Total Mean Cordiality of $K_{n}^{c}+2 K_{2}$

R. Ponraj and S. Sathish Narayanan
Communicated by Ayman Badawi

MSC 2010 Classifications: 05C78.
Keywords and phrases: Path, Cycle, Wheel, Complete graph, Complete bipartite graph.

Abstract

A Total Mean Cordial labeling of a graph $G=(V, E)$ is a mapping $f: V(G) \rightarrow$ $\{0,1,2\}$ such that $f(x y)=\left\lceil\frac{f(x)+f(y)}{2}\right\rceil$ where $x, y \in V(G), x y \in G$, and the total number of 0,1 and 2 are balanced. That is $\left|e v_{f}(i)-e v_{f}(j)\right| \leq 1, i, j \in\{0,1,2\}$ where $e v_{f}(x)$ denotes the total number of vertices and edges labeled with $x(x=0,1,2)$. If there exists a total mean cordial labeling on a graph G, we will call G is Total Mean Cordial. In this paper, it is shown that $K_{n}^{c}+2 K_{2}$ is Total Mean Cordial iff $n=1$ or 2 or 4 or 6 or 8 .

1 Introduction

By a graph we mean a finite unoriented graph without loops and multiple edges. A general reference for graph theoretic ideas can be seen in [2]. A vertex labeling of a graph G is an assignment f of labels to the vertices of G that induces for each $u v \in E(G)$ a label depending on the vertex labels $f(u)$ and $f(v)$. The vertex and edge set of a graph G are denoted by $V(G)$ and $E(G)$ so that the order and size of G are respectively $|V(G)|$ and $|E(G)|$. Let G_{1} and G_{2} be two graphs with vertex sets V_{1} and V_{2} and edge sets E_{1} and E_{2} respectively. Then their join $G_{1}+G_{2}$ is the graph whose vertex set is $V_{1} \cup V_{2}$ and edge set is $E_{1} \cup E_{2} \cup\left\{u v: u \in V_{1}\right.$ and $\left.v \in V_{2}\right\}$. The notion of Total Mean cordial labeling was introduced and studied by Ponraj, Ramasamy and Sathish Narayanan [3]. Let f be a function from $V(G) \rightarrow\{0,1,2\}$. For each edge $u v$, assign the label $\left\lceil\frac{f(u)+f(v)}{2}\right\rceil . f$ is called a Total Mean Cordial labeling if $\left|e v_{f}(i)-e v_{f}(j)\right| \leq 1$ where $e v_{f}(x)$ denote the total number of vertices and edges labeled with $x(x=0,1,2)$. A graph with a Total Mean Cordial labeling is called Total Mean Cordial graph. In this paper, we investigate the Total Mean Cordial labeling behaviour of $K_{n}^{c}+2 K_{2}$. Let x be any real number. Then the symbol $\lfloor x\rfloor$ stands for the largest integer less than or equal to x and $\lceil x\rceil$ stands for the smallest integer greater than or equal to x.

2 Main result

Theorem 2.1. $K_{n}^{c}+2 K_{2}$ is Total Mean Cordial if and only if $n=1$ or 2 or 4 or 6 or 8 .
Proof. Let $V\left(K_{n}^{c}+2 K_{2}\right)=\left\{u, v, x, y, u_{i}: 1 \leq i \leq n\right\}$ and $E\left(K_{n}^{c}+2 K_{2}\right)=\{u v, x y,\} \cup$ $\left\{u u_{i}, v u_{i}, x u_{i}, y u_{i}: 1 \leq i \leq n\right\}$. It is clear that $|V(G)|+|E(G)|=5 n+6$. Let l denotes the number of zeros to be used in $u_{i}(1 \leq i \leq n)$ and that for the label 2 , we use r. Suppose f is a Total Mean Cordial labeling of $K_{n}^{c}+2 K_{2}$.
Case 1. $n \equiv 0(\bmod 3)$.
Let $n=3 t$. Then $|V(G)|+|E(G)|=15 t+6$. Here $e v_{f}(0)=e v_{f}(1)=e v_{f}(2)=5 t+2$. Consider the set $S=\{u, v, x, y\}$ and the label 0 . Here there are five possible cases.

* All the four vertices of S are labeled by 0 .
* Any three of them are labeled by 0.
* Any two of them are labeled with 0 . [This may be adjacent vertices or two non adjacent vertices.]
* Only one vertex is labeled by 0 .
* None of them received the label 0 .

Now we discuss all the cases given above.
Subcase 1. $f(u)=f(v)=f(x)=f(y)=0$.

