Pseudo AGP-injective rings

Zhu Zhanmin

Communicated by Ayman Badawi

MSC 2010 Classifications: 16D50, 16E50.

Keywords and phrases: PAGP-injective ring; Von Neumann regular ring; strongly regular ring; π -regular ring.

Abstract. A ring R is called right Pseudo AGP-injective or right PAGP-injective for short, if for any $a \in R$ there exists a positive integer n and a left ideal X_{a^n} such that $lr(a^n) = Ra^n \oplus X_{a^n}$. In this Article, we investigate properties of right PAGP-injective rings satisfying some additional conditions.

1 Introduction

Throughout this paper, R denotes an associative ring with identity. The left and right annihilators of a subset X of R will be denoted as $\mathbf{l}(X)$ and $\mathbf{r}(X)$, respectively. We write J = J(R) and Z_r , respectively for the Jacobson radical of R and the right singular ideal of R. For regular rings we mean von Neumann regular rings.

We start with the following Definition.

Definition 1 Let R be a ring and M be a right R-module with $S = End(M_R)$. Then M_R is called P-seudo GP-injective or PGP-injective for short if, for any $a \in R$ there exists a positive integer R such that $\mathbf{l}_M \mathbf{r}_R(a^n) = Ma^n$. M_R is called R-seudo R-injective or R-injective for short if, for any R is a positive integer R and an R-submodule R-injective for short if R-is R-injective. R is called right R-seudo R-injective or right R-injective for short if R-is R-injective. R-injective.

The concepts of *PGP*-injective modules and *PAGP*-injective modules are explained by the following theorem.

Theorem 2. Let M be a right R-module with $S = End(M_R)$. Then

- (1) M is PGP-injective if and only if for any $a \in R$ there exists a positive integer n such that every homomorphism from $a^n R$ to M extends to a homomorphism of R to M.
- (2) M is PAGP-injective if and only if, for any $a \in R$ there exist a positive integer n such that $Hom_R(R, M)$ is a direct summand of $Hom_R(a^nR, M)$ as left S-modules.

Proof (1) is obvious. (2) by [6, Lemma 1.2(3)].

Clearly, The following implications hold: right P-injective \Rightarrow right GP-injective \Rightarrow right GP-injective \Rightarrow right PAGP-injective. right PAGP-injective \Rightarrow right PAGP-injective.

230 Zhu Zhanmin

right P-injective \Rightarrow right AP-injective \Rightarrow right AGP-injective \Rightarrow right PAGP-injective.

But right AGP-injective (even if for right AP-injective) \Rightarrow right GP-injective \Rightarrow right P-injective by [6, Examples 1.5] and [4, Example 1].

right AGP-injective (even if for right GP-injective) \Rightarrow right AP-injective \Rightarrow right P-injective (even if right GP-injective) by [4, Proposition 2] and [6, Examples 1.5].

We don't know whether right PAGP-injective rings (even if for right AP-injective rings) are PGP-injective, but we have that right PGP-injective rings (and hence right PAGP-injective rings) need not be right PGP-injective by the following Example 3, and right PGP-injective right PGP-injective right PGP-injective by the following Example 4.

Example 3. A finite commutative ring which is PGP-injective but not AGP-injective.

Let $R = Z_8 \propto 2Z_8$ be the trivial extension of Z_8 and the Z_8 -module $2Z_8$. For $a = (\overline{n}, 2\overline{x}) \in R$. If n = 1, 3, 5, 7, then a is invertible in R, thus $\mathbf{lr}(a) = Ra$. If n = 0, 2, 4, 6, then $a^3 = 0$, and so $\mathbf{lr}(a^3) = Ra^3$. Therefore R is PGP-injective and hence PAGP-injective. For $b = (\overline{0}, \overline{2})$, we have $b^2 = 0$, $\mathbf{lr}(b) = 2Z_8 \propto 2Z_8$ and $Rb = (0) \propto 2Z_8$. Clearly, Rb is not a direct summand of $\mathbf{lr}(b)$. Hence R is not AGP-injective.

Example 4. A finite commutative ring which is AP-injective and PGP-injective, but not GP-injective.

