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Abstract. The aim of this paper is to study an implicit iterative process for a finite family
of T-Ciric quasi-contractive operators and also establish the strong convergence of above said
iteration process using the common fixed points of a finite family of above said operators in the
framework of CAT(0) spaces. Our results improve and extend some corresponding recent results
from the current existing literature.

1 Introduction and Preliminaries

A metric space X is a CAT (0) space if it is geodesically connected and if every geodesic trian-
gle in X is at least as ’thin’ as its comparison triangle in the Euclidean plane. It is well known
that any complete, simply connected Riemannian manifold having non-positive sectional curva-
ture is a CAT(0) space. Other examples include Pre-Hilbert spaces (see [4]), R-trees (see [21]),
Euclidean buildings (see [5]), the complex Hilbert ball with a hyperbolic metric (see [14]), and
many others. For a thorough discussion of these spaces and of the fundamental role they play in
geometry, we refer the reader to Bridson and Haefliger [4].

Fixed point theory in a CAT(0) space was first studied by Kirk (see [22, 23]). He showed
that every nonexpansive (single-valued) mapping defined on a bounded closed convex subset
of a complete CAT(0) space always has a fixed point. Since, then the fixed point theory for
single-valued and multi-valued mappings in CAT(0) spaces has been rapidly developed, and
many papers have appeared (see, e.g., [1], [8], [11]-[13], [16], [19]-[20], [24]-[25], [30], [38],
[41] and the references therein). It is worth mentioning that the results in CAT(0) spaces can be
applied to any CAT(k) space with k ≤ 0 since any CAT(k) space is a CAT(k′) space for every
k′ ≥ k (see,e.g., [4]).

Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or, more briefly,
a geodesic from x to y) is a map c from a closed interval [0, l] ⊂ R to X such that c(0) = x,
c(l) = y and d(c(t), c(t′)) = |t − t′| for all t, t′ ∈ [0, l]. In particular, c is an isometry and
d(x, y) = l. The image α of c is called a geodesic (or metric) segment joining x and y. We say
X is (i) a geodesic space if any two points of X are joined by a geodesic and (ii) a uniquely
geodesic if there is exactly one geodesic joining x and y for each x, y ∈ X , which we will de-
noted by [x, y], called the segment joining x to y.

A geodesic triangle4(x1, x2, x3) in a geodesic metric space (X, d) consists of three points in
X (the vertices of4) and a geodesic segment between each pair of vertices (the edges of4). A
comparison triangle for geodesic triangle 4(x1, x2, x3) in (X, d) is a triangle 4(x1, x2, x3) :=
4(x1, x2, x3) in R2 such that dR2(xi, xj) = d(xi, xj) for i, j ∈ {1, 2, 3}. Such a triangle always
exists (see [4]).

A geodesic metric space is said to be a CAT (0) space if all geodesic triangles of appropriate
size satisfy the following CAT (0) comparison axiom.

CAT(0) space

Let 4 be a geodesic triangle in X , and let 4 ⊂ R2 be a comparison triangle for 4. Then 4
is said to satisfy the CAT (0) inequality if for all x, y ∈ 4 and all comparison points x, y ∈ 4,

d(x, y) ≤ dR2(x, y). (1.1)
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CompleteCAT (0) spaces are often called Hadamard spaces (see [18]). If x, y1, y2 are points of a
CAT (0) space and y0 is the midpoint of the segment [y1, y2] which we will denote by (y1⊕y2)/2,
then the CAT (0) inequality implies

d2
(
x,
y1 ⊕ y2

2

)
≤ 1

2
d2(x, y1) +

1
2
d2(x, y2)−

1
4
d2(y1, y2). (1.2)

The inequality (1.2) is the (CN) inequality of Bruhat and Tits [6]. The above inequality has
been extended in [12] as

d2(z, αx⊕ (1− α)y) ≤ αd2(z, x) + (1− α)d2(z, y)

−α(1− α)d2(x, y). (1.3)

for any α ∈ [0, 1] and x, y, z ∈ X .

Let us recall that a geodesic metric space is a CAT (0) space if and only if it satisfies the
(CN) inequality (see [4, page 163]). Moreover, if X is a CAT (0) metric space and x, y ∈ X ,
then for any α ∈ [0, 1], there exists a unique point αx⊕ (1− α)y ∈ [x, y] such that

d(z, αx⊕ (1− α)y) ≤ αd(z, x) + (1− α)d(z, y), (1.4)

for any z ∈ X and [x, y] = {αx⊕ (1− α)y : α ∈ [0, 1]}.