Here, $e v_{f}(2) \leq 3 t$, a contradiction.
Subcase 2. $f(u) \neq 0, f(v) \neq 0, f(x) \neq 0, f(y) \neq 0$.
In this case $e v_{f}(0) \leq 3 t$, a contradiction.
Subcase 3. Any three of them are labeled with zero.
With out loss of generality assume that $f(u)=f(v)=f(x)=0$ and $f(y) \neq 0$. So the vertices in S contributes only 4 zeros. We should utilize the remaining $5 t-2$ zeros for both vertices and edges. In this case, if u_{i} is labeled with 0 , apart from this label, each vertex u_{i} contributes 3 zeros. So we have $l+3 l=5 t-2$. Therefore $l=\frac{5 t-2}{4}$. This is possible only when $t \equiv 2(\bmod 4)$. Now consider the label 2. Suppose $f(y)=2$ then $r+r+1=5 t+2$. This implies $r=\frac{5 t+1}{2}$, a contradiction since $t \equiv 2(\bmod 4)$. Suppose $f(y)=1$. Then $r=\frac{5 t+2}{2}$. But $l+r>3 t$, a contradiction.
Subcase 4. Any two vertices from S are labeled by zero.
First we assume that any two adjacent vertices in u, v, x, y are labeled with zero. Without loss of generality we assume that $f(u)=f(v)=0$ and $f(x) \neq 0, f(y) \neq 0$. At present we have used 3 zeros. In this case each u_{i} contributes two edges with label zero. So, $l+2 l+3=5 t+2$. That is $l=\frac{5 t-1}{3}$. Such a positive integer l exists only if $t \equiv 2(\bmod 3)$. Suppose $t \equiv 2(\bmod 3)$. Consider the label 2. If $f(x)=f(y)=2$. Then $r=\frac{5 t-1}{3}$. It is clear that $l+r \leq 3 t$. This is true only when $t \leq 2$. Since $t \equiv 2(\bmod 3), t \neq 1$. If $t=2$, the following figure 1 shows that $K_{6}^{c}+2 K_{2}$ is Total Mean Cordial.

Figure 1.
Suppose $f(x)=2, f(y)=1$. In this case $r+2 r+2=5 t+2$. That is $r=\frac{5 t}{3}$. Since $t \equiv 2(\bmod 3)$, such a postive integer r does not exists. If $f(x)=f(y)=1$ then $r+2 r=5 t+2$. Hence $r=\frac{5 t+2}{3}$. Then $l+r>3 t$, a contradiction. Now consider the case, zero is labeled with any two non adjcent vertices from the set S. Without loss of generality assume that $f(u)=0$ and $f(y)=0$. Here, $l+2 l+2=5 t+2$. Therefore $l=\frac{5 t}{3}$. This is true only if $t \equiv 0(\bmod 3)$. If $f(v)=f(y)=2$ then in this case $r+2 r+2=5 t+2$. This implies $r=\frac{5 t}{3}$. Here $l+r>3 t$, a contradiction. Suppose $f(v)=1, f(y)=2$. Here $r+2 r+1=5 t+2$. Then $r=\frac{5 t+1}{3}$. Since $t \equiv 0(\bmod 3), r$ can not be a positive integer. Assume that $f(v)=f(y)=1$. In this case $r+2 r=5 t+2$. This implies $r=\frac{5 t+2}{3}$. Since $t \equiv 0(\bmod 3), r$ is not a positive integer.
Subcase 5. Only one vertex from the set S is labeled by zero.
Without loss of generality assume that $f(u)=0$. In this case each vertex u_{i} contributes one edge with label zero. Hence $l+l+1=5 t+2$. That is $l=\frac{5 t+1}{2}$. Since l is an positive integer, $t \equiv 1(\bmod 2)$. Now assume $f(x)=f(y)=f(v)=2$. Then $r+3 r+4=5 t+2$. Therefore $r=\frac{5 t-2}{4}$. Since $t \equiv 1(\bmod 2), r$ can not be a positive integer. Suppose $f(x)=f(y)=f(v)=$ 1. In this case, $r+3 r=5 t+2$. Hence $r=\frac{5 t+2}{4}$. Since $t \equiv 1(\bmod 2), r$ can not be a positive integer. If $f(x)=f(y)=1$ and $f(v)=2$. Then $r+3 r+1=5 t+2$. That is $r=\frac{5 t+1}{4}$. Again a contradiction since $l+r>3 t$. For $f(x)=1$ and $f(y)=f(v)=2$, we have $r+3 r+2=5 t+2$. Hence $r=\frac{5 t}{4}$, a contradiction since $t \equiv 1(\bmod 2)$. If $f(v)=1$ and $f(x)=f(y)=2$ then $r+3 r+3=5 t+2$. That is $r=\frac{5 t-1}{4}$. It follows that $l+r>3 t$, a contradiction. Suppose $f(v)=f(x)=1$ and $f(y)=2$. In this case $r+3 r+2=5 t+2$. Hence $r=\frac{5 t}{4}$ a contradiction since $t \equiv 1(\bmod 2)$.
Case 2. $n \equiv 1(\bmod 3)$.

