
Palestine Journal of Mathematics

Vol. 4(1) (2015) , 213–222 © Palestine Polytechnic University-PPU 2015

On order statiscal limit points

Bablu Biswas and D. K. Ganguly

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 40A05, Secondary 46B42.

Keywords and phrases: Lattice, order convergence, natural density statistical convergence, order statistical convergence.

Abstract. Following the concept of order statistical convergence in a particular metric lattice
we define the order statistical limit points and order statistical cluster points and obtain some
related results.

1 INTRODUCTION

The concept of statistical convergence was formally introduced by H. Fast [1]. This was also
studied by several authors J. S. Connor [2], J. A. Fridy [3], Miller [4], Freedman Sember [5],
Erdös and Tenenbaum [6] and many others in different aspects. The notion of order statistical
convergence on a linearly order lattice associated with a suitably chosen metric was given by
Ganguly and Biswas [7]. In this paper the authors proved that the statistical convergence is a
particular case of order statistical convergence. Also the concept of order statistically Cauchy
sequence and order statistically bounded sequence have been introduced in this paper.
In the present paper following the concept of statistical limit points and cluster points [8] we
introduce the notion of order statistical limit points and order statistical cluster points and give
some basic properties of these limit points and cluster points. In the last part of this paper we
have also proved a few results relating to the order statistically bounded sequence and it is shown
that an order statistically bounded sequence has an order statistically convergent subsequence.

2 DEFINITIONS AND NOTATIONS

A partially ordered set or poset is set P in which a binary relation x ≤ y is defined, which satis-
fies for all x, y, z ∈ P the following conditions.
(i) x ≤ x for all x ∈ P ,
(ii) if x ≤ y and y ≤ x, then x = y,
(iii) if x ≤ y and y ≤ z, then x ≤ z.
If x ≤ y and x 6= y, we write x < y. The relation x ≤ y is also written as y ≥ x. Similarly,
x < y is also written as y > x.
L is called an additive system, if every two elements a, b ∈ L possess a least upper bound(l.u.b.)
a ∨ b ∈ L and L is said to be a multiplicative system, if every two elements a, b ∈ L possess a
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greatest lower bound(g.l.b.) a ∧ b ∈ L.
A poset L is a lattice if L is both additive and multiplicative.
A lattice L is said to be complete if each of its subset has a l.u.b. and a g.l.b. in L.
An element θ ∈ L is said to be the null element of L if x ∨ θ = x and x ∧ θ = θ for all x ∈ L.
If L is a lattice, we say that a sequence {ai} ∈ L is increasing (decreasing) if ai ≤ aj (ai ≥ aj)

for i < j.

Definition 2.1. [9] A sequence {xn} of a lattice L is said to be Order convergent (O-convergent)
to x ∈ L, if there exist sequences {yn} of elements of L with yn ↓ 0 such that

|xn − x| < yn for each n ∈ N,

where in L, |x| = x+ + x− and x+ = x ∨ θ, x− = (−x) ∨ θ.

Definition 2.2. [10] If K be a subset of the set of positive integers N, then the natural density of
K, denoted by δ(K) is defined by

δ(K) = limn→∞
|Kn|
n , where

Kn = {k ∈ K : k ≤ n} and |Kn| is the number of elements of Kn.

Definition 2.3. A sequence {xn} of real numbers is said to be statistically convergent to some
number l, if for any ε > 0,

δ({k ∈ N : |xk − l| ≥ ε}) = 0.

If {xn} is statistically convergent to l then we write st− limn xn = l.

Definition 2.4. [11] (i) Let L be an additive system and D be a real valued function defined on
L. Then define a function γ on L as

γ(a, b) = 2D(a ∨ b)−D(a)−D(b), ∀a, b ∈ L.

D(a) is said to be monotone increasing (decreasing) when

D(a) ≤ D(b)(D(a) ≥ D(b)), for a < b and a, b ∈ L.