Let $R = Z_4 \propto (Z_4 \oplus Z_4)$. For any $a = (\overline{n}, \overline{l}, \overline{m}) \in R$, if n = 1, 3, then a is invertible, thus $\mathbf{lr}(a) = Ra$. If n = 0, 2, then $a^2 = 0$, and so $\mathbf{lr}(a^2) = Ra^2$. Hence R is PGP-injective, moreover, by [6, Examples 1.5(2)], R is a finite commutative ring which is AP-injective. Let $b = (\overline{0}, \overline{1}, \overline{0})$. Then $b^2 = 0$ and $\mathbf{lr}(b) = (0) \propto (Z_4 \oplus Z_4) \neq (0) \propto (Z_4 \oplus Z_4) = Rb$. Therefore, R is not GP-injective.

Following [6], let A, B are two left ideals of a ring R, then we write $A \mid B$ to indicate that A is a direct summand of B.

Lemma 5. Let R be a ring, $a \in R$ with $\mathbf{r}(a) = 0$. Then for any positive integer i, $a^iR \mid a^{i-1}R$ if and only if $a^{i+1}R \mid a^iR$.

Proof \Rightarrow . Suppose $a^{i-1}R = a^iR \oplus K$ for some right ideal K. Then for any $r \in R$, we have $a^ir = a(a^{i-1}r) = a(a^ir' + k) = a^{i+1}r' + ak$, where $r' \in R$, $k \in K$, and so $a^iR = a^{i+1}R + aK$. Now if $x \in a^{i+1}R \cap aK$, let $x = a^{i+1}r = ak$, $r \in R$, $k \in K$. Then $a(a^ir - k) = 0$, and so $a^ir - k = 0$ because $\mathbf{r}(a) = 0$. Hence $a^ir = k \in a^iR \cap K = 0$, this implies that x = 0, and whence $a^{i+1}R \cap aK = 0$. Therefore, $a^iR = a^{i+1}R \oplus aK$.

←. If $a^{i+1}R \mid a^iR$, let $a^iR = a^{i+1}R \oplus N$ and write $N' = \{a^{i-1}r : a^ir \in N\}$. Then for any $a^{i-1}r \in a^{i-1}R$, there exist a $r' \in R$ and an $n \in N$ such that $a^ir = a^{i+1}r' + n$. Hence $a^{i-1}r = a^ir' + a^{i-1}(r - ar')$. Since $a^i(r - ar') = a^ir - a^{i+1}r' = n \in N$, $a^{i-1}(r - ar') \in N'$, and then $a^{i-1}R = a^iR + N'$. If $x \in a^iR \cap N'$, let $x = a^ir_1 = a^{i-1}r_2$, where $r_1, r_2 \in R$, $a^ir_2 \in N$. Then $a^{i+1}r_1 = a^ir_2 \in a^{i+1}R \cap N = 0$, which shows that $x = a^ir_1 = 0$, and so $a^iR \cap N = 0$. Hence $a^{i-1}R = a^iR \oplus N$.

Recall that a module M_R is said to satisfy the generalized C_2 -condition (or GC_2 for short) [7] if for any $N \le M$ with $N \cong M$, N is a direct summand of M. The ring R is called right GC_2 if R_R is GC_2 .

Theorem 6. If R is a right PAGP-injective ring, then

- (1) R is right GC_2 .
- (2) R is a classical quotient ring.

Proof (1) Let *I* be a right ideal of *R* with $I \cong R_R$. Then I = aR for some $a \in R$ with $\mathbf{r}(a) = 0$. Since *R* is right *PAGP*-injective, there exist a positive integer *n* and a left ideal X_{a^n} such that

$$\mathbf{lr}(a^n) = Ra^n \oplus X_{a^n} \tag{*}$$

By Lemma 5, $aR \mid R \Leftrightarrow a^nR \mid a^{n-1}R$. Thus, to prove $aR \mid R$, we need only to prove that $a^nR \mid R$. Since $\mathbf{r}(a^n) = 0$, by (*), we have $R = Ra^n \oplus X_{a^n}$. Let $1 = ba^n + x$, where $b \in R$, $x \in X_{a^n}$. Then $a^n = a^nba^n + a^nx$, this follows that $a^n - a^nba^n = a^nx \in Ra^n \cap X_{a^n} = 0$, and thus $a^n = a^nba^n$. Let $e = a^nb$. Then $e^2 = e$ and $a^nR = eR$, as required.