Let $n=3 t+1$. Then $|V(G)|+|E(G)|=15 t+11$. Here we have three possibilities.
a. $e v_{f}(0)=e v_{f}(2)=5 t+4, e v_{f}(1)=5 t+3$ or
b. $e v_{f}(0)=e v_{f}(1)=5 t+4, e v_{f}(2)=5 t+3$ or
c. $e v_{f}(1)=e v_{f}(2)=5 t+4, e v_{f}(0)=5 t+3$.

Suppose $e v_{f}(0)=e v_{f}(2)=5 t+4, e v_{f}(1)=5 t+3$.
Subcase a1. $f(u)=f(v)=f(x)=f(y)=0$.
Here, $e v_{f}(2) \leq 3 t+1$, a contradiction.
Subcase a2. $f(u) \neq 0, f(v) \neq 0, f(x) \neq 0, f(y) \neq 0$.
In this case $e v_{f}(0) \leq 3 t+1$, a contradiction.
Subcase a3. Any three vertices of S are labeled with zero.
With out loss of generality assume that $f(u)=f(v)=f(x)=0$ and $f(y) \neq 0$. Here, if a vertex u_{i} is labeled with zero then it contributes three edges with label zero. So we have $l+3 l+4=$ $5 t+4$. Therefore $l=\frac{5 t}{4}$. Such a positive integer l exisits only when $t \equiv 0(\bmod 4)$. Now suppose $f(y)=2$. A vertex u_{i} with label 2 contributes one edge with label 2 . So $r+r+1=5 t+4$. That is $r=\frac{5 t+3}{2}$. Since $t \equiv 0(\bmod 4), r$ can not be a positive integer. If $f(y)=1$ then in this case also a vertex u_{i} with label 2 contributes one edge with label 2. Therefore $r+r=5 t+4$. That is $r=\frac{5 t+4}{2}$. But $l+r>3 t+1$, a contradiction.
Subcase a4. Any two vertices of S are labeled with zero.
First we assume that $f(u)=f(v)=0$ and $f(x) \neq 0, f(y) \neq 0$. In this case, if a vertex u_{i} is labeled by zero then it gives two edges with label zero. Therefore $l+2 l+3=5 t+4$. That is $l=\frac{5 t+1}{3}$. Since l is a positive integer, $t \equiv 1(\bmod 3)$. Consider the vertices x and y. Suppose these two vertices are labeled with 1 . If a vertex u_{i} is labeled by 2 then each u_{i} contributes two edges with labele 2. It follows that $r+2 r=5 t+4$. Hence $r=\frac{5 t+4}{3}$. But $l+r>3 t+1$, a contradiction. Suppose the vertices x and y are labeled by 2 . Here a vertex u_{i} with label 2 contributes two edges with label 2. Then $r+2 r+3=5 t+4$. Therefore, $r=\frac{5 t+1}{3}$. We know that $l+r \leq 3 t+1$. This is true only when $t=1$. The Total Mean Cordial labeling of $K_{4}^{c}+2 K_{2}$ is given in figure 2. Suppose $f(x)=1$ and $f(y)=2$. Then each vertex u_{i} with a

Figure 2.
label 2 contributes two edges with label 2. This implies $r+2 r+2=5 t+4$ and hence $r=\frac{5 t+2}{3}$. Since $t \equiv 1(\bmod 3)$, such a positive integer r does not exists. Suppose $f(u)=f(x)=0$. Here $l+2 l+2=5 t+4$. Therefore $l=\frac{5 t+2}{3}$. It follows that $t \equiv 2(\bmod 3)$. Now assume $f(y)=f(v)=2$. Then $r+2 r+2=5 t+4$. That is $r=\frac{5 t+2}{3}$. But $l+r>3 t+1$, a contradiction. If $f(y)=f(v)=1$ then $r+2 r=5 t+4$. Hence $r=\frac{5 t+4}{3}$, a contradiction since $t \equiv 2(\bmod 3)$. For $f(y)=1$ and $f(v)=2$, we have $r+2 r+1=5 t+4$. That is $r=\frac{5 t+3}{3}$, again a contradiction since $t \equiv 2(\bmod 3)$.
Subcase a5. Only one vertex from the set S is labeled by zero.
Without loss of generality assume that $f(u)=0$. In this case $l+l+1=5 t+4$ and hence $l=\frac{5 t+3}{2}$. Since l is a positive integer, $t \equiv 1(\bmod 2)$. If $f(v)=f(x)=f(y)=1$ then $r+3 r=5 t+4$. This implies $r=\frac{5 t+4}{4}$. For the values of t, r could not be an integer. If $f(v)=1$ and $f(x)=f(y)=2$ then $r+3 r+3=5 t+4$. Therefore $r=\frac{5 t+1}{4}$. Here, $l+r>3 t+1$, a contradiction. If $f(v)=2$ and $f(x)=f(y)=1$ then $r+3 r+1=5 t+4$. This implies $r=\frac{5 t+3}{4}$. Here also $l+r>3 t+1$, a contradiction. Suppose $f(v)=f(x)=1$ and $f(y)=2$. Here $r+3 r+2=5 t+4$ and hence $r=\frac{5 t+2}{4}$. This is impossible since $t \equiv 1(\bmod 2)$. For $f(v)=f(x)=f(y)=2$, we have $3 r+r+4=5 t+4$. Therefore $r=\frac{5 t}{4}$. But $t \equiv 1(\bmod 2)$, a contradiction.