The function D(a) is a norm if γ(a, b) is a metric for L.

(ii) Let L be an additive system and γ(a, b) be a real valued function defined for every
a, b ∈ L; then define,

∆(a, b, c) = 1
2{γ(a, b) + γ(b, c)− γ(a, c)}, for a, b, c ∈ L.

Lemma 2.5. [11] (A) If D(a) is a real valued function defined on an additive system L, then for
a, b ∈ L
(i) D(a)−D(b) = γ(a, b) if a ≥ b.
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(ii) If D(a) is a monotone increasing, then |D(a)−D(b)| ≤ γ(a, b).
(iii) γ(a, b) = γ(b, a), γ(a, a) = 0.
(iv) ∆(a, a ∨ b, b) = 0.
(v) D(a) is monotone increasing if and only if γ(a, b) ≥ 0.
(vi) D(a) is properly monotone increasing if and only if γ(a, b) > 0 for a 6= b.

(B) If D(a) is a real valued function defined on an additive system L and ∆(a, b, c) ≥ 0 for every
a, b, c ∈ L, then the following statements are equivalent.
(i) γ(a ∨ c, b ∨ c) ≤ γ(a, b) for all a, b ∈ L.
(ii) γ(a ∨ c, b ∨ c) ≤ γ(a, b) for all b ≤ a.
(iii) D(a ∨ c) +D(b) ≤ D(a) +D(c ∨ b) for b ≤ a.
(iv) γ(a ∨ c, b ∨ d) ≤ γ(a, b) + γ(c, d).
(C) If D(a) is monotone increasing then ∆(a, b, c) ≥ 0 if and only if one of the equivalent
statements of (B) holds.
Note : If D(a) is monotone increasing and ∆(a, b, c) ≥ 0 for a, b, c ∈ L, then lemma 2.5(A)
implies that γ is a metric on L.

The following definitions and results established in the paper [7] are mentioned here to pursue
some result relating to order statistical limit points and order statistical cluster points.
Through out the paper we consider D to be monotone increasing on L with D(θ) = 0.

Definition 2.6. [7] A sequence {xn}n in a metric lattice (L, γ) is said to be order statistically
convergent (i.e ost-convergent) to x ∈ L if, there exists a sequence {yn} ∈ L with yn ↓ θ such
that

δ({k ∈ N : γ(xk, x) ≥ D(yk)}) = 0,

where D is a real valued monotone increasing function on L with D(θ) = 0 and ∆(a, b, c) ≥ 0
for all a, b, c ∈ L.

If a sequence {xn}n is order statistically convergent to x ∈ L, then the order statistical limit (
i.e. ost-limit ) of {xn}n is x and we denote it by xn

ost−→ x.

Theorem 2.7. A sequence in L can have at most one ost-limit.

Definition 2.8. A sequence {xn} in L is said to be order statistically bounded (i.e. ost-bounded
) if there exists B ∈ R such that

δ({n ∈ N : D(xn) ≥ B}) = 0.

Theorem 2.9. Any ost-convergent sequence in a metric lattice (L, γ) is ost-bounded.

Theorem 2.10. If {xn} and {yn} be two sequences in a metric lattice (L, γ) such that xn
ost−→ x

and yn
ost−→ y then xn ∨ yn

ost−→ x ∨ y.

Theorem 2.11. If a sequence {xn}n in L is order statistically convergent to x if and only if there
is a set K = {k1 < k2 < k3 < .......} ⊆ N with δ(K) = 1 such that limn→∞ xkn

= x with
respect to the metric γ.
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Definition 2.12. A sequence {xn} in a metric lattice (L, γ) is said to be order statistically Cauchy
(i.e. ost-Cauchy) if there is a sequence {yn} in L with yn ↓ θ such that

δ({n ∈ N : γ(xn+p, xn) ≥ D(yn)}, p = 1, 2, 3, ...) = 0.