A subset C of a CAT (0) space X is convex if for any x, y ∈ C, we have [x, y] ⊂ C.

Since last 30 years, the convergence problems of implicit or non-implicit iteration process to a
common fixed point for a finite family of nonexpansive mappings, asymptotically nonexpansive
mappings, pseudocontractive mappings, and Zamfirescu operators in arbitrary Banach spaces,
Hilbert spaces, uniformly convex Banach spaces or normed linear spaces have been considered
by several authors (see, for example [2, 10, 15], [31]-[35], [39]-[40], [42]-[45]) and many others.

In 2001, Xu and Ori [45] introduced the following implicit iteration process for a finite family
of nonexpansive mappings.

Let C be a nonempty closed convex subset of a normed linear space E. Let {Ti : i ∈ I}
(I = {1, 2, . . . , N}) be a finite family of nonexpansive mappings. For an initial point x0 ∈ C,
define the sequence {xn} as follows:

xn = αn xn−1 + (1− αn)Tnxn, n ≥ 1,

where Tn = Tn (modN) (here the mod N function takes values in I) and {αn}∞n=1 a real sequence
in (0, 1). They proved the weak convergence of this process to a common fixed point for a finite
family of nonexpansive mappings defined in a Hilbert space.

In 2006, Rafiq [35] studied the following implicit iteration process with errors for a finite
family of Z-operators.

Let C be a nonempty closed convex subset of a normed linear space E and x0 ∈ C. Define
the sequence {xn} as follows:

xn = αn xn−1 + (1− αn)Tnxn + un, n ≥ 1,

where Tn = Tn (modN) (here the mod N function takes values in I), {αn}∞n=1 a real sequence
in (0, 1) and {un} is a summable sequence in C. He established the strong convergence of this
iteration process to a common fixed point for a finite family of Z-operators in normed linear
spaces.

We recall the following definitions in a metric space (X, d). A mapping T : X → X is called
an a-contraction if

d(Tx, Ty) ≤ a d(x, y) for all x, y ∈ X, (1.5)

where a ∈ (0, 1).
The mapping T is called Kannan mapping [17] if there exists b ∈ (0, 1

2) such that

d(Tx, Ty) ≤ b [d(x, Tx) + d(y, Ty)] for all x, y ∈ X. (1.6)
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The following definition is due to Chatterjea [9]: there exists c ∈ (0, 1
2) such that

d(Tx, Ty) ≤ c [d(x, Ty) + d(y, Tx)] for all x, y ∈ X. (1.7)

In 1972, combining these three definitions, Zamfirescu [46] proved the following important
result.

Theorem Z. Let (X, d) be a complete metric space and T : X → X a mapping for which
there exists the real number a, b and c satisfying a ∈ (0, 1), b, c ∈ (0, 1

2) such that for any pair
x, y ∈ X , at least one of the following conditions holds:

(Z1) d(Tx, Ty) ≤ a d(x, y),

(Z2) d(Tx, Ty) ≤ b [d(x, Tx) + d(y, Ty)],

(Z3) d(Tx, Ty) ≤ c [d(x, Ty) + d(y, Tx)].

Then T has a unique fixed point p and the Picard iteration {xn}∞n=0 defined by

xn+1 = Txn, n = 0, 1, 2, . . .

converges to p for any arbitrary but fixed x0 ∈ X .

The conditions (Z1)− (Z3) can be written in the following equivalent form

d(Tx, Ty) ≤ h max
{
d(x, y),

d(x, Tx) + d(y, Ty)

2
,
d(x, Ty) + d(y, Tx)

2

}
, (QC)

for all x, y ∈ X and 0 < h < 1, has been obtained by Ciric [7] in 1974.

A mapping satisfying (QC) is called Ciric quasi-contraction. It is obvious that each of the
conditions (Z1)− (Z3) implies (QC).

An operator T satisfying the contractive conditions (Z1) − (Z3) in the theorem Z is called
Z-operator.