Consider the case $e v_{f}(0)=e v_{f}(1)=5 t+4$ and $e v_{f}(2)=5 t+3$.
Subcase b1. $f(u)=f(v)=f(x)=f(y)=0$.
Here, $e v_{f}(2) \leq 3 t+1$, a contradiction.
Subcase b2. $f(u) \neq 0, f(v) \neq 0, f(x) \neq 0, f(y) \neq 0$.
In this case $e v_{f}(0) \leq 3 t+1$, a contradiction.
Subcase b3. Any three vertices of S are labeled with zero.
With out loss of generality assume that $f(u)=f(v)=f(x)=0$ and $f(y) \neq 0$. In this case $l+3 l+4=5 t+4$. That is $l=\frac{5 t}{4}$. Since l is a positive integer, $t \equiv 0(\bmod 4)$. Suppose $f(y)=2$ then $r+r+1=5 t+3$. Therefore $r=\frac{5 t+2}{2}$. But $l+r \leq 3 t+1$. This is true only if $t=0$. A Total Mean Cordial labeling of $K_{1}^{c}+2 K_{2}$ is given in figure 3. For $f(y)=1, r+r=5 t+3$.

Figure 3.
Therefore $r=\frac{5 t+3}{2}$. This is a contradiction to $t \equiv 0(\bmod 4)$.
Subcase b4. Any two vertices of S are labeled with zero.
First we assume that $f(u)=f(v)=0$ and $f(x) \neq 0, f(y) \neq 0$. Then $l+2 l+3=5 t+4$. This implies $l=\frac{5 t+1}{3}$. It follows that $t \equiv 1(\bmod 3)$. Now assume that $f(x)=f(y)=2$. In this case $r+2 r+3=5 t+3$. Then $r=\frac{5 t}{3}$, a contradiction to $t \equiv 1(\bmod 3)$. If $f(x)=f(y)=2$ then $r+2 r=5 t+3$ and hence $r=\frac{5 t+3}{3}$. This is impossible since $t \equiv 1(\bmod 3)$. For $f(x)=1$ and $f(y)=2$, we have $r+2 r+2=5 t+3$. Then $r=\frac{5 t+1}{3}$. But $l+r \leq 3 t+1$. This is true only when $t \leq 1$. Since $t \equiv 1(\bmod 3), t \neq 0$. For $t=1$, the Total Mean Cordial labeling of $K_{4}^{c}+2 K_{2}$ is given in figure 4. Suppose $f(u)=f(x)=0$ and $f(v) \neq 0, f(y) \neq 0$. Then $l+2 l+2=5 t+4$

Figure 4.
and therefore $l=\frac{5 t+2}{3}$. It follows that $t \equiv 2(\bmod 3)$. Consider the vertices v and y. Suppose these two vertices are labeled by 2 then $r+2 r+2=5 t+3$. So we have $r=\frac{5 t+1}{3}$. Since $t \equiv 2(\bmod 3)$, such a positive integer does not exists. Suppose v and y are labeled by 1. In this case $r+2 r=5 t+3$ and hence $r=\frac{5 t+3}{3}$. This is impossible since $t \equiv 2(\bmod 3)$. If $f(v)=1$ and $f(y)=2$ then $r+2 r+1=5 t+3$. That is $r=\frac{5 t+2}{3}$. But $l+r>3 t+1$ a contradiction.
Subcase b5. Only one vertex from the set S is labeled by zero.
Without loss of generality assume that $f(u)=0$. In this case $l+l+1=5 t+4$. Thus $l=\frac{5 t+3}{2}$. This is true only if $t \equiv 1(\bmod 2)$. Suppose $f(v)=f(x)=f(y)=2$. Here $r+3 r+4=5 t+3$. Then $r=\frac{5 t-1}{4}$. But $l+r>3 t+1$, a contradiction. If $f(v)=f(x)=f(y)=1$ then $r+3 r=5 t+3$ and hence $r=\frac{5 t+3}{4}$. In this case $l+r>3 t+1$, a contradiction. Suppose $f(v)=2$ and $f(x)=f(y)=1$. Here $r+3 r+1=5 t+3$. Thus $r=\frac{5 t+2}{4}$. This is impossible since $t \equiv 1(\bmod 2)$. For $f(v)=f(y)=2$ and $f(x)=1$, we have $r+3 r+3=5 t+3$. This implies $r=\frac{5 t}{4}$, a contradiction to $t \equiv 1(\bmod 2)$. If $f(v)=1$ and $f(x)=f(y)=2$ then $r+3 r+3=5 t+3$. Hence $r=\frac{5 t}{3}$. Again a contradiction to $t \equiv 1(\bmod 2)$. For $f(v)=f(x)=1$ and $f(y)=2, r+3 r+2=5 t+3$. Therefore $r=\frac{5 t+1}{4}$. But $l+r>3 t+1$, a contradiction. Suppose $e v_{f}(1)=e v_{f}(2)=5 t+4$ and $e v_{f}(0)=5 t+3$.