Theorem 2.13. An ost-Cauchy sequence is ost-bounded.

Theorem 2.14. A sequence {xn}n in L is ost-Cauchy if it is ost-convergent.

Theorem 2.15. If a sequence {xn}n in L is ost-Cauchy then there exists a set K = {k1 < k2 <

k3 < .......} ⊆ N with δ(K) = 1 such that
γ(xkn

, xkm
)→ 0 as m,n→∞.

3 MAIN RESULTS

In this section we first define order statistical limit point (ost-limit point) and order statistical
cluster point (ost-cluster point) analogous to the statistical limit point and statistical cluster point
and investigate some properties relating to this points. First we give some basic definitions and
examples.

Definition 3.1. [8] Let {xn} be a sequence in a metric lattice (L, γ) and {xkn
} be a subsequence

of {xn}. Then
(i) {xkn

} is said to be a subsequence of density zero or a thin subsequence if δ{kn : n ∈ N} = 0.
(ii) {xkn

} is said to be a non-thin subsequence if either δ{kn : n ∈ N} > 0 or density of the set
{kn : n ∈ N} does not exist.

Definition 3.2. An element λ ∈ L is said to be an ost-limit point of a sequence x = {xn} ∈ L
provided there is a non-thin subsequence {xkn} of x and {yn} ∈ L with yn ↓ θ such that
γ(xkn

, λ) < D(yn) for all n ∈ N.

Definition 3.3. An element ξ ∈ L is said to be an ost-cluster point of a sequence x = {xn} ∈ L
provided there is a sequence {yn} ∈ L with yn ↓ θ such that {k ∈ N : γ(xk, ξ) < D(yk)} does
not have density zero.

Notation : We denote the set of all order statistical limit points of a sequence x by OSL(x) and
OSC(x) denotes the set of all order statistical cluster points of x and L(x) denotes the set of all
ordinary limit points of the sequence x.

We now give an example of a sequence x for which L(x) ⊆ OSL(x) and L(x) ⊆ OSC(x).

Example1 : Let
xk = 1; when k = n2, n = 1, 2, .....

= 0; otherwise.

In the lattice R, the set of real numbers if D be the identity mapping, then γ be the usual metric
on R. Clearly L(x) = {0, 1}. Also if M = {k ∈ N : k 6= n2}, n = 1, 2, ....., then γ(xn, 0) < 1

n
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for all n ∈M . This shows that OSL(x) = OSC(x) = {0}

Now we determine some properties of the two sets OSL(x) and OSC(x).

Theorem 3.4. For any sequence x = {xn} in L, OSL(x) ⊆ OSC(x).

Proof: Let λ ∈ OSL(x). Then there exists a non-thin subsequence {xkn
} of x so that there is a

sequence {yn} ∈ L with yn ↓ θ and

γ(xkn
, λ) < D(ykn

) for all n ∈ N.

Also since {xkn
} is non-thin, lim sup 1

n |{kn ≤ n : n ∈ N}| > 0.
Again {kn : n ∈ N} ⊆ {k ∈ N : γ(xk, λ) < D(yk)}.
Therefore,

lim sup 1
n |{k ≤ n : γ(xk, λ) < D(yk)}| ≥ lim sup 1

n |{kn ≤ n : n ∈ N}| > 0.

Thus {k ≤ n : γ(xk, λ) < D(yk)} does not have density zero. This implies that λ ∈ OSC(x),
hence OSL(x) ⊆ OSC(x).

Note : The converse of the above theorem is not true and it will be clear from the following
example.
Example2 : We consider the sequence x = {xn} as
{0, 0, 1, 0, 1

2 , 1, 0,
1
3 ,

2
3 , 1, 0,

1
4 ,

1
2 ,

3
4 , 1, .......} and taking γ as the usual metric on R.