In 2009, Beiranvand et al. [3] introduced the concept of T -Banach contraction and T -
contractive mappings and they extended Banach’s contraction principle and Edelstein fixed point
theorem. Followed by this, Moradi [26] introduced T -Kannan contractive mappings, extending
in the way, the well-known Kannan fixed point theorem [17].

Recently, Morales and Rojas ([28], [29]) have extended the concept of T -contraction map-
pings to cone metric space by proving fixed point theorems for T -Kannan, T -Zamfirescu and T -
weakly contraction mappings. In [27], they studied the existence of fixed point for T -Zamfirescu
operators in complete metric spaces and proved a convergence theorem of T -Picard iteration for
the class of T -Zamfirescu operators. The result is as follows:

Theorem 1.1. (See [27]) Let (M,d) be a complete metric space and T, S : M → M be two
mappings such that T is continuous, one-to-one and subsequentially convergent. If S is a TZ
operator, S has a unique fixed point. Moreover, if T is sequentially convergent, then for every
x0 ∈ M the T -Picard iteration associated to S, TSnx0 converges to Tx∗, where x∗ is the fixed
point of S.

Here we recall the definitions of the following classes of generalized T -contraction type map-
pings as given by Morales and Rojas [27].

Definition 1.2. (See [27]) Let (X, d) be a metric space and S, T : X → X be two mappings.
A mapping S is said be T -contraction, if there exists a real number a ∈ [0, 1) such that for all
x, y ∈ X ,

d(TSx, TSy) ≤ a d(Tx, Ty).

If we take T = I (the identity map) in definition 1.2, then we obtain the definition of Ba-
nach’s contraction.
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The following example shows that a T -contraction mapping need not be a contraction map-
ping.

Example 1.3. Let X = [1,∞) be with the usual metric. Define two mappings T, S : X → X as
Tx = 1

2x + 2 and Sx = 3x. Obviously, S is not contraction but S is T -contraction which is seen
from the following:

|TSx− TSy| =
∣∣∣ 1
6x
− 1

6y

∣∣∣ = 1
3
|Tx− Ty|.

Definition 1.4. (See [27]) Let (X, d) be a metric space and S, T : X → X be two mappings. A
mapping S is said be T -Kannan contraction, if there exists a real number b ∈ [0, 1

2) such that for
all x, y ∈ X ,

d(TSx, TSy) ≤ b [d(Tx, TSx) + d(Ty, TSy)].

If we take T = I (the identity map) in definition 1.4, then we obtain the definition of Kannan
contraction [17].

Definition 1.5. (See [27]) Let (X, d) be a metric space and S, T : X → X be two mappings. A
mapping S is said be T -Chatterjea contraction, if there exists a real number c ∈ [0, 1

2) such that
for all x, y ∈ X ,

d(TSx, TSy) ≤ c [d(Tx, TSy) + d(Ty, TSx)].

If we take T = I (the identity map) in definition 1.5, then we obtain the definition of Chat-
terjea contraction [9].

Definition 1.6. (See [27]) Let (X, d) be a metric space and S, T : X → X be two mappings. A
mapping S is said be T -Zamfirescu operator (TZ-operator), if there are real numbers 0 ≤ a < 1,
0 ≤ b < 1

2 , 0 ≤ c < 1
2 such that for all x, y ∈ X at least one of the following conditions holds:

(TZ1) d(TSx, TSy) ≤ a d(Tx, Ty),

(TZ2) d(TSx, TSy) ≤ b [d(Tx, TSx) + d(Ty, TSy)],

(TZ3) d(TSx, TSy) ≤ c [d(Tx, TSy) + d(Ty, TSx)].

If we take T = I (the identity map) in definition 1.6, then we obtain the definition of Zam-
firescu operator [46].

In this paper, inspired and motivated by [27, 35, 45, 46], we study the following iteration
scheme and prove strong convergence theorem to approximate the common fixed point for
(T,C)-quasi contractive operator in the framework of CAT(0) spaces.

Let C be a nonempty closed convex subset of a complete CAT(0) space X . Let T : C → C
and let {Si}Ni=1 : C → C be N , T -Ciric quasi-contractive operators with F = ∩Ni=1F (Si) 6= ∅.
Let {αn}∞n=1 be a real sequence in (0, 1). Define the sequence {Txn} as follows:

Txn = αnTxn−1 ⊕ (1− αn)TSnxn, ∀n ≥ 1 (1.8)

where Sn = Sn (modN) (here the mod N function takes values in I = {1, 2, . . . , N}).

