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Abstract. Mellin analysis, a counterpart of the Fourier analysis, has been adietpidwing
interest for researchers in the last four deca®9,[1, 2, 6, 7, 3, 4]. In this paper, we aim to
study convergence of the Mellin - Fourier series of the recurrenttifume through its matrix
means. Our theorem generalizes some of the results of Butzer arthddjs

1 Introduction

A function f : R, — C is called recurrent iff (e?"z) = f(z)vz € R, andc—recurrent for
c € R, if 2™ f(e?x) = f(x)Vz € R,. We denote the function spaces under consideration by

Y., whereY, = {f € L}, (R.) : fisc— recurrent]|f|y, = f (u)|utdu < oo}, c € R.
Note thatc = 0 corresponds to recurrent functions. Mellin- Fourler seriep ofY, is defined as
1 = [ —c—ik
fla)~ = k;wM (fik)a=~*, 2 eR,,
whereM<(f; k) is the finite Mellin transform of atk € Z defined by
ME(f k) :/ fw)uct*=1quy,

Let S¢(f; «) denote the partial sums of Mellin-Fourier seriesfofThen

S¢ (f .13 _““ (11)
Using Mellin-Dirichlet kernelD¢ (), which is given by
c _ ‘Tﬁc . —1
Dn<x) 2 Z T kv S ]R—H

we can writeS¢ (f; =) as the finite Mellin convolution of and D¢, i.e.,

<(fiz) = /D d“ (1.2)

Usingz = €", the relation 2 co8 = €’ — e~ and properties of trigonometric cosine series,
we can expresp: (z) as

2n+1 o1

Din)=y |
T (sin((n+1/2)Ina)

2r ( sin(lnz/2) ) & 7é 1,
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and henc&s (f; =) can also be written as

e [ uesin((n+1/2)Inw) , say du
S”U’x)_/e_ﬂ 2 sin(nu/2) f(;) w (1.3)
1 “sin((n+1/2)Inw) o, du
_E/w sninuj2) efimor (1.4)

71, being the Mellin translation operator defined by
T (fi2) = hf(ha), heR..

For more details of the finite Mellin transform, finite Mellin convolution and Mellenslation
operator one can refer t®]] The arithmetic means of the Mellin - Fourier seriesfot Y.,
denoted bys¢ (f; ), are given by

c . _ 1 . C . _
an(f,x)—mkz:(:)b’k(f,x), n=012..., (1.5)
which are known as the Cesaro means of order one, which are a¢srertqC, 1) means.

In study of the Cesaro means, the Mellin-Fejér kernels play an impoxnt The Mellin-
Fejér kernelg¢( f; =) are defined as the average of Mellin-Dirichlet kernels, i.e.,

1
n+1

Fo(fiz) = > Di(x), n=012....
k=0

LetT = (anx),n, k € No be alower triangular matrix antl€ Y.. The sequence to sequence
transform

To(fiz) =Y ansSi(fiz), n=012... (1.6)
k=0

defines the matrix means or simglyymeans of the Mellin-Fourier series ¢gf The Mellin-
Fourier series of is said to bel'-summable td, if lim,,_, . T5(f; ) = S. TheT-summability
is said to be regular if

lim S¢(f;z) =S = lim T¢(f;2) = S.
n—0o0 n— o0

If we defineT = (an ), n,k € No as

1
<
[ 7L+17 ksn
0, k>n,

thenl.6reduces td..5 Thus the(C, 1) summability is a particular case @Fsummability.

The Fourier analysis, in general, and the Fourier series, in particakrelkeived attention of
the researchers during last century as well as in the present caviamy.variants of the Fourier
series have been developed for the different type of functions. Melurier series is one of
these variants to handle the recurrent functid)®9[ 1, 2, 6, 7, 3, 4]. The theory of recurrent
functions with a counterpart of the Fourier series in Mellin settings has tisenssed in9],
which has been further extended 6} &nd [7]. Butzer and Jansch®,[p. 52] have proved that in
general the Mellin-Fourier series of a recurrent function does noterge to the function itself
whereas the arithmetic means (Cesaro means of order 1) of the samesge to the function.
More precisely, they have proved the following:

Theorem 1L.1.If f € Y. for ¢ € R, then
lim Jlog(f;2) = fllv. =0, z€R..

For the proof one can se8,[pp. 52-53, Theorem 3.1]. We note that this theorem can be
extended to a more general summability means, which we will discuss iregisection.
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2 Main Result
In this paper, we extend the above theorem to matrix means of Mellin-Faaries.

Theorem 2.1. LetT = (a, k); n, k € Ng be alower triangular regular matrix with non-negative
entries which satisfies

(I) Qp k+1 < Qn, ks 0<k<n-1;Vne Np.
(i) Yr_oank =1, Vn € No.