Subcase c1. $f(u)=f(v)=f(x)=f(y)=0$.
Here, $e v_{f}(2) \leq 3 t+1$, a contradiction.
Subcase c2. $f(u) \neq 0, f(v) \neq 0, f(x) \neq 0, f(y) \neq 0$.
In this case $e v_{f}(0) \leq 3 t+1$, a contradiction.
Subcase c3. Any three vertices of S are labeled with zero.
With out loss of generality assume that $f(u)=f(v)=f(x)=0$ and $f(y) \neq 0$. Here $l+$ $3 l+4=5 t+3$. Thus $l=\frac{5 t-1}{4}$. This implies $t \equiv 1(\bmod 4)$. Now assume $f(y)=2$. Then $r+r+1=5 t+4$. Hence $r=\frac{5 t+3}{2}$. But $l+r>3 t+1$, a contradiction. For $f(y)=2$, we have $r+r=5 t+4$. This implies $\frac{5 t+4}{2}$. This is a contradiction to $t \equiv 1(\bmod 4)$.
Subcase c4. Any two vertices of S are labeled with zero.
Assume $f(u)=f(v)=0$ and $f(x) \neq 0, f(y) \neq 0$. In this case $l+2 l+3=5 t+3$. Therefore $l=\frac{5 t}{3}$. Such a positive integer l exists only if t is a multiple of 3 . Suppose $f(x)=f(y)=2$ then $r+2 r+3=5 t+4$. Thus $r=\frac{5 t+1}{3}$. This shows that t is not a multiple of 3 , a contradiction. If $f(x)=f(y)=1$ then $r+2 r=5 t+4$. Therefore $r=\frac{5 t+4}{3}$. Since $t \equiv 0(\bmod 3)$, such a positive integer r does not exists. Suppose $f(x)=1$ and $f(y)=2$ then $r+2 r+2=5 t+4$. Therefore $r=\frac{5 t+2}{3}$, a contradiction since $t \equiv 0(\bmod 3)$. Consider the case $f(u)=f(x)=0$ and $f(v) \neq f(y) \neq 0$. Here $l+2 l+2=5 t+3$. Thus $l=\frac{5 t+1}{3}$. It follows that $t \equiv 1(\bmod 3)$. Suppose $f(v)=f(y)=2$ then $r+2 r+2=5 t+4$. Hence $r=\frac{5 t+2}{3}$. Since $t \equiv 1(\bmod 3), r$ could not be a positive integer. If $f(v)=f(y)=1$ then $r+2 r=5 t+4$. Therefore $r=\frac{5 t+4}{3}$. But $l+r>3 t+1$, a contradiction. For $f(v)=1$ and $f(y)=2$, we have $r+2 r+1=5 t+4$ and hence $r=\frac{5 t+3}{3}$, a contradiction since $t \equiv 1(\bmod 3)$.
Subcase c5. Only one vertex from the set S is labeled by zero.
Without loss of generality assume that $f(u)=0$. Here, $l+l+1=5 t+3$ and hence $l=\frac{5 t+2}{2}$. It follows that $t \equiv 0(\bmod 2)$. Now assume $f(v)=f(x)=f(y)=2$. Then $r+3 r+4=5 t+4$. This implies $r=\frac{5 t}{4}$. But $l+r \leq 3 t+1$. This is true only when $t=0 . K_{1}^{c}+2 K_{2}$ with a Total Mean Cordial labeling is given in figure 5. Suppose $f(v)=f(x)=f(y)=1$. In this case

Figure 5.
$r+3 r=5 t+4$. Therefore $r=\frac{5 t+4}{4}$. But $l+r>3 t+1$, a contradiction. If $f(v)=2$ and $f(x)=f(y)=1$ then $r+3 r+1=5 t+4$. That is $r=\frac{5 t+3}{4}$. Such a positive integer r does not exists since $t \equiv 0(\bmod 2)$. Assume $f(v)=f(y)=2$ and $f(x)=1$. Here $r+3 r+3=5 t+4$. Then $r=\frac{5 t+1}{4}$. This is a contradiction to $t \equiv 0(\bmod 2)$. If $f(x)=f(y)=2$ and $f(v)=1$ then $r+3 r+3=5 t+4$ and hence $r=\frac{5 t+1}{4}$. Here also a contradiction arises since $t \equiv 0(\bmod 2)$. Further if $f(v)=f(x)=1$ and $f(y)=2$ then $r+3 r+2=5 t+4$. Therefore $r=\frac{5 t+2}{4}$. But $l+r>3 t+1$, a contradiction.
Case 3. $n \equiv 2(\bmod 3)$.
Let $n=3 t+2$. Then $|V(G)|+|E(G)|=15 t+16$. In this case we have three possibilities.
a. $e v_{f}(0)=e v_{f}(1)=5 t+5, e v_{f}(2)=5 t+6$ or
b. $e v_{f}(0)=e v_{f}(2)=5 t+5, e v_{f}(1)=5 t+6$ or
c. $e v_{f}(1)=e v_{f}(2)=5 t+5, e v_{f}(0)=5 t+6$.