We also study the following two-step implicit iterative process for a finite family of T -Ciric
quasi-contractive operators {Si}Ni=1 : C → C with F = ∩Ni=1F (Si) 6= ∅ in the framework of
CAT(0) spaces, where T : C → C and define the sequence {Txn} as follows:

Txn = αnTxn−1 ⊕ (1− αn)SnTyn,

T yn = βnTxn−1 ⊕ (1− βn)TSnxn ∀n ≥ 1 (1.9)

where Sn = Sn (modN) (here the mod N function takes values in I = {1, 2, . . . , N}), {αn}∞n=1,
{βn}∞n=1 are real sequences in [0, 1] and T and Sn (n = 1, 2, . . . , N) are commuting mappings.
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If we take T = I (the identity map) in (1.8) we get the following iteration process for a finite
family of Ciric quasi- contractive operators {Si}Ni=1 : C → C with F = ∩Ni=1F (Si) 6= ∅ in the
framework of CAT(0) spaces as follows:

xn = αnxn−1 ⊕ (1− αn)Snxn, ∀n ≥ 1 (1.10)

where Sn = Sn (modN) (here the mod N function takes values in I = {1, 2, . . . , N}).

If we take T = I (the identity map) in (1.9) we get the following iteration process for a finite
family of Ciric quasi- contractive operators {Si}Ni=1 : C → C with F = ∩Ni=1F (Si) 6= ∅ in the
framework of CAT(0) spaces as follows:

xn = αnxn−1 ⊕ (1− αn)Snyn,

yn = βnxn−1 ⊕ (1− βn)Snxn, ∀n ≥ 1 (1.11)

where Sn = Sn (modN) (here the mod N function takes values in I = {1, 2, . . . , N}), {αn}∞n=1,
{βn}∞n=1 are real sequences in [0, 1].

We need the following useful lemmas to prove our main results in this paper.

Lemma 1.7. (See [30]) Let X be a CAT(0) space.

(i) For x, y ∈ X and t ∈ [0, 1], there exists a unique point z ∈ [x, y] such that

d(x, z) = t d(x, y) and d(y, z) = (1− t) d(x, y). (A)

We use the notation (1− t)x⊕ ty for the unique point z satisfying (A).

(ii) For x, y ∈ X and t ∈ [0, 1], we have

d((1− t)x⊕ ty, z) ≤ (1− t)d(x, z) + td(y, z).

Lemma 1.8. (See [36]) Let {pn}, {qn}, {rn} and {sn} be sequences of nonnegative numbers
satisfying the following conditions:

pn+1 ≤ (1− qn)pn + qnrn + sn, n ≥ 1.

If
∑∞

n=1 qn =∞, limn→∞ rn = 0 and
∑∞

n=1 sn <∞ hold, then limn→∞ pn = 0.

2 Strong convergence theorems in CAT(0) Spaces

In this section, we establish some strong convergence results of an implicit iterative process
(1.8) and a two-step implicit iteration scheme (1.9) to approximate common fixed point for a
finite family of T-Ciric quasi-contractive operators in the framework of CAT (0) spaces.

Theorem 2.1. Let C be a nonempty closed convex subset of a complete CAT (0) space X . Let
T : C → C and let {Si}Ni=1 : C → C be N , T -Ciric quasi-contractive operators with F =
∩Ni=1F (Si) 6= ∅ satisfying the condition:

d(TSix, TSiy) ≤ h max
{
d(Tx, Ty),

d(Tx, TSix) + d(Ty, TSiy)

2
,

d(Tx, TSiy) + d(Ty, TSix)

2

}
(2.1)

∀ i = 1, 2, . . . , N ; ∀x, y ∈ C and 0 < h < 1. Let {Txn} be defined by the iteration scheme
(1.8). If

∑∞
n=1(1 − αn) = ∞, then {Txn} converges strongly to Tu, where u is the common

fixed point of the operators {Si}Ni=1 in C.