Then for anyf € Y.
lim |T5(fi) = flly, =0, @€Rs.

We assume thate : Y. — Y., Vn € Ny. Indeed this is true and trivial to verify, because for
anyn € No, S5 (f;z) € Y. andT5(f; z) is linear combination of% (f;z)’'s. SOTS(f; x) € Ye.

3 Lemmas
To prove the main result, we need following lemmas.
Lemma 3.1. Let a functiong : [, 7] — R be defined by
sin(n+1/2)t .
oty = 4 sz o LFEO
2n+1, t=0.
Then -
/ g(t)dt = 2r
For the proof one can seB,[p. 178].

Lemma3.2. Let{a,};° , be a non-increasing sequence of non-negative numbers. Then

Z ksm (k+1/2)t >0,

sintj2) = t e (0,7].

Proof. Fort € (0, 7], {%}io is a sequence of real numbers whose partial synee
given by

Sp =

“sin(k+1/2)t  (sin((n+1)t/2)\°
; sin(t/2) _< sin(t/2) ) ’

so thats,, > 0,Vn € Ny. Using Abel’'s lemma for lower bound G{%} ~we get

sin(k +1/2)t
> ag-0=0.
Z “sin(tj2) 0=0

Lemma33.ForO<d<m

Iim/ wdt:o,
n—oo [ sin(t/2)

Proof. To prove lemma we use generalized Riemann - Lebesgue lefnpa.[ 170-171]. We
see that 1 Ly(4, 7] for 0 < 6 < = and sir{t/2) > sind/2 > 0,Vé < t < m. So 1/sin(t/2) €
L1(6, 7).

Also

}/ Sintdt:}(COSc—l),
cJo C
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and

so that

lim 5/‘sint dt = 0.
0

c—*+oo ¢

Using generalized Riemann - Lebesgue lemma

im sin(n+1/2)t

- dt =0.
n—oo Js sin(¢/2)

4 Proof of Theorem 2.1

Proof. We have

o) ) = S / u=°sin((k+1/2) Inu)f (g) dIu )

- 27 sin(lnw/2) u

-y T wesin((k+1/2)Inw) | oy du
- kzz;)an’k </e—w 2r  sin(lnu/2) ! (;) o f(@) ;

n
in view of Z ang =1
k=0

Using LemmaB.1, we have

Te(fix) — fz) = ian’k </eﬂ ucsin((k+1/2) Inw) , (f) du
k=0 €

27 sin(lnu/2) u/ u

" 1 sin((k+1/2)Inw) du
~Jow 2 sin(lnu/2) f<x)f>
1¢ “sin((k+1/2)Inw) ; _, . /a du
~or kz:%an,k /e_” sin(Inw/2) (u f (a) n f(x)) u

1 “sin((k+1/2)Inw) /. du
T 2r kz_(:)a"’k/ sin(Inu/2) (Tl/“f(x) - f(x)) -

e~ ™
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Now

e™

ITshi0) = Fly, = [ [Ta(sn) = St

e

c

(Tl‘/u ¢

/""T sin((k +1/2) Inw)

du
sin(Inu/2) f(@) = f(x)) u

-

sin((k+1/2)Inw)
sin(inu/2)

c
7-l/u

£() — ()| Lot

Changing the order of integration

n ™

_1 sin((k +1/2)Inw)| <7 . o du
Z/erw kz:(:)a"’k sin(Inu/2) /efw Tyl (@) = f ()| 2 da—

1 | sin((k+1/2)nw) | i
Z/, 2 n sin(Inw/2) HTl/uf(ﬂ?)—f(w)HYC;

k=0

LetEs :={zele™e"]: |z -1 <d},0<d<l—e™andCE; =[e ", e"| — E5. Then

|ﬁw@—ﬂmn=%{@+ém}

Since lim,1 (|7 f — fll,, = 0, so for a givene > 0,34 (0 < § < 1- e 7) such that

sin((k+1/2) Inw)
sin(Inw/2)

du

u

c
T1/u

f@) = f

n
D ank
k=0

Y.

gl — 1, <evue B Ao ||rg,s — f]|, <2l So
4 [ [t
o B
- % X 2 + ”];UTY“ /CEE éan,ksin(gngnli/z;)mw d?u
. HfZUryc /CE& éamksin(gnarnlﬁ;)'”u) %,
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Using Lemma3.2, Lemma3.3and conditions om,, ., we have

. A flly = sin((k+1/2)Inw) | du
I T(fx) — < lim ———« n - —
nmoH n(f,$) f”Y“ - €+nmo 2T /C‘E,s kz:(:) ow 5|n(|nu/2) u
Wy, oA
=c+ x 0=¢, foranye > 0.
2r

Hence
Jim_ |75 (fi2) = fly, =0

This completes the proof.
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