Suppose $e v_{f}(0)=e v_{f}(1)=5 t+5, e v_{f}(2)=5 t+6$.
Subcase a1. $f(u)=f(v)=f(x)=f(y)=0$.
Here, $e v_{f}(2) \leq 3 t+2$, a contradiction.
Subcase a2. $f(u) \neq 0, f(v) \neq 0, f(x) \neq 0, f(y) \neq 0$.
In this case $e v_{f}(0) \leq 3 t+2$, a contradiction.
Subcase a3. Any three vertices of S are labeled with zero.
With out loss of generality assume that $f(u)=f(v)=f(x)=0$ and $f(y) \neq 0$. Then $l+3 l+4=$ $5 t+5$. That is $l=\frac{5 t+1}{4}$. It follows that $t \equiv 3(\bmod 4)$. Suppose $f(y)=2$. In this case $r+r+1=5 t+6$. This implies $r=\frac{5 t+5}{2}$. Here, $l+r>3 t+2$, a contradiction. For $f(y)=1$, we have $r+r=5 t+6$ and hence $r=\frac{5 t+6}{2}$. This is impossible since $t \equiv 3(\bmod 4)$.

Subcase a4. Any two vertices of S are labeled with zero.
Assume $f(u)=f(v)=0$ and $f(x) \neq 0, f(y) \neq 0$. Here, $l+2 l+3=5 t+5$. This implies $l=\frac{5 t+2}{3}$. It follows that $t \equiv 2(\bmod 3)$. Now consider the vertices x and y. Suppose these two vertices are labeled by 2 then $r+2 r+3=5 t+6$. Hence $r=\frac{5 t+3}{3}$, a contradiction to the nature of t. If $f(x)=f(y)=1$ then $r+2 r=5 t+6$. Therefore $r=\frac{5 t+6}{3}$. Here also a contradiction arises to the values of t. Now we consider the case that $f(x)=1$ and $f(y)=2$. In this case $r+2 r+2=5 t+6$. That is $r=\frac{5 t+4}{3}$, a contradiction to $t \equiv 2(\bmod 3)$. Now we consider the case $f(u)=f(x)=0$ and $f(v) \neq 0, f(y) \neq 0$. In this case $l+2 l+2=5 t+5$ and hence $l=\frac{5 t+3}{3}$. This shows that t should be a multiple of 3 . If $f(v)=f(y)=2$. Then $r+2 r+2=5 t+6$. Hence $r=\frac{5 t+4}{3}$, a contradiction to the values of t. Assume $f(v)=f(y)=1$. Here $r+2 r=5 t+6$ and then $r=\frac{5 t+6}{3}$. But $l+r>3 t+2$, a contradiction. Suppose $f(v)=1$, $f(y)=2$ then $r+2 r+1=5 t+6$. That is $r=\frac{5 t+5}{3}$. Such a positive integer r does not exists since $t \equiv 0(\bmod 3)$.
Subcase a5. Only one vertex from the set S is labeled by zero.
Without loss of generality assume that $f(u)=0$. Then $l+l+1=5 t+5$ and therefore $l=\frac{5 t+4}{2}$. This is possible only when t is a multiple of 2 . If $f(v)=f(x)=f(y)=2$ then $r+3 r+4=5 t+6$. Therefore $r=\frac{5 t+2}{4}$. But $l+r>3 t+2$, a contradiction. Suppose $f(v)=f(x)=f(y)=1$ then $r+3 r=5 t+6$ and hence $r=\frac{5 t+6}{4}$. Here also $l+r>3 t+2$, a contradiction. For the case $f(v)=2$ and $f(x)=f(y)=1$, we have $r+3 r+1=5 t+6$ and therefore $r=\frac{5 t+5}{4}$. This is impossible since $t \equiv 0(\bmod 2)$. Assume $f(v)=f(y)=2$ and $f(x)=1$. Here $r+3 r+3=5 t+6$. Therefore $r=\frac{5 t+3}{4}$. Here also a contradiction to the nature of t. If $f(v)=1$ and $f(x)=f(y)=2$ then $r+3 r+3=5 t+6$. Hence $r=\frac{5 t+3}{4}$, a contradiction to $t \equiv 0(\bmod 2)$. Assume $f(v)=f(x)=1$ and $f(y)=2$. Here $r+3 r+2=5 t+6$. That is $r=\frac{5 t+4}{4}$. But $l+r>3 t+2$, a contradiction.
Assume $e v_{f}(0)=e v_{f}(2)=5 t+5, e v_{f}(1)=5 t+6$.
Subcase b1. $f(u)=f(v)=f(x)=f(y)=0$.
Here, $e v_{f}(2) \leq 3 t+2$, a contradiction.