Proof. From the assumption of the Theorem F = ∩Ni=1F (Si) 6= ∅, it follows that operators
{Si}Ni=1 have a common fixed point in C, say u. Consider x, y ∈ C. Since each Si, i =
1, 2, . . . , N is a T -Ciric quasi-contractive operator satisfying (2.1), then if

d(TSix, TSiy) ≤ h

2
[d(Tx, TSix) + d(Ty, TSiy)]

≤ h

2
[d(Tx, TSix) + d(Ty, Tx) + d(Tx, TSix) + d(TSix, TSiy)],
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implies (
1− h

2

)
d(TSix, TSiy) ≤

h

2
d(Tx, Ty) + hd(Tx, TSix),

which yields (using the fact that 0 < h < 1)

d(TSix, TSiy) ≤
( h/2

1− h/2

)
d(Tx, Ty) +

( h

1− h/2

)
d(Tx, TSix).

(2.2)

If

d(TSix, TSiy) ≤ h

2
[d(Tx, TSiy) + d(Ty, TSix)]

≤ h

2
[d(Tx, TSix) + d(TSix, TSiy) + d(Ty, Tx) + d(Tx, TSix)],

implies (
1− h

2

)
d(TSix, TSiy) ≤

h

2
d(Tx, Ty) + h d(Tx, TSix),

which also yields (using the fact that 0 < h < 1)

d(TSix, TSiy) ≤
( h/2

1− h/2

)
d(Tx, Ty) +

( h

1− h/2

)
d(Tx, TSix).

(2.3)

Denote
δ = max

{
h,

h/2
1− h/2

}
= h,

L =
h

1− h/2
.

Thus, in all cases,

d(TSix, TSiy) ≤ δ d(Tx, Ty) + Ld(Tx, TSix)

= h d(Tx, Ty) +
( h

1− h/2

)
d(Tx, TSix) (2.4)

holds for all x, y ∈ C.

Also from (2.1) with y = u = Siu for all i = 1, 2, . . . , N , we have

d(TSix, TSiu) ≤ hmax
{
d(Tx, Tu),

d(Tx, TSix)

2
,
d(Tx, TSiu) + d(Tu, TSix)

2

}
≤ hmax

{
d(Tx, Tu),

d(Tx, Tu) + d(Tu, TSix)

2
,
d(Tx, Tu) + d(Tu, TSix)

2

}
= hmax

{
d(Tx, Tu),

d(Tx, Tu) + d(Tu, TSix)

2

}
≤ h d(Tx, Tu). (2.5)

Since Siu = u, Sn = Sn (modN) and the modN function takes values in {1, 2, . . . , N}, taking
x = xn in (2.5), we obtain

d(TSnxn, Tu) ≤ h d(Txn, Tu). (2.6)

Using (1.8), (2.6) and Lemma 1.7(ii), we have

d(Txn, Tu) = d(αnTxn−1 ⊕ (1− αn)TSnxn, Tu)

≤ αnd(Txn−1, Tu) + (1− αn)d(TSxn, Tu)

≤ αnd(Txn−1, Tu) + (1− αn)h d(Txn, Tu), (2.7)

which gives
[1− (1− αn)h]d(Txn, Tu) ≤ αnd(Txn−1, Tu).
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Thus we get

d(Txn, Tu) ≤
( αn

1− (1− αn)h

)
d(Txn−1, Tu). (2.8)

Let An = αn, Bn = 1− (1− αn)h.

Now, consider

1− An

Bn
= 1− αn

1− (1− αn)h

=
1− (1− αn)h− αn

1− (1− αn)h

=
(1− h)(1− αn)

1− (1− αn)h

≥ (1− h)(1− αn). (2.9)

From (2.9), we get

An

Bn
≤ 1− (1− h)(1− αn). (2.10)

From (2.8), we have the following inequality

d(Txn, Tu) ≤ An

Bn
d(Txn−1, Tu). (2.11)

Using (2.10) in inequality (2.11), we get

d(Txn, Tu) ≤ [1− (1− h)(1− αn)] d(Txn−1, Tu)

= (1−mn) d(Txn−1, Tu), (2.12)

wheremn = (1−h)(1−αn), since 0 < h < 1 and by assumption of the theorem
∑∞

n=1(1−αn) =
∞, it follows that

∑∞
n=1 mn =∞, therefore by Lemma 1.8, we get that limn→∞ d(Txn−1, Tu) =

0. Thus, we conclude that {Txn} converges strongly to Tu, where u is the common point of the
operators {Si}Ni=1 in C. This completes the proof.