(2) Let $\mathbf{l}(a) = \mathbf{r}(a) = 0$. Then $\mathbf{l}(a^k) = \mathbf{r}(a^k) = 0$ for every positive integer k. By the right *PAGP*-injectivity of R, $\mathbf{lr}(a^n) = Ra^n \oplus X_{a^n}$ holds for some positive integer n and some left ideal

 X_{a^n} . Thus, $R = \mathbf{lr}(a^n) = Ra^n \oplus X_{a^n}$. Let $1 = ba^n + x$, where $b \in R$, $x \in X_{a^n}$. Then $a^n = a^nba^n$. Hence $1 = a(a^{n-1}b) = (ba^{n-1})a$, and the result follows.

By Theorem 6(1) and [7, Corollary 2.5 and Proposition 2.6], we have immediately the following corollary.

Corollary 7. Let *R* be a right PAGP-injective ring. Then

- (1) $Z_r \subseteq J(R)$.
- (2) *If R is right finite dimensional, then it is semilocal.*

Recall that a ring R is called π -regular if for every $a \in R$, there exist a positive integer n and $b \in R$ such that $a^n = a^nba^n$; R is called right PP if every right ideal of R is projective; R is called a Baer ring [8] if the right annihilator of every nonempty subset of R is generated by an idempotent; Clearly, every Baer ring is right PP. R is called a right IN ring [9] if $I(A \cap B) = I(A) + I(B)$ for every pair of right ideals R and R of R.

Theorem 8 Let R be a right PAGP-injective ring. Then

- (1) If R is right PP (in particular, if R is a Baer ring), then R is π -regular.
- (2) If R is a right nonsingular and right IN-ring, then R is π -regular.

Proof First of all, for any $a \in R$, by the right *PAGP*-injectivity of R, there exist a positive integer n and a left ideal X_{a^n} such that $\mathbf{lr}(a^n) = Ra^n \oplus X_{a^n}$.

- (1) Since R is right PP, a^nR is projective, and so there exists $e^2 = e \in R$ such that $\mathbf{r}(a^n) = eR$. Thus we have $R(1-e) = \mathbf{l}(eR) = \mathbf{l}\mathbf{r}(a^n) = Ra^n \oplus X_{a^n}$. Let $1-e = ba^n + x$, where $b \in R$ and $x \in X_{a^n}$. Then $a^n = a^n(1-e) = a^nba^n + a^nx$, this follows that $a^n = a^nba^n$. Therefore R is π -regular.
- (2) Let I be a right ideal of R such that $\mathbf{r}(a^n) \oplus I$ is essential in R. Then we have $\mathbf{l}(\mathbf{r}(a^n)) + \mathbf{l}(I) = \mathbf{l}(\mathbf{r}(a^n) \cap I) = R$ and $\mathbf{lr}(a^n) \cap \mathbf{l}(I) \subseteq \mathbf{l}(\mathbf{r}(a^n) + I) = 0$ because R is right IN and right nonsingular. Thus, $R = \mathbf{lr}(a^n) \oplus \mathbf{l}(I) = Ra^n \oplus X_{a^n} \oplus \mathbf{l}(I)$. Write $1 = ra^n + x$, where $r \in R$, $x \in X_{a^n} \oplus \mathbf{l}(I)$. Then $a^n = a^n ra^n$. This implies that R is π -regular.

Corollary 9 Let R be a semiprime, right PAGP-injective right IN-ring. If each essential right ideal of R is an ideal, then R is a π -regular ring.

Proof By Theorem 8(2), we need only to prove R is nonsingular. Indeed, if $a \in R$ such that $\mathbf{r}(a)$ is essential in R, then $\mathbf{r}(a)$ is an ideal of R by hypotheses, hence $\mathbf{lr}(a)$ is also an ideal. Since $(\mathbf{lr}(a) \cap \mathbf{r}(a))^2 \subseteq (\mathbf{lr}(a))\mathbf{r}(a) = 0$ and R is semiprime, $\mathbf{lr}(a) \cap \mathbf{r}(a) = 0$, and so $a \in \mathbf{lr}(a) = 0$ for $\mathbf{r}(a)$ is essential in R. As required.