Now for α ∈ [0, 1] let there exists a subsequence {xnk
} of x and {yn} be a sequence of real num-

bers in the lattice R with yn ↓ 0 such that γ(xnk
, α) < yk for all k ∈ N. Let K = {nk : k ∈ N}.

Since yn ↓ 0 then for ε > 0 there exist m ∈ N such that yn < ε for all n ≥ m.
Let K1 = {nk : k ∈ N} − {1, 2, ......,m− 1}.
Now |K1(n)| ≤ |nk ∈ K1(n) : γ(xnk

, α) < ε|+ |nk ∈ K1(n) : γ(xnk
, α) ≥ ε|.

⇒ δ(K1) ≤ 2ε.
Since ε is arbitrary, then δ(K1) = 0 and consequently δ(K) = 0. This shows that α /∈
OSL(x).i.e. OSL(x) = φ.
Again let β ∈ [0, 1]. Then for any ε > 0,
δ{k ∈ N : γ(xk, β) < 1

k} = δ{k ∈ N : γ(xk, β) < ε} = δ{k ∈ N : xk ∈ (β−ε, β+ε)} > ε > 0.
So, OSC(x) = [0, 1] and thus OSC(x) 6= OSL(x).

Lemma 3.5. If x = {xn} ∈ L be such that limn→∞ xn = ξ with respect to the metric γ then
there is a sequence {αn} ∈ L with αn ↓ θ such that γ(xn, ξ) < D(αn), for all n ∈ N.

Proof: Since limn→∞ xn = ξ, then for ε > 0 there is m ∈ N such that γ(xn, ξ) < ε for all
n ≥ m.
Let {yn} be a sequence in L such that yn ↓ θ. Then for each yi there is a smallest positive integer
mi such that γ(xn, ξ) < D(yi) for all n ≥ mi, i = 1, 2, 3, ...
Choose z1 ∈ L such that, D(z1) > max{D(y1), γ(x1, ξ), γ(x2, ξ), ......, γ(xm1−1, ξ)},
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Choose z2 ∈ L such that,
γ(xm1 , ξ) ≥ D(z2) > max{D(y2), γ(xm1+1, ξ), γ(xm1+2, ξ), ......, γ(xm2−1, ξ)},

Choose z3 ∈ L such that,
γ(xm2 , ξ) ≥ D(z3) > max{D(y3), γ(xm2+1, ξ), γ(xm2+2, ξ), ......, γ(xm3−1, ξ)},
and so on.
Now set,

αi = z1; i = 1, 2, .....,m1 − 1

= y1; i = m1

= z2; i = m1 + 1,m1 + 2, .....,m2 − 1

= y2; i = m2

.. ..................

Then γ(xn, ξ) < D(αn), for all n ∈ N and αn ↓ θ.

Theorem 3.6. OSC(x) is a closed set for any sequence x = {xn} in L.

Proof: Let x = {xn} be a sequence in L and p be a limit point of OSC(x). Consider a sequence
{yn} in L with yn ↓ θ.
Then for each n ∈ N there exists αn ∈ OSC(x) such that αn ∈ B(p,D(yn)), whereB(p,D(yn))

denotes the open ball with centre at p and radius D(yn).
Since αn ∈ OSC(x) there exists {z(n)k }k with z(n)k ↓ θ as k →∞ such that

lim sup 1
m |{k ≤ m : γ(xk, αn) < D(z

(n)
k )}| > 0 for all n ∈ N.

Consider An = {k ∈ N : γ(xk, αn) < D(z
(n)
k )}, n ∈ N. Now αn ∈ B(p,D(yn)) implies that

γ(p, αn) < D(yn). Thus for k ∈ An

γ(xk, p) ≤ γ(xk, αn) + γ(αn, p)

< D(z
(n)
k ) +D(yn).