Since T -Kannan contraction and T -Chatterjea contraction are both included in the T -Ciric
quasi-contractive operators, by Theorem 2.1, we obtain the corresponding convergence results
of the iteration process defined by (1.8) for the above said class of operators as corollaries:

Corollary 2.2. Let C be a nonempty closed convex subset of a complete CAT(0) space X . Let
T : C → C and let {Si}Ni=1 : C → C be N , T -contractive operators with F = ∩Ni=1F (Si) 6= ∅
satisfying the condition:

d(TSix, TSiy) ≤ b
[d(Tx, TSix) + d(Ty, TSiy)

2

]
,

∀ i = 1, 2, . . . , N ; ∀x, y ∈ C and b ∈ (0, 1
2). Let {Txn} be defined by the iteration scheme (1.8).

If
∑∞

n=1(1−αn) =∞, then {Txn} converges strongly to Tu, where u is the common fixed point
of the operators {Si}Ni=1 in C.

Corollary 2.3. Let C be a nonempty closed convex subset of a complete CAT(0) space X . Let
T : C → C and let {Si}Ni=1 : C → C be N , T -contractive operators with F = ∩Ni=1F (Si) 6= ∅
satisfying the condition:

d(TSix, TSiy) ≤ c
[d(Tx, TSix) + d(Ty, TSiy)

2

]
,

∀ i = 1, 2, . . . , N ; ∀x, y ∈ C and c ∈ (0, 1
2). Let {Txn} be defined by the iteration scheme (1.8).

If
∑∞

n=1(1−αn) =∞, then {Txn} converges strongly to Tu, where u is the common fixed point
of the operators {Si}Ni=1 in C.
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Corollary 2.4. Let C be a nonempty closed convex subset of a complete CAT(0) space X . Let
T : C → C and let {Si}Ni=1 : C → C be N , T -Zamfirescu operators with F = ∩Ni=1F (Si) 6= ∅.
Let {Txn} be defined by the iteration scheme (1.8). If

∑∞
n=1(1−αn) =∞, then {Txn} converges

strongly to Tu, where u is the common fixed point of the operators {Si}Ni=1 in C.

Theorem 2.5. Let C be a nonempty closed convex subset of a complete CAT(0) space X . Let
T : C → C and let {Si}Ni=1 : C → C be N , T -Ciric quasi-contractive operators with F =
∩Ni=1F (Si) 6= ∅ where T and Sn, (n = 1, 2, . . . , N) are commuting mappings satisfying the
condition:

d(TSix, TSiy) ≤ h max
{
d(Tx, Ty),

d(Tx, TSix) + d(Ty, TSiy)

2
,

d(Tx, TSiy) + d(Ty, TSix)

2

}
(TCQC)

∀ i = 1, 2, . . . , N ; ∀x, y ∈ C and 0 < h < 1. Let {Txn} be defined by the iteration scheme
(1.9). If

∑∞
n=1(1 − αn)βn = ∞, then {Txn} converges strongly to Tu, where u is the common

fixed point of the operators {Si}Ni=1 in C.

Proof. From the assumption of the theorem F = ∩Ni=1F (Si) 6= ∅, it follows that operators
{Si}Ni=1 have a common fixed point in C, say u. Consider x, y ∈ C. Since each Si, i =
1, 2, . . . , N is a T -Ciric quasi-contractive operator satisfying (TCQC), then if

d(TSix, TSiy) ≤ h

2
[d(Tx, TSix) + d(Ty, TSiy)]

≤ h

2
[d(Tx, TSix) + d(Ty, Tx) + d(Tx, TSix) + d(TSix, TSiy)]

implies (
1− h

2

)
d(TSix, TSiy) ≤

h

2
d(Tx, Ty) + h d(Tx, TSix),

which yields (using the fact that 0 < h < 1)

d(TSix, TSiy) ≤
( h/2

1− h/2

)
d(Tx, Ty) +

( h

1− h/2

)
d(Tx, TSix).

If

d(TSix, TSiy) ≤ h

2
[d(Tx, TSiy) + d(Ty, TSix)]

≤ h

2
[d(Tx, TSix) + d(TSix, TSiy) + d(Ty, Tx) + d(Tx, TSix)],

implies (
1− h

2

)
d(TSix, TSiy) ≤

h

2
d(Tx, Ty) + h d(Tx, TSix),

which also yields (using the fact that 0 < h < 1)

d(TSix, TSiy) ≤
( h/2

1− h/2

)
d(Tx, Ty) +

( h

1− h/2

)
d(Tx, TSix).