We call an element $x \in R$ right generalized π -regular if there exists a positive integer n such that $x^n = xyx^n$ for some $y \in R$. R is called right generalized π -regular if every element in R is right generalized π -regular.

The results of Lemma 10 and Lemma 11 are similar to [3, Lemma 2.1] and [3, Theorem 2.2] respectively, and they are included here for the completeness.

Lemma 10 Let R be a ring and $a \in R$. If $a^n - ara^n$ is regular for some positive integer n and $r \in R$, then there exists $y \in R$ such that $a^n = aya^n$, whence R is right generalized π -regular.

Proof Let $d = a^n - ara^n$. Since d is regular, d = dud for some $u \in R$. Hence

$$a^{n} = d + ara^{n} = (a^{n} - ara^{n})u(a^{n} - ara^{n}) + ara^{n}$$
$$= a(a^{n-1} - ra^{n})u(1 - ar)a^{n} + ara^{n} = aya^{n}$$

,where $y = (a^{n-1} - ra^n)u(1 - ar) + r$.

Lemma 11 *The following are equivalent for a ring R.*

- (1) R is regular.
- (2) $N(R) = \{a \in R \mid a^2 = 0\}$ is regular and R is right generalized π -regular.

Zhu Zhanmin

Proof $(1) \Rightarrow (2)$ is clear.

(2) \Rightarrow (1) Let $a \in R$. Since R is right generalized π -regular, there exist a positive integer n and an element r in R such that $a^n = ara^n$. Next we shall show that a is regular. In fact, if n = 1, we are done. Let n > 1. Put $d = a^{n-1} - ara^{n-1}$. Then da = 0, and so $d^2 = d(a^{n-1} - ara^{n-1}) = 0$. Since $N(R) = \{a \in R \mid a^2 = 0\}$ is regular, d is regular. Hence $a^{n-1} = ay_1a^{n-1}$ for some $y_1 \in R$ by Lemma 10. If n - 1 > 1, then there exists $y_2 \in R$ such that $a^{n-2} = ay_2a^{n-2}$ by the preceding proof. Continus in this way, we will get $b \in R$ such that a = aba, i.e., a is regular.

Next we give a new characterization of regular rings.

Theorem 12 *The following are equivalent for a ring R.*

- (1) R is regular.
- (2) Every principally right ideal of R is PGP-injective and $N(R) = \{a \in R \mid a^2 = 0\}$ is regular.

Proof $(1) \Rightarrow (2)$ is obvious.

(2) \Rightarrow (1) Let $a \in R$. Write M = aR. Since M is PGP-injective, there exists a positive integer n such that $\mathbf{l}_M \mathbf{r}_R(a^n) = Ma^n$, so $a^n = aba^n$ for some $b \in R$. Hence, R is right generalized π -regular. Therefore, R is regular by Lemma 11.

Recall that a ring R is called *strongly regular* if for every $a \in R$, there exists $b \in R$ such that $a = a^2b$; R is called *reduced* if it has no nonzero nilpotent elements. Clearly, a ring R is reduced if and only if $\mathbf{r}(a^k) = \mathbf{r}(a)$ for any $a \in R$ and any positive integer k; a reduced ring is AGP-injective if and only if it is PAGP-injective.

Theorem 13 *The following statements are equivalent for a ring R:*

- (1) R is a strongly regular ring.
- (2) *R* is a reduced right AGP-injective ring.
- (3) R is a reduced right PAGP-injective ring.
- (4) R is a reduced and right generalized π -regular ring.

Proof $(1) \Rightarrow (2) \Rightarrow (3)$ are Obvious.

