setting (6.9) in (6.4), we obtain

$$
\begin{equation*}
M\left(e^{-2 \pi}\right)=\frac{\sqrt{2}-1}{2} \frac{\sqrt{\pi}}{\Gamma^{2}(3 / 2)} \tag{6.10}
\end{equation*}
$$

J.M. Borwein and P.B. Borwein [7] are the first to observe that class invariant could be used
to evaluated certain values of $\varphi\left(e^{-n \pi}\right)$. The Ramanujan Weber class invariants are defined by

$$
G_{n}:=2^{-1 / 4} q_{n}^{-1 / 24}\left(-q_{n} ; q_{n}^{2}\right)_{\infty}
$$

and

$$
\begin{equation*}
g_{n}:=2^{-1 / 4} q_{n}^{-1 / 24}\left(q_{n} ; q_{n}^{2}\right)_{\infty} \tag{6.11}
\end{equation*}
$$

where $q_{n}=e^{-\pi \sqrt{n}}$. Chan and Huang has derived few explicit formulas for evaluating $K\left(e^{-\pi \sqrt{n} / 2}\right)$ in the terms of Ramanujan Weber class. Similar works are done by Adiga et., al. Analogoues to these works we obtain explicit formulas to evaluate $\frac{M\left(e^{-\pi \sqrt{n}}\right)}{M\left(e^{-\pi \sqrt{n} / 2}\right)}$.
Theorem 6.1. For Ramanujan Weber class invariant defined as in (6.11), let $p=G_{n}^{12}$ and $p_{1}=g_{n}^{12}$, then

$$
\begin{align*}
\frac{M\left(e^{-\pi \sqrt{n}}\right)}{M\left(e^{-\pi \sqrt{n} / 2}\right)} & =\frac{1}{2} \frac{1}{\sqrt{\sqrt{p(p+1)}+\sqrt{p(p-1)}}} \tag{6.12}\\
\frac{M\left(e^{-\pi \sqrt{n}}\right)}{M\left(e^{-\pi \sqrt{n} / 2}\right)} & =\frac{1}{2} \sqrt{\sqrt{p_{1}^{2}+1}-p_{1}} \tag{6.13}
\end{align*}
$$

Proof: From [9], we have

$$
G_{n}=\left[4 \alpha_{n}\left(1-\alpha_{n}\right)\right]^{-1 / 24}
$$

Hence

$$
\begin{equation*}
\alpha_{n}=\frac{1}{(\sqrt{p(p+1)}+\sqrt{p(p-1)})^{2}} \tag{6.14}
\end{equation*}
$$

Using (6.14) in (6.1), we obtain (6.12).
Also from [9], we have

$$
2 g_{n}^{12}=\frac{1}{\sqrt{\alpha_{n}}}-\sqrt{\alpha_{n}}
$$

Hence

$$
\begin{equation*}
\sqrt{\alpha_{n}}=\sqrt{\left(p_{1}^{2}+1\right)}-p_{1} \tag{6.15}
\end{equation*}
$$

Using (6.15) in (6.1), we complete the proof of (6.13).
Example: Let $n=1$. Since $G_{1}=1$, from Theorem 6.1 we have

$$
\frac{M\left(e^{-\pi}\right)}{M\left(e^{-\pi / 2}\right)}=\left(\frac{1}{2}\right)^{5 / 4}
$$

Let $n=2$. Since $g_{2}=1$, from Theorem 6.1 we have

$$
\frac{M\left(e^{-\sqrt{2} \pi}\right)}{M\left(e^{-\pi / \sqrt{2}}\right)}=\frac{1}{2} \sqrt{\sqrt{2}-1}
$$

Remark: Using [10, p. 229] it is easily verified that $M(q)$ and $K(q)$ are related by the equation

$$
M\left(q^{2}\right) K(q)+K(q) M(q)-M\left(q^{2}\right)=0
$$

References

[1] C. Adiga, B. C. Berndt, S.Bhargava and G. N. Watson, Chapter 16 of Ramanujan's Second Notebook: Theta-Functions and q-Series, Mem. Amer. Math. Soc., No. 315, 53(1985), 1-85, Amer. Math. Soc., Providence, 1985.
[2] C. Adiga, T. Kim, M. S. Mahadeva Naika and H. S. Madhusudhan, On Ramanujan's Cubic Continued Fraction and Explicit Evaluations of Theta Functions,Indian J. Pure and App. Math., No. 55, 9(2004), 1047-1062.
[3] G. E. Andrews, An introduction to Ramanujan's 'lost' notebook, Amer. Math. Monthly, 86(1979), 89-108.
[4] G. E. Andrews, The Lost Notebook Part I, Springer Verlang, New York, 2005.
[5] B. C. Berndt, Ramanujan's Notebooks, Part III, Springer-Verlag, New York, 1991.
[6] B. C. Berndt, Ramanujan's Notebooks, Part V, Springer-Verlag, New York, 1998.
[7] J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, New York, 1987.
[8] H.H. Chan, On Ramanujan's Cubic Continued Fraction, Acta Arith. 73(1995), 343-355.
[9] H.H. Chan and S.S. Huang, On the Ramanujan Göllnitz Gordon Continued Fraction, Ramanujan J., 1(1997), 75-90.
[10] S. Ramanujan, Notebooks, 2 volumes, Tata Institute of Fundamental Research, Bombay, 1957.
[11] S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa, New Delhi, 1988.
[12] K.R. Vasuki and B.R. Srivatsa Kumar, Certain identities for the Ramanujan Gollnitz Gordon Continued fraction, J. of Comp. and Applied Mathematics. 187(2006),87-95.

Author information

S. N. Fathima, T. Kathiravan and Yudhisthira Jamudulia, Department of Mathematics, Ramanujan School of Mathematics, Pondicherry University, Puducherry - 605014 , INDIA.
E-mail: fathima.mat@pondiuni.edu.in; kkathiravan98@gmail.com; yudhis4581@yahoo.co.in
Received: October 7, 2013.
Accepted: January 11, 2014.