Denote
δ = max

{
h,

h/2
1− h/2

}
= h,

L =
h

1− h/2
.

Thus, in all cases,

d(TSix, TSiy) ≤ δ d(Tx, Ty) + Ld(Tx, TSix)

= h d(Tx, Ty) +
( h

1− h/2

)
d(Tx, TSix)
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holds for all x, y ∈ C.

Also from (TCQC) with y = u = Siu for all i = 1, 2, . . . , N , we have

d(TSix, TSiu) ≤ hmax
{
d(Tx, Tu),

d(Tx, TSix)

2
,
d(Tx, TSiu) + d(Tu, TSix)

2

}
≤ hmax

{
d(Tx, Tu),

d(Tx, Tu) + d(Tu, TSix)

2
,
d(Tx, Tu) + d(Tu, TSix)

2

}
= hmax

{
d(Tx, Tu),

d(Tx, Tu) + d(Tu, TSix)

2

}
≤ h d(Tx, Tu). (2.13)

Since Siu = u, Sn = Sn (modN) and the modN function takes values in {1, 2, . . . , N}, taking
x = xn in (2.13), we obtain

d(TSnxn, Tu) ≤ h d(Txn, Tu) (2.14)

and

d(TSnyn, Tu) ≤ h d(Tyn, Tu). (2.15)

Using (1.9), (2.14) and Lemma 1.7(ii), we have

d(Tyn, Tu) = d(βnTxn−1 ⊕ (1− βn)TSnxn, Tu)

≤ βn d(Txn−1, Tu) + (1− βn) d(TSnxn, Tu)

≤ βn d(Txn−1, Tu) + (1− βn)h d(Txn, Tu). (2.16)

Again using (1.9), (2.15), (2.16), SnT = TSn (by assumption of the theorem) and Lemma
1.7(ii), we have

d(Txn, Tu) = d(αnTxn−1 ⊕ (1− αn)SnTyn, Tu)

≤ αnd(Txn−1, Tu) + (1− αn)d(SnTyn, Tu)

= αnd(Txn−1, Tu) + (1− αn) d(TSnyn, Tu)

≤ αnd(Txn−1, Tu) + (1− αn)h d(Tyn, Tu)

≤ αnd(Txn−1, Tu) + (1− αn)h [βn d(Txn−1, Tu)

+(1− βn)h d(Txn, Tu)]
= [αn + (1− αn)βnh]d(Txn−1, Tu)

+(1− αn)(1− βn)h2 d(Txn, Tu).

Thus we get that the inequality

[1− (1− αn)(1− βn)h2]d(Txn, Tu) ≤ [αn + (1− αn)βnh] d(Txn−1, Tu),

which implies that

d(Txn, Tu) ≤
( αn + (1− αn)βnh

1− (1− αn)(1− βn)h2

)
d(Txn−1, Tu). (2.17)

Now, let Mn = αn + (1− αn)βnh and Nn = 1− (1− αn)(1− βn)h2. Then

1− Mn

Nn
= 1−

( αn + (1− αn)βnh

1− (1− αn)(1− βn)h2

)
=

1− [(1− αn)(1− βn)h2 + αn + (1− αn)βnh]

1− (1− αn)(1− βn)h2 .

Since 1− (1− αn)(1− βn)h2 ≤ 1, then from the above inequality, we get that

1− Mn

Nn
≥ 1− [(1− αn)(1− βn)h2 + αn + (1− αn)βnh],
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which implies
Mn

Nn
≤ (1− αn)(1− βn)h2 + αn + (1− αn)βnh.

Since 0 < h < 1 and {αn}, {βn} ∈ [0, 1], this gives

Mn

Nn
≤ (1− αn)(1− βn) + αn + (1− αn)βnh

= 1− βn(1− αn) + (1− αn)βnh

= 1− βn(1− αn)(1− h). (2.18)

From (2.17), we have the following inequality

d(Txn, Tu) ≤
Mn

Nn
d(Txn−1, Tu).