- (3) \Rightarrow (4). Let $a \in R$. Since R is right PAGP-injective, there exist a positive integer n and a left ideal $X_{a^{2n}}$ such that $\mathbf{lr}(a^{2n}) = Ra^{2n} \oplus X_{a^{2n}}$. Since R is reduced, $\mathbf{r}(a^{2n}) = \mathbf{r}(a)$, and so $a \in \mathbf{lr}(a) = \mathbf{lr}(a^{2n}) = Ra^{2n} \oplus X_{a^{2n}}$. Let $a = ba^{2n} + x, b \in R, x \in X_{a^{2n}}$. Then $a^{2n} a^{2n-1}ba^{2n} = a^{2n-1}x \in Ra^{2n} \cap X_{a^{2n}} = 0$, i.e., $a^{2n} = a(a^{2n-2}b)a^{2n}$. And (4) follows.
- $(4) \Rightarrow (1)$. Assume (4), then by Lemma 11, R is regular. Let $a \in R$. Then a = aba for some $b \in R$. Since $(a a^2b)^2 = a^2 a^3b a^2ba + a^2ba^2b = a^2 a^3b a^2 + a^2ab = 0$ and R is reduced, $a a^2b = 0$, i.e., $a = a^2b$. Therefore, R is strongly regular.

Theorem 14 If R is a semiprime right PAGP-injective ring, then the center of R is a strongly regular ring.

Proof Let $a \in C(R)$. Since R is right PAGP-injective, there exist a positive integer n and a left ideal $X_{a^{2n}}$ such that $\mathbf{lr}(a^{2n}) = Ra^{2n} \oplus X_{a^{2n}}$. If $a^{2n}r = 0$, then $(Ra^{2n-1}r)^2 = 0$, and so $a^{2n-1}r = 0$ as R is semiprime. Continues in this way, we get ar = 0, this follows that $\mathbf{r}(a) = \mathbf{r}(a^{2n})$. Hence, $a \in \mathbf{lr}(a) = \mathbf{lr}(a^{2n}) = Ra^{2n} \oplus X_{a^{2n}}$. Let $a = ba^{2n} + x, b \in R, x \in X_{a^{2n}}$. Then $a^{2n} = a^{2n-1}ba^{2n} + a^{2n-1}x$, and thus $a^{2n} - a^{2n-1}ba^{2n} = a^{2n-1}x \in Ra^{2n} \cap X_{a^{2n}} = 0$, which shows that $a^{2n} = a^{2n-1}ba^{2n}$, i.e., $1 - a^{2n-1}b \in \mathbf{r}(a^{2n}) = \mathbf{r}(a)$. Hence, $a = a^{2n}b = a^2a^{2n-2}b$. Let $c = a^{2n-2}b$. Then $a = a^2c$. Now we claim that $c \in C(R)$. In fact, for any $c \in R$, we have $a^2(c - cc) = a^2(ca^{2n-2}b - a^{2n-2}bc) = ca^{2n}b - a^{2n}bc = ca^{2n}bc = ca^{2n-2}bc = ca^{2n-$

References

- [1] Nicholson, W. K., Yousif, M. F., Principally injective rings, J. Algebra, 174 (1) (1995), 77-93.
- [2] Chen, J. L., Ding, N. Q., On general principally injective rings, Comm. Algebra, 27 (5) (1999), 2097-2116.
- [3] Chen, J. L., Ding, N. Q., On regularity of rings, Algebra colloq. 8 (3) (2001), 267-274.

- [4] Chen, J. L., Zhou, Y. Q., Zhu, Z. M., GP-injective rings need not be P-injective, Comm. Algebra, 33 (7) (2005), 2395-2402.
- [5] Nam, S. B., Kim, N. K., Kim, J. Y., On simple GP-injective modules, Comm. Algebra, 23 (14) (1995), 5437-5444.
- [6] Page, S. S., Zhou, Y. Q., Generalizations of Principally injective rings, J. Algebra, 206 (2) (1998), 706-721.
- [7] Yousif, M. F., Zhou, Y. Q., Rings for which certain elements have the principal extension property, Algebra Colloq, **10** (4) (2003), 501-512.
- [8] Kaplansky, I., Rings of Operators, Benjamin, New York, 1968, 3.
- [9] Camillo, V., Nicholson, W. K., Yousif, M. F., Ikeda-Nakayama rings, J. Algebra, **226** (2) (2000), 1001-

Author information

Received: May 14, 2013.

Accepted: October 12, 2013.