Now k, n → ∞ implies that D(z
(n)
k ) +D(yn) → 0. i.e. γ(xk, p) → 0 when k, n → ∞. Using

Lemma 3.5 we can choose a sequence {wk} in L such that γ(xk, p) < D(wk) for all k ∈ N and
wk ↓ θ.
i.e. k ∈ An implies that k ∈ {k ∈ N : γ(xk, p) < D(wk)} = B, say.
So, An ⊆ B and consequently,

lim sup 1
m |{k ≤ m : γ(xk, p) < D(wk)}| ≥ lim sup 1

m |{k ≤ m : γ(xk, αn) < D(z
(n)
k )}|

> 0.

So, p ∈ OSC(x) and hence OSC(x) is closed.
We now show that the set OSL(x) need not be closed and for this purpose we give the following
example.
Example3 : Let x = {xn} be a sequence in R, the set of real numbers the with usual metric
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such that
xn = 1

p where n = 2p−1(2q + 1), p, q are positive integers.
Then for each p

δ({n ∈ N : γ(xn, 1
p) <

1
n}) = δ({n ∈ N : |xn − 1

p | <
1
n})

≥ δ({n ∈ N : xn = 1
p})

= 2−p

> 0

Thus 1
p ∈ OSL(x).

Clearly 0 is a limit point of OSL(x). Let there is a subsequence {xnk
} of x and {yk} be a

sequence of real number with yk ↓ 0 such that
γ(xnk

, 0) < yk for all k ∈ N i.e. xnk
< yk for all k ∈ N.

Since yk ↓ 0 then there exists a least positive integer l such that yk < 1
l for some k.

Let K = {nk : k ∈ N}. Then for each p ≥ l,
|Kn| ≤ |{k ∈ Kn : xk ≥ 1

p}|+ |{k ∈ Kn : xk < 1
p}| ≤ |{k ∈ Kn : xk ≥ 1

p}|+ |{k ∈ N : xk <
1
p}| ≤ |{k ∈ Kn : xk ≥ 1

p}|+
n
2p .

Thus δ(K) ≤ 1
2p . Since p is arbitrary then we have δ(K) = 0. Therefore 0 /∈ OSL(x)

Theorem 3.7. Let x = {xk} and y = {yk} be two sequences in L such that xk = yk for almost
all k, then
(i) OSL(x) = OSL(y) and
(ii) OSC(x) = OSC(y).

Proof: (i) We have δ({k ∈ N : xk 6= yk}) = 0 and λ ∈ OSL(x). Then there exists a non-thin
subsequence {xkn

} of x with the property that there exists {zk} ∈ L with zk ↓ θ so that

γ(xkn
, λ) < D(zkn

) for all n ∈ N.

Now {kn ∈ N : xkn
6= ykn

} ⊆ {k ∈ N : xk 6= yk}.
Then δ({kn ∈ N : xkn 6= ykn}) = 0. Thus {kn ∈ N : xkn = ykn} does not have density zero. If
{kn ∈ N : xkn

= ykn
} = {pn : n ∈ N}, then clearly {xpn

} is a non-thin subsequence of x and

γ(xpn
, λ) < D(zpn

) for all n ∈ N.

Consequently,

γ(ypn
, λ) < D(zpn

) for all n ∈ N,

since xpn
= ypn

for all n ∈ N. Therefore λ ∈ OSL(y) and hence OSL(x) ⊆ OSL(y). By
symmetry OSL(y) ⊆ OSL(x) and thus OSL(x) = OSL(y).

(ii) Let α ∈ OSC(x). Then there exists {zk} ∈ L with zk ↓ θ so that {k ∈ N : γ(xk, α) <
D(zk)} does not have density zero.
Let A = {k ∈ N : γ(xk, α) < D(zk)} and consider {k ∈ N : xk = yk} = {kn : n ∈ N}.
Then δ({kn ∈ N}) = 1. SinceA does not have density zero then {kn ∈ N : γ(xkn

, α) < D(zkn
)}

does not have density zero. So, {kn ∈ N : γ(ykn , α) < D(zkn)} does not have density zero as
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xkn
= ykn

for all n ∈ N. Thus {k ∈ N : γ(yk, α) < D(zk)} does not have density zero. i.e.
α ∈ OSC(x). Therefore, OSC(x) ⊆ OSC(y). By symmetry OSC(y) ⊆ OSC(x) and thus
OSC(x) = OSC(y).