Using equation (2.18) in the above inequality, we obtain

d(Txn, Tu) ≤ [1− βn(1− αn)(1− h)] d(Txn−1, Tu)

≤ (1−Rn) d(Txn−1, Tu), (2.19)

where Rn = βn(1− αn)(1− h), since 0 < h < 1 and by assumption of the theorem
∑∞

n=1
(1− αn)βn =∞, it follows that

∑∞
n=1 Rn =∞, therefore by Lemma 1.8, we get that limn→∞

d(Txn−1, Tu) = 0. Thus, we conclude that {Txn} converges strongly to Tu, where u is the
common point of the operator {Si}Ni=1 in C. This completes the proof.

By Theorem 2.5, we get the following convergence results of the iterative process defined
by (1.9) for a finite family of T -Kannan contraction, T -Chatterjea contraction and T -Zamfirescu
operator as corollaries to our result:

Corollary 2.6. Let C be a nonempty closed convex subset of a complete CAT(0) space X . Let
T : C → C and let {Si}Ni=1 : C → C be N , T -Kannan contraction with F = ∩Ni=1F (Si) 6= ∅
where T and Sn are commuting mappings satisfying the condition

d(TSix, TSiy) ≤ b
[d(Tx, TSix) + d(Ty, TSiy)

2

]
,

∀ i = 1, 2, . . . , N ; ∀x, y ∈ C and b ∈ (0, 1
2). Let {Txn} be defined by the iteration scheme (1.9).

If
∑∞

n=1(1 − αn)βn = ∞, then {Txn} converges strongly to Tu, where u is the common fixed
point of the operators {Si}Ni=1 in C.

Corollary 2.7. Let C be a nonempty closed convex subset of a complete CAT(0) space X . Let
T : C → C and let {Si}Ni=1 : C → C be N , T -Chatterjea contraction with F = ∩Ni=1F (Si) 6= ∅
where T and Sn are commuting mappings satisfying the condition

d(TSix, TSiy) ≤ b
[d(Tx, TSix) + d(Ty, TSiy)

2

]
,

∀ i = 1, 2, . . . , N ; ∀x, y ∈ C and b ∈ (0, 1
2). Let {Txn} be defined by the iteration scheme (1.9).

If
∑∞

n=1(1 − αn)βn = ∞, then {Txn} converges strongly to Tu, where u is the common fixed
point of the operators {Si}Ni=1 in C.

Corollary 2.8. Let C be a nonempty closed convex subset of a complete CAT(0) space X . Let
T : C → C and let {Si}Ni=1 : C → C be N , T -Zamfirescu operator with F = ∩Ni=1F (Si) 6= ∅
where T and Sn are commuting mappings satisfying the condition

d(TSix, TSiy) ≤ b
[d(Tx, TSix) + d(Ty, TSiy)

2

]
,

∀ i = 1, 2, . . . , N ; ∀x, y ∈ C and b ∈ (0, 1
2). Let {Txn} be defined by the iteration scheme (1.9).

If
∑∞

n=1(1 − αn)βn = ∞, then {Txn} converges strongly to Tu, where u is the common fixed
point of the operators {Si}Ni=1 in C.
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Theorem 2.9. Let C be a nonempty closed convex subset of a complete CAT(0) space X . Let
{Si}Ni=1 : C → C be N operators with F = ∩Ni=1F (Si) 6= ∅ satisfying the condition

d(Six, Siy) ≤ h max
{
d(x, y),

d(x, Six) + d(y, Siy)

2
, d(x, Siy), d(y, Six)

}
, (2.20)

∀ i = 1, 2, . . . , N ; ∀x, y ∈ C and 0 < h < 1. Let {xn} be defined by the iteration scheme (1.11).
If
∑∞

n=1(1−αn)βn =∞, then {xn} converges strongly to a common fixed point of the operators
{Si}Ni=1 in C.

Proof. The proof of Theorem 2.9 is similar to that of Theorem 2.5 by taking T = I . This
completes the proof.

Remark 2.10. Theorem 2.1 and 2.5 extend Theorem 2.1 and 2.5 of Raphael and Pulickakunnel
[37] (Functional Analysis, Approximation and Computation 5(2) (2013), 1-9) to the case of T -
Ciric quasi-contractive operator and from normed linear space to CAT (0) spaces considered in
this paper.

Remark 2.11. Our results generalize, improve and extend some recent results from the current
existing literature.
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