Subcase b2. $f(u) \neq 0, f(v) \neq 0, f(x) \neq 0, f(y) \neq 0$.
In this case $e v_{f}(0) \leq 3 t+2$, a contradiction.
Subcase b3. Any three vertices of S are labeled with zero.
With out loss of generality assume that $f(u)=f(v)=f(x)=0$ and $f(y) \neq 0$. Then $l+3 l+4=$ $5 t+5$. This implies $l=\frac{5 t+1}{4}$. This is true only if $t \equiv 3(\bmod 4)$. Suppose $f(y)=2$ then $r+r+1=5 t+5$ and therefore $r=\frac{5 t+4}{2}$, a contradiction to the values of t. For $f(y)=1$, we have, $r+r=5 t+5$ and hence $r=\frac{5 t+5}{2}$. But $l+r>3 t+2$, a contradiction.
Subcase b4. Any two vertices of S are labeled with zero.
Assume $f(u)=f(v)=0$ and $f(x) \neq 0, f(y) \neq 0$. Then $l+2 l+3=5 t+5$ and therefore $l=\frac{5 t+2}{3}$. It follows that $t \equiv 2(\bmod 3)$. Now consider the vertices x and y. Suppose both of this two vertices are Simultaneously labeled by 2 . Here $r+2 r+3=5 t+5$. Therefore $r=\frac{5 t+2}{3}$. Clearly the value of $l+r$ should be less than or equal to $3 t+2$. This should be true only if $t \leq 2$. But we discussed earlier that $t-2$ is a multiple of 3 and t is a positive integer. Hence $t \neq 0$ and $t \neq 1$. For $t=2$, we display a Total Mean Cordial labeling of $K_{8}^{c}+2 K_{2}$ in figure 6. Assume $f(x)=f(y)=1$. Then $r+2 r=5 t+5$ and therefore $r=\frac{5 t+5}{3}$. But $l+r>3 t+2$, a contradiction. Suppose $f(u)=f(x)=0$ and $f(v) \neq 0, f(y) \neq 0$, then $l+2 l+2=\frac{5}{t}+5$. This implies $l=\frac{5 t+3}{3}$. It follows that t is a multiple of 3 . If $f(v)=f(v)=2$ then $r+2 r+2=5 t+5$ and hnece $r=\frac{5 t+3}{3}$. Now $l+r$ should not exceed $3 t+2$. This is possible only if $t \leq 0$. This implies $t=0$. A Total Mean Cordial labeling of $K_{2}^{c}+2 K_{2}$ is given in figure 7. For $f(v)=f(y)=1$ we have $r+2 r=5 t+5$. Hence $r=\frac{5 t+5}{3}$. This is a contradiction to the values of t. Assume $f(v)=1$ and $f(y)=2$. In this case $r+2 r+1=5 t+5$ and therefore $r=\frac{5 t+4}{3}$. This is also a contradiction to the nature of t.
Subcase b5. Only one vertex from the set S is labeled by zero.
Without loss of generality assume that $f(u)=0$. Here $l+l+1=5 t+5$. That is $l=\frac{5 t+4}{2}$. This implies t is a multiple of 2 . Now assume $f(v)=f(x)=f(y)=2$. Then $r+3 r+4=$ $5 t+5$ and hence $r=\frac{5 t+1}{4}$. Since t is a multiple of $2, r$ is not an integer, a contradiction. If $f(v)=f(x)=f(y)=1$ then $r+3 r=5 t+5$. This implies $r=\frac{5 t+5}{4}$. For the same reason as discussed above, we have a contradiction. For $f(v)=2$ and $f(x)=f(y)=1$, we have $r+3 r+1=5 t+5$. Therefore $\frac{5 t+4}{4}$. Now $l+r>3 t+2$, a contradiction. If $f(x)=1$ and $f(v)=f(y)=2$ then $r+3 r+3=5 t+5$. That is $r=\frac{5 t+2}{4}$. Here also the value of $l+r$ exceeds $3 t+2$, a contradiction. Consider the case when $f(v)=1$ and $f(x)=f(y)=2$. In this case $r+3 r+3=5 t+5$. Therefore $r=\frac{5 t+2}{4}$. Again $l+r>3 t+2$, a contradiction. For $f(v)=f(x)=1$ and $f(y)=2$ we have $r+3 r+2=5 t+5$. Hence $r=\frac{5 t+3}{4}$. Such a positive

Figure 6.