Theorem 3.8. Let {xn} be an ost-bounded sequence in L such that the density of the set M =

{n ∈ N : xn+1 ≥ xn} is 1. Then {xn} is ost-convergent.

Proof: Let M = {nk : k ∈ N}. Since {xn} is ost-bounded then there exists B ∈ R such that
δ({n ∈ N : D(xn) ≥ B}) = 0 and so
δ({nk ∈M : D(xkn

) ≥ B}) = 0.
Let M1 = {pk ∈M : D(xpk

) < B}. Then δ(M1) = 1 and xpk
≤ xpk+1 for all k ∈ N.

Since D is monotone increasing then D(xp1) ≤ D(xp2) ≤ D(xp3) ≤ ..... < B.
Here supk∈N xpk

= ∨k∈N xpk
exists.

Let supk∈N xpk
= α. Since D is increasing then supk∈ND(xpk

) = D(α). Now,

γ(xpk
, α) = 2D(xpk

∨ α)−D(xpk
)−D(α)

= 2D(α)−D(xpk
)−D(α); since xpk

∨ α = α

= D(α)−D(xpk
).

So, xpk
≤ xpk+1

⇒ D(xpk
) ≤ D(xpk+1)

⇒ D(α)−D(xpk
) ≥ D(α)−D(xpk+1)

i.e. γ(xpk
, α) ≥ γ(xpk+1 , α).

Thus {γ(xpk
, α)} is a monotone decreasing sequence.

Also it is clear that γ(xpk
, α)→ 0 as k →∞.

Consider a sequence {yk} ∈ L with yk ↓ θ. Then for xp1 there exists some yq1 ∈ {yn} such that

D(α)−D(yq1) < D(xp1)

or, D(α)−D(xp1) < D(yq1).

i.e., γ(xp1 , α) < D(yq1).

Again for xp2 we can choose some yq ∈ {yn} such that {γ(xp2 , α)} < D(yq2) since {γ(xpk
, α)}

is a monotone decreasing.
Thus for the sequence {xpk

} we can construct the sequence {ypk
} such that {γ(xpk

, α)} <
D(yqk) for all k ∈ N and yq1 ≥ yq2 ≥ yq3 ........

Construct a sequence {zn} ∈ L as follows:

zi = yq1 ; 1 ≤ i ≤ p1

= yq2 ; p1 < i ≤ p2

= yq3 ; p2 < i ≤ p3

... .... .........................



On order statiscal limit points 221

Then zpi
= yqi for all i = 1, 2, 3, ......

So
γ(xpk

, α) < D(zpk
)

for all k ∈ N and {zpk
} is a sequence in L and zpk

↓ θ. Thus δ({k ∈ N : γ(xk, α) ≥ D(zk)}) = 0
and hence {xk} is ost-convergent to α.

Corollory 3.9. A monotone increasing ost-bounded sequence is ost-convergent.

Theorem 3.10. Let {xn} be an ost-bounded sequence in L such that the density of the set M =

{n ∈ N : xn+1 ≤ xn} is 1. Then {xn} is ost-convergent.

Proof: The proof is similar to the previous theorem.

Corollory 3.11. A monotone decreasing ost-bounded sequence is ost-convergent.

Theorem 3.12. A ost-bounded sequence has an ost-convergent subsequence.

Proof: Let {xn} be an ost-bounded sequence in L. Since L is an ordered lattice then we can
choose a monotone subsequence {xnk

} of {xn}. {xnk
} is monotone and ost-bounded and hence

it is ost-convergence.
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