Figure 7.
integer r does not exists since t is a multiple of 2 .
Consider the case $e v_{f}(0)=5 t+6$ and $e v_{f}(2)=e v_{f}(1)=5 t+5$.
Subcase c1. $f(u)=f(v)=f(x)=f(y)=0$.
Here, $e v_{f}(2) \leq 3 t+2$, a contradiction.
Subcase c2. $f(u) \neq 0, f(v) \neq 0, f(x) \neq 0, f(y) \neq 0$.
In this case $e v_{f}(0) \leq 3 t+2$, a contradiction.
Subcase c3. Any three vertices of S are labeled with zero.
With out loss of generality assume that $f(u)=f(v)=f(x)=0$ and $f(y) \neq 0$. Here $l+3 l+4=$ $5 t+6$. That is $l=\frac{5 t+2}{4}$. It follows that $t \equiv 2(\bmod 4)$. Now consider the vertex y. Suppose $f(y)=2$ then $r+r+1=5 t+5$ and hence $r=\frac{5 t+4}{2}$. But $l+r>3 t+2$, a contradiction. For $f(v)=1$ we have $r+r=5 t+5$. therefore $r=\frac{5 t+5}{2}$, a contradiction to the values of t.
Subcase c4. Any two vertices of S are labeled with zero.
Assume $f(u)=f(v)=0$ and $f(x) \neq 0, f(y) \neq 0$. In this case $l+2 l+3=5 t+6$. This implies $l=\frac{5 t+3}{3}$. It follows that t is a multiple of 3 . Assume $f(x)=f(y)=2$. Then $r+2 r+3=5 t+5$. That is $r=\frac{5 t+2}{3}$. Such a positive integer r does not exists since $t \equiv 0(\bmod 3)$. If $f(x)=f(y)=1$ then $r+2 r=5 t+5$. Hence $r=\frac{5 t+5}{3}$. Suppose $f(x)=1, f(y)=2$. In this case $r+2 r+2=5 t+5$ and hence $r=\frac{5 t+3}{3}$. Now $l+r \leq 3 t+2$. This is possible only when $t=0$. A Total Mean Cordial labeling of $K_{2}^{c}+2 K_{2}$ is given in figure 8 . Consider the case

Figure 8.
$f(u)=f(x)=0$ and $f(v) \neq 0, f(y) \neq 0$. In this case $l+2 l+2=5 t+6$. This implies $l=\frac{5 t+4}{3}$. It follows that $t \equiv 1(\bmod 3)$. Next consider the vertices v and y. If possible $f(v)=f(y)=2$ then $r+2 r+2=5 t+5$ and hence $r=\frac{5 t+3}{3}$. This is impossible since $t \equiv 1(\bmod 3)$. Suppose $f(v)=f(y)=1$. Here $r+2 r=5 t+5$. Therefore $r=\frac{5 t+5}{3}$, a contradiction to the values of t. For $f(v)=1$ and $f(y)=2$ we have $r+2 r+1=5 t+5$. Then $r=\frac{5 t+4}{3}$. But $l+r>3 t+2$, a contradiction.
Subcase c5. Only one vertex from the set S is labeled by zero.
Without loss of generality assume that $f(u)=0$. Then $l+l+1=5 t+6$. Hence $l=\frac{5 t+5}{2}$. This implies $t \equiv 1(\bmod 2)$. Suppose $f(v)=f(x)=f(y)=2$ then $r+3 r+4=5 t+5$ and hence $r=\frac{5 t+1}{4}$. But $l+r>3 t+2$, a contradiction. If $f(v)=f(x)=f(y)=1$ then $r+3 r=5 t+5$. Therefore $r=\frac{5 t+5}{4}$. Here also $l+r>3 t+2$, a contradiction. For $f(v)=2$ and $f(x)=f(y)=1$ we have $r+3 r+1=5 t+5$. Then $r=\frac{5 t+4}{4}$, a contradiction to $t \equiv 1(\bmod 2)$. Assume $f(v)=f(y)=2$ and $f(x)=1$. In this case $r+3 r+3=5 t+5$. Hence $r=\frac{5 t+2}{4}$. This is impossible since $t \equiv 1(\bmod 2)$. Consider the case $f(v)=1$ and $f(x)=f(y)=2$. Here $r+3 r+3=5 t+3$. Then $r=\frac{5 t+2}{4}$. Here also a contradiction to the values of t. When $f(v)=f(x)=1$ and $f(y)=2$, we have $r+3 r+2=5 t+5$ and hence $r=\frac{5 t+3}{4}$. But $l+r>3 t+2$, a contradiction.

References

[1] J. A. Gallian, A Dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 16 (2013) \# Ds6.
[2] F. Harary, Graph theory, Addision wesley, New Delhi (1969).
[3] R. Ponraj, A. M. S. Ramasamy and S. Sathish Narayanan, Total Mean Cordial labeling of graphs, International J.Math. Combin., 4 (2014).

Author information

R. Ponraj and S. Sathish Narayanan, Department of Mathematics, Sri Paramakalyani College, Alwarkurichi627 412, India.
E-mail: ponrajmaths@gmail.com; sathishrvss@gmail.com
Received: June 15, 1014.
Accepted: October 28, 